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P2P In General

• Various protocols(Gnutella, eDonkey, 
Fastrack)
–BitTorrent most popular

• Next is Gnutella, though declining due to LimeWire 
takedown and FrostWire drop

• Various clients
–uTorrent seems to be best/most popular
–Vuze, eMule, Frostwire other alternatives



Worldwide Traffic Share

• 2012 statistics courtesy of Sandvine



NA Traffic Statistics 

Outside Top 5
Gaming
Secure Tunneling
Social Networking
Real-time Comm
Bulk Entertainment
P2P Filesharing
Web Browsing
Real-time Entertainment

     2009            2010           2011            2012



Server Client Model

• Centralized
• Fast speeds
• Stable



P2P Model

• Each node is a 
“peer”

• Peers both clients
and servers

• Decentralized



Why P2P?
● Advantages

– Servers require expensive hardware, P2P can be 
used on common desktops

– Redundancy - Resources located in multiple 
locations, no single point of failure

● Disadvantages

– Slower speeds near endpoints

– Peers constantly connecting/disconnecting, unstable

– If no one sharing the resource, cannot be 
downloaded



BitTorrent Component Overview

● Target file
– Broken into indexed “pieces”

● Metainfo file
– Hosted on BitTorrent index, contains meta 

information about the torrent file

● Tracker
– Centralized server that coordinates downloads

● Peer Wire Protocol
– Used to transfer pieces between peers



General Process



Metainfo File

● Hosted on web server (torrent index) and 
downloaded out-of-band

● Contains tracker and file information in “dictionary” of 
keys

● Dictionary maps one value to another

● File is encoded using “bencoding”



Metainfo File Contents



Metainfo File Contents (cont'd)



Bencoding
● Integers: i <number> e

– i404e is the integer 404

● Strings: <string length> : <string data>

– 7:example is the string “example”

● Lists: l <bencoded values> e

– l7:examplei404ee is [“example”, 404]

● Dictionaries: d <string><bencoded value> e

– d5:alpha1:a4:beta1:be is [“alpha”:”a”, “beta”:”b”]



Metainfo File Keys



Metainfo File Translated



Tracker 
● Coordinates the communication between peers 

● Tracks statistics of torrents

● Typically a public server

– Not all torrent indexes have a tracker

– Public vs private trackers



Tracker (cont'd)



Tracker Communication
● Host peer opens TCP connection to tracker server using 

announce URL in metainfo file

● Sends HTTP GET request with parameters



Tracker Response

[“peer_id”:“UT3210-%b6m%10%ea%bb%01%1eDkV%bc%e5”,
 “ip”:”192.168.1.8”,
 “port”:”42176”]



Peer Wire Protocol (PWP)
● Communication and data transfer between peers

● Requests pieces of target file in 16KB “blocks”

– Pieces generally 512KB-2MB in size

● States

– Choked: remote peer does not respond to requests for blocks 
from peer

– Unchoked: remote peer will upload data to the peer

– Interested: peer expresses want to request blocks from remote 
peer

– Uninterested: peer will not request blocks from remote peer



Establishing Connections
● Client peer opens PWP connections with all peers in the list from the 

tracker

● Handshake PDU

– Pstrlen: 1 byte, length of pstr

● 19 for Bittorrent

– pstr: variable length, protocol ID string

● “BitTorrent protocol”

– reserved: 8 bytes for extensions

– info_hash: 20 byte SHA-1 of entire info key in metainfo file

– peer_id: 20 byte ID, same as transmitted in tracker request



Handshaking
Peer A Peer B

Peer A parses the peer list 
returned by the tracker

….
….

Peer B IP:2000
…. BitTorrent Protocol

Handshake
peer_id: A 2000

2000

am_interested = 0

BitTorrent Protocol
Handshake
peer_id: B

Message Exchange 

If max_connections >
connections+1

Connection established peer_choking = 1



BitTorrent Message PDU
● Format

– 4 byte length value, 1 byte ID value, variable payload

● Multiple PDU's can be sent in a single TCP PDU 

● Types

– keep-alive – sent if no commands sent to keep connection alive

● Connection timeout = ~2 minutes

– choke (0) – local peer choking remote peer

– unchoke (1) – local peer unchoking remote peer

– interested (2) – local peer is interested

– uninterested (3) – local peer is uninterested



BitTorrent Message PDU (cont'd)

● Have (4) – payload is piece index

– Sent after downloaded and hash verified

● Bitfield (5) – payload is bitfield of piece indexes

– Bit set to 1 if peer has the piece at that index

– First message sent after handshake, optional if peer has no pieces

● request (6) 

● index – piece index

● begin – byte offset of block within piece

● length – length of requested block

– Default block length is 16KB, peer drops connections for any request 
lengths over 32KB



BitTorrent Message PDU (cont'd)

● piece (7) 

