
BitTorrent

Kevin Kaminski
CISC856

11/27/2012

P2P In General

• Various protocols(Gnutella, eDonkey,
Fastrack)
–BitTorrent most popular

• Next is Gnutella, though declining due to LimeWire
takedown and FrostWire drop

• Various clients
–uTorrent seems to be best/most popular
–Vuze, eMule, Frostwire other alternatives

Worldwide Traffic Share

• 2012 statistics courtesy of Sandvine

NA Traffic Statistics

Outside Top 5
Gaming
Secure Tunneling
Social Networking
Real-time Comm
Bulk Entertainment
P2P Filesharing
Web Browsing
Real-time Entertainment

 2009 2010 2011 2012

Server Client Model

• Centralized
• Fast speeds
• Stable

P2P Model

• Each node is a
“peer”

• Peers both clients
and servers

• Decentralized

Why P2P?
● Advantages

– Servers require expensive hardware, P2P can be
used on common desktops

– Redundancy - Resources located in multiple
locations, no single point of failure

● Disadvantages

– Slower speeds near endpoints

– Peers constantly connecting/disconnecting, unstable

– If no one sharing the resource, cannot be
downloaded

BitTorrent Component Overview

● Target file
– Broken into indexed “pieces”

● Metainfo file
– Hosted on BitTorrent index, contains meta

information about the torrent file

● Tracker
– Centralized server that coordinates downloads

● Peer Wire Protocol
– Used to transfer pieces between peers

General Process

Metainfo File

● Hosted on web server (torrent index) and
downloaded out-of-band

● Contains tracker and file information in “dictionary” of
keys

● Dictionary maps one value to another

● File is encoded using “bencoding”

Metainfo File Contents

Metainfo File Contents (cont'd)

Bencoding
● Integers: i <number> e

– i404e is the integer 404

● Strings: <string length> : <string data>

– 7:example is the string “example”

● Lists: l <bencoded values> e

– l7:examplei404ee is [“example”, 404]

● Dictionaries: d <string><bencoded value> e

– d5:alpha1:a4:beta1:be is [“alpha”:”a”, “beta”:”b”]

Metainfo File Keys

Metainfo File Translated

Tracker
● Coordinates the communication between peers

● Tracks statistics of torrents

● Typically a public server

– Not all torrent indexes have a tracker

– Public vs private trackers

Tracker (cont'd)

Tracker Communication
● Host peer opens TCP connection to tracker server using

announce URL in metainfo file

● Sends HTTP GET request with parameters

Tracker Response

[“peer_id”:“UT3210-%b6m%10%ea%bb%01%1eDkV%bc%e5”,
 “ip”:”192.168.1.8”,
 “port”:”42176”]

Peer Wire Protocol (PWP)
● Communication and data transfer between peers

● Requests pieces of target file in 16KB “blocks”

– Pieces generally 512KB-2MB in size

● States

– Choked: remote peer does not respond to requests for blocks
from peer

– Unchoked: remote peer will upload data to the peer

– Interested: peer expresses want to request blocks from remote
peer

– Uninterested: peer will not request blocks from remote peer

Establishing Connections
● Client peer opens PWP connections with all peers in the list from the

tracker

● Handshake PDU

– Pstrlen: 1 byte, length of pstr

● 19 for Bittorrent

– pstr: variable length, protocol ID string

● “BitTorrent protocol”

– reserved: 8 bytes for extensions

– info_hash: 20 byte SHA-1 of entire info key in metainfo file

– peer_id: 20 byte ID, same as transmitted in tracker request

Handshaking
Peer A Peer B

Peer A parses the peer list
returned by the tracker

….
….

Peer B IP:2000
…. BitTorrent Protocol

Handshake
peer_id: A 2000

2000

am_interested = 0

BitTorrent Protocol
Handshake
peer_id: B

Message Exchange

If max_connections >
connections+1

Connection established peer_choking = 1

BitTorrent Message PDU
● Format

– 4 byte length value, 1 byte ID value, variable payload

● Multiple PDU's can be sent in a single TCP PDU

● Types

– keep-alive – sent if no commands sent to keep connection alive

● Connection timeout = ~2 minutes

– choke (0) – local peer choking remote peer

– unchoke (1) – local peer unchoking remote peer

– interested (2) – local peer is interested

– uninterested (3) – local peer is uninterested

BitTorrent Message PDU (cont'd)

● Have (4) – payload is piece index

– Sent after downloaded and hash verified

● Bitfield (5) – payload is bitfield of piece indexes

– Bit set to 1 if peer has the piece at that index

– First message sent after handshake, optional if peer has no pieces

● request (6)

● index – piece index

● begin – byte offset of block within piece

● length – length of requested block

– Default block length is 16KB, peer drops connections for any request
lengths over 32KB

BitTorrent Message PDU (cont'd)

● piece (7)

