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Abstract

Infographics, such as bar charts and line graphs, occur often in popular media and are a rich

knowledge source that should be accessible to users. Unfortunately, information retrieval re-

search has focused on the retrieval of text documents and images, with almost no attention specif-

ically directed toward the retrieval of information graphics. Our work is the first to directly tackle

the retrieval of infographics and to design a system that takes into account their unique charac-

teristics. Learning-to-rank algorithms are applied on a large set of features to develop several

models for infographics retrieval. Evaluation of the models shows that features pertaining to the

structure and the content of graphics should be taken into account when retrieving graphics and

that doing so results in a model with better performance than a baseline model that relies on

matching query words with words in the graphic.

1 Introduction

Infographics are non-pictorial graphics such as bar charts and line graphs. When such graphics appear in

popular media, they generally have a high-level message that they are intended to convey. For example,

the graphic in Figure 1 ostensibly conveys the message that Toyota has the highest profit among the

automobile companies listed. Thus infographics are a form of language since, according to Clark (Clark

and Curran, 2007), language is any deliberate signal that is intended to convey a message.

Although much research has addressed the retrieval of documents, very little attention has been given

to the retrieval of infographics. Yet research has shown that the content of an infographic is often not

included in the article’s text (Carberry et al., 2006). Thus infographics are an important knowledge

source that should be accessible to users of a digital library.

Techniques that have been effective for document or image retrieval are inadequate for the retrieval

of infographics. Current search engines employ strategies similar to those used in document retrieval,

relying primarily on the text surrounding a graphic and web link structures. But the text in the surround-

ing document generally does not refer explicitly to the infographic or even describe its content (Carberry

et al., 2006). An obvious extension to using the article text would be to collect all the words in an

infographic and use it as a bag of words. However, infographics have structure and often a high-level

message, and bag of words approaches ignore this structure and message content.

This paper explores the features that should be taken into account when ranking graphics for retrieval

in response to a user query. Using a learning-to-rank algorithm on a wide range of features (including

structural and content features), we produce a model that performs significantly better than a model that

ignores graph structure and content. Analysis of the model shows that features based on the structure

and content of graphs are very important and should not be ignored. To our knowledge, our research is

the first to take graph structure and content into account when retrieving infographics.
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Figure 1: An Example Infographic

2 Related Work

Information retrieval research has focused on the retrieval of text documents and images. Two popular

approaches to text retrieval are the vector space method and probabilistic methods. The vector space

method (Dubin, 2004) represents the document and the query each as a vector of weighted words and

then uses a similarity function to measure the similarity of each document to the query. Most weighting

mechanisms reward words that occur frequently in both the document and query but infrequently in

the overall collection of documents. Probabilistic retrieval models instead estimate the probability that

a document is relevant to a user query. In recent years, the language modeling approach has shown

promise as a retrieval strategy with sound statistical underpinnings (Lv and Zhai, 2009; Manning et al.,

2008). In all of the above approaches, query expansion techniques have been used to expand the query

with synonyms and related words before ranking documents for retrieval. Work on short document and

query expansion have shown improvements in retrieval performance (Arguello et al., 2008; Escalante et

al., 2008; Metzler and Cai, 2011).

Work in Content Based Image Retrieval (CBIR) (Datta et al., 2008) has progressed from systems that

retrieved images based solely on visual similarity, relying on low-level features such as color, texture and

shape ( (Flickner et al., 1995; Swain and Ballard, 1991; Smith and Chang, 1997; Gupta and Jain, 1997),

among others), to systems which attempt to classify and reason about the semantics of the images being

processed (Bradshaw, 2000; Smeulders et al., 2000; Datta et al., 2008). However, images are free-form

with relatively little inherent structure; thus it is extremely difficult to determine what is conveyed by an

image, other than to list the image’s constituent pieces. Most systems that retrieve infographics, such

as SpringerImages (http://www.springerimages.com) and Zanran (http://www.zanran.com), are based on

textual annotations of the graphics as in image retrieval (Gao et al., 2011) or on matching the user’s query

against the text surrounding the graphic. However, the structure and content of the graph are not taken

into consideration.