– index – piece index

– begin – byte offset of block

– block – the requested block data 

● cancel (8) - index, begin, length

– Cancels a block request

● port (9) - 2 byte port number

– Used for DHT 



Message Flow
Peer A Peer B

1  2  30 1 2 0  1  2

1  2  30 1 2



Choke Algorithm
● Local peer keeps a list of interested and uninterested remote peers

● Interested peers are ranked by their upload rate to the local peer

● The top four peers are unchoked - downloaders

– Every 10 seconds, rates and downloaders are recalculated

● Time cycle reduces fibrillation – rapid choking and unchoking

– If a peer has a better upload rate than the downloaders but is 
uninterested, unchoke

● If it becomes interested in the future, it replaces the downloader with 
the lowest upload rate

● Reduces leechers 

– in order to become unchoked, must upload to peer



Optimistic Unchoke
● Every 30 seconds, one random and choked peer is unchoked 

regardless of its upload rate

– If interested, counts as one of the four downloaders

● If uninterested, unchoke and randomly select a new choked 
peer

● Advantages

– Allows faster connections to be discovered 

– Selected peer may be new and have no pieces to share

● Optimistic unchoke will give peer its first piece so it can 
upload to others and become a downloader



1 Peer B 0 Kb/s

2 Peer C 0 Kb/s

3 Peer D 0 Kb/s

1 Peer B 0 Kb/s

2 Peer C 0 Kb/s

3 Peer D 0 Kb/s

Peer Selection Process

1  2  30 1 2 3

1  2  30 1 2 3

1  2  30 1 2 3

1  2  30 1 2 3

UnchokeRequest 0 Piece 0

1 Peer C 750 Kb/s

2 Peer B 0 Kb/s

3 Peer D 0 Kb/s

Peer A

Peer B

Peer C

Peer D

0 
Have 0

Have 0

Have 0

Interested
Request 0

Piece 0

A is unchoked

Unchoke

Request 1

Piece 1

Request 2 Piece 2

1 Peer C 750 Kb/s

2 Peer B 500 Kb/s

3 Peer D 0 Kb/s

Optimistic unchoke AUnchoke

Request 3

Piece 3

1

1 Peer C 750 Kb/s

2 Peer B 500 Kb/s

3 Peer D 1 Mb/s

1 Peer D 1 Mb/s

2 Peer C 750 Kb/s

3 Peer B 500 Kb/s

Choke

Have 1

Have 1

Have 1

1 Peer D 1 Mb/s

2 Peer C 750 Kb/s

3 Peer B 0 Kb/s

Request 1

Piece 1

Request 1
Piece 1

1 Peer D 1 Mb/s

2 Peer C 750 Kb/s

3 Peer B 0 Kb/s

4 Peer E 0 Kb/s

Peer E

1  2  30 1 2 30 1

Optimistic 
unchoke E

Unchoke

Request 0

Piece
0 

1 Peer D 1 Mb/s

2 Peer E 0 Kb/s

3 Peer C 750 Kb/s

4 Peer B 0 Kb/s
Choke

22

1 Peer D 1 Mb/s

2 Peer E 0 Kb/s

3 Peer C 0 Kb/s

4 Peer B 0 Kb/s

3

0 
1

1 Peer D 0 Mb/s

2 Peer E 0 Kb/s

3 Peer C 0 Kb/s

4 Peer B 0 Kb/s

Optimistic unchoke A



Seeder Mode

● Entered once peer has all pieces
● Uploads to four peers, ranked by upload 

rate
● Optimistic unchoke



Snubbing
● Peer may become choked by all uploaders

● Anti-snubbing – local peer cannot unchoke a peer if

– The peer has received blocks from the local peer

– The peer has not uploaded any blocks to the local peer

● Snubbing peer is not unchoked unless by optimistic unchoke

● Allows snubbed peer to find better peers

– Can select multiple peers for optimistic unchoke, improves 
recovery time 



Piece Selection Algorithm
● Random first – randomly selects a piece to request

– Occurs when peer has downloaded less than 4 pieces

– Allows fast acquisition of pieces 

● Rarest first – requests the rarest pieces first

– Counter tracks the number of peers who have a specific piece

– Pieces are ranked by rarity, requested in low to high order

– Allows pieces to be have a more equal distribution

● Strict block policy – when a block is requested, all other requested 
blocks from the same piece have higher priority

– Complete pieces faster so they can be uploaded to other peers



End Game Mode
● Last blocks of a download can be delayed

● Send block request to all peers

– Once received, send cancel to other peers

– Helps last blocks download faster

– Not reliant on a single, possibly slow peer
● Usually occurs after all blocks are requested or a 

download threshold is reached



End Game Mode Process

1  2  30 1 2 3

1  2  30 1 2 3

1  2  30 1 2 3

1  2  30 1 2 3

Request 1

Request 1

Request 1

Piece 1

Piece 1

1
Cancel 1

Cancel 1

Piece 1
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