– index – piece index

– begin – byte offset of block

– block – the requested block data

● cancel (8) - index, begin, length

– Cancels a block request

● port (9) - 2 byte port number

– Used for DHT

Message Flow
Peer A Peer B

1 2 30 1 2 0 1 2

1 2 30 1 2

Choke Algorithm
● Local peer keeps a list of interested and uninterested remote peers

● Interested peers are ranked by their upload rate to the local peer

● The top four peers are unchoked - downloaders

– Every 10 seconds, rates and downloaders are recalculated

● Time cycle reduces fibrillation – rapid choking and unchoking

– If a peer has a better upload rate than the downloaders but is
uninterested, unchoke

● If it becomes interested in the future, it replaces the downloader with
the lowest upload rate

● Reduces leechers

– in order to become unchoked, must upload to peer

Optimistic Unchoke
● Every 30 seconds, one random and choked peer is unchoked

regardless of its upload rate

– If interested, counts as one of the four downloaders

● If uninterested, unchoke and randomly select a new choked
peer

● Advantages

– Allows faster connections to be discovered

– Selected peer may be new and have no pieces to share

● Optimistic unchoke will give peer its first piece so it can
upload to others and become a downloader

1 Peer B 0 Kb/s

2 Peer C 0 Kb/s

3 Peer D 0 Kb/s

1 Peer B 0 Kb/s

2 Peer C 0 Kb/s

3 Peer D 0 Kb/s

Peer Selection Process

1 2 30 1 2 3

1 2 30 1 2 3

1 2 30 1 2 3

1 2 30 1 2 3

UnchokeRequest 0 Piece 0

1 Peer C 750 Kb/s

2 Peer B 0 Kb/s

3 Peer D 0 Kb/s

Peer A

Peer B

Peer C

Peer D

0
Have 0

Have 0

Have 0

Interested
Request 0

Piece 0

A is unchoked

Unchoke

Request 1

Piece 1

Request 2 Piece 2

1 Peer C 750 Kb/s

2 Peer B 500 Kb/s

3 Peer D 0 Kb/s

Optimistic unchoke AUnchoke

Request 3

Piece 3

1

1 Peer C 750 Kb/s

2 Peer B 500 Kb/s

3 Peer D 1 Mb/s

1 Peer D 1 Mb/s

2 Peer C 750 Kb/s

3 Peer B 500 Kb/s

Choke

Have 1

Have 1

Have 1

1 Peer D 1 Mb/s

2 Peer C 750 Kb/s

3 Peer B 0 Kb/s

Request 1

Piece 1

Request 1
Piece 1

1 Peer D 1 Mb/s

2 Peer C 750 Kb/s

3 Peer B 0 Kb/s

4 Peer E 0 Kb/s

Peer E

1 2 30 1 2 30 1

Optimistic
unchoke E

Unchoke

Request 0

Piece
0

1 Peer D 1 Mb/s

2 Peer E 0 Kb/s

3 Peer C 750 Kb/s

4 Peer B 0 Kb/s
Choke

22

1 Peer D 1 Mb/s

2 Peer E 0 Kb/s

3 Peer C 0 Kb/s

4 Peer B 0 Kb/s

3

0
1

1 Peer D 0 Mb/s

2 Peer E 0 Kb/s

3 Peer C 0 Kb/s

4 Peer B 0 Kb/s

Optimistic unchoke A

Seeder Mode

● Entered once peer has all pieces
● Uploads to four peers, ranked by upload

rate
● Optimistic unchoke

Snubbing
● Peer may become choked by all uploaders

● Anti-snubbing – local peer cannot unchoke a peer if

– The peer has received blocks from the local peer

– The peer has not uploaded any blocks to the local peer

● Snubbing peer is not unchoked unless by optimistic unchoke

● Allows snubbed peer to find better peers

– Can select multiple peers for optimistic unchoke, improves
recovery time

Piece Selection Algorithm
● Random first – randomly selects a piece to request

– Occurs when peer has downloaded less than 4 pieces

– Allows fast acquisition of pieces

● Rarest first – requests the rarest pieces first

– Counter tracks the number of peers who have a specific piece

– Pieces are ranked by rarity, requested in low to high order

– Allows pieces to be have a more equal distribution

● Strict block policy – when a block is requested, all other requested
blocks from the same piece have higher priority

– Complete pieces faster so they can be uploaded to other peers

End Game Mode
● Last blocks of a download can be delayed

● Send block request to all peers

– Once received, send cancel to other peers

– Helps last blocks download faster

– Not reliant on a single, possibly slow peer
● Usually occurs after all blocks are requested or a

download threshold is reached

End Game Mode Process

1 2 30 1 2 3

1 2 30 1 2 3

1 2 30 1 2 3

1 2 30 1 2 3

Request 1

Request 1

Request 1

Piece 1

Piece 1

1
Cancel 1

Cancel 1

Piece 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

