Low Extra Delay Background Transport

Presented by Joel Bricker October 25th, 2012

Inspired by: Rajan, University of Delaware Andrew Sprouse, Northeastern University Dario Rossi, TELECOM ParisTech

CISC 856 TCP/IP and Upper Layer Protocols

References

- Low Extra Delay Background Transport (LEDBAT) draft-ietf-ledbat-congestion.txt
- LEDBAT: the new BitTorrent congestion control protocol - Dario Rossi, Luca Muscariello, Computer Communications and Networks (ICCCN), 2010 Proceedings of 19th International Conference
- LEDBAT specification: http://www.bittorrent.org/beps/bep_0029.html

Goals of LEDBAT:

- Yield to higher priority internet traffic
 - Minimize congestion by minimizing queuing delay
- Utilize unused bandwidth fully

• Some modems have queues on the order of seconds, so even if the queue is not full delay will be excessive

Motivation:

• TCP has congestion control, but...

uTP "Transport" Protocol:

- Estimate queuing delay with One-Way Delay
 - One Way Delay is required to avoid reverse-path traffic impacting the calculation
- Operates in the application layer
 - Uses UDP as its transport layer protocol
 - Implements most of the functionality of TCP in A-PCI
 - Allows LEDBAT to implement its own congestion control protocol

uTP A-PCI:

0 4	4 8	3 1	6 32
type	ver	extension	connection_id
timestamp_microseconds			
timestamp_difference_microseconds			
wnd_size			
seq_nr			ack_nr

uTP Congestion Window:

TARGET, off_target, and cwnd

- TARGET is the maximum queuing delay that LEDBAT tolerates
- Off_target = TARGET queuing delay
- For example if TARGET = 20 ms
 - If queuing delay > 20, then off_target is < 0, and sender rate is decreased
 - If queuing delay < 20, then off_target is > 0, and sender rate is increased
- cwnd += GAIN * off_target / cwnd
- Where GAIN = 1 / TARGET, the rate at which the congestion window responds to changes in queuing delay.

uTP Congestion Window:

- cwnd += GAIN * off_target / cwnd, increase or decrease is directly proportional to off_target
 - On start-up, allows faster ramp up
 - As queuing_delay approaches TARGET the changes are less significant preventing excessive oscillation
- On loss, behave like TCP
 - Halve congestion window

uTP Congestion Window:

- Worst case: degenerate into TCP
 - Critical to avoid a user of LEDBAT from maliciously taking an unfair share of the bandwidth
 - Worst case is somebody maliciously sets their TARGET to be ∞ or alters timestamps to show a queuing_delay of o, this means:
 - cwnd += GAIN * off_target / cwnd
 - GAIN = $(1 / \infty)$, off_target = $(\infty 0)$
 - cwnd += $(1 / \infty) * (\infty 0) / cwnd$, therefore:
 - cwnd += 1 / cwnd per ACK arrival, which is exactly the behavior of TCP when operating in congestion avoidance

LEDBAT vs. TCP:

Time

LEDBAT vs. LEDBAT:

Late-comer Phenomenon:

Late-comer Advantage:

- LEDBAT_1 maintains a queue size of TARGET
- LEDBAT_2 incorrectly calculates the base delay
- LEDBAT_1 detects increased delay caused by LEDBAT_2 and LEDBAT_1 decreases its sending rate
- LEDBAT_2 does not detect an increase in queuing_delay because LEDBAT_1 is decreasing its sending rate so LEDBAT_2 increases its sending rate

Late-comer Disadvantage:

- LEDBAT_1 has not yet caused a queue to build in the bottleneck router
- LEDBAT_2 starts transmitting when queuing_delay calculates to o
- As LEDBAT_1 has started first, its sending rate will be greater than LEDBAT_2 causing LEDBAT_1 to receive a larger percentage of the bandwidth when the TARGET queuing_delay is reached