In this paper, we focus on natural language queries given that such queries allow users to express their

specific information need more clearly than keywords (Phan et al., 2007; Bendersky and Croft, 2009).

Previous work on verbose and natural language queries (Bendersky and Croft, 2008; Liu et al., 2013)

used probabilistic models and natural language processing techniques to identify the key contents in

such queries. Our query processing method not only extracts key entities but also further classifies the

extracted key entities into different components using a learned decision tree model.

3 Problem Formulation

Our research is currently limited to two kinds of infographics: simple bar charts and single line graphs.

We assume that our digital library contains an XML representation of each graphic that includes 1) the

graphic’s image, 2) its structural components: the set of independent axis (x-axis) labels1, the entity being

measured on the dependent axis (y-axis), and the text that appears in the graphic’s caption, referred to

as Gx, Gy , and Gc respectively, and 3) the graphic’s intended message Gm and any entities Gf that the

1We will refer to the independent axis as the x-axis and the dependent axis as the y-axis throughout this paper.



message focuses on. This paper is not concerned with the computer vision problem of recognizing the

bars, labels, colors, etc. in a graphic; other research efforts, such as the work in (Chester and Elzer, 2005;

Futrelle and Nikolakis, 1995) are addressing the parsing of electronic images such as bar charts and line

graphs.

Prior research on our project has addressed issues that arise in recognizing Gy , Gm, and Gf . The

dependent axis of an infographic often does not explicitly label what is being measured, such as net

profit in Figure 1, and these must be inferred from other text in the graphic. Our prior work (Demir et

al., 2007) identified a hierarchy of graphic components in which pieces of the entity being measured

might appear; a set of heuristics were constructed that extracted these pieces and melded them together

to form what we refer to as a measurement axis descriptor and which is Gy . The project’s prior work

also identified a set of 17 categories of intended message, such as Rank, Relative-difference, Maximum,

and Rising-trend, that might be conveyed by simple bar charts and line graphs; a Bayesian system (Elzer

et al., 2011; Wu et al., 2010) was developed that utilizes communicative signals in a graphic (such as the

coloring of one bar differently from the other bars) in order to recognize a graphic’s intended message,

including both the message category and the parameters of the message such as any focused entity. For

example, the intended message of the bar chart in Figure 1 is ostensibly that Toyota has the highest net

profit of any of the automobile manufacturers listed; thus its message falls into the Maximum message

category and its focused entity is Toyota.

Our vision is that since graphics have structure and content, the users whose particular information

needs could be satisfied by an infographic will formulate their queries to indicate the requisite structure

of the desired graphics. Thus we assume the use of full-sentence queries so that the semantics of the query

can be analyzed to identify characteristics of relevant graphics. For example, consider the following two

queries that contain similar keywords but represent different information needs:

Q1: Which countries have the highest occurrence of rare diseases?

Q2: Which rare diseases occur in the most countries?

These two queries contain almost identical words but are asking for completely different graphics. Query

Q1 is asking for a comparison of countries (independent axis) according to their occurrence of rare dis-

eases (dependent axis) while query Q2 is asking for a comparison of different rare diseases (independent

axis) according to the number of countries in which they occur (dependent axis). In addition, both queries

are asking for a graphic with a Rank message that ranks countries (query Q1) or rare diseases (query Q2)

as opposed to a graphic that shows the trend in rare diseases throughout the world.

4 Methodology

To retrieve relevant graphics in response to a user query, the query will first be analyzed to identify requi-

site characteristics of relevant infographics. We have developed learned decision trees (Li et al., 2013a;

Li et al., 2013b) for analyzing a query and identifying the requisite structure of relevant infographics (the

content of the independent axis or x-axis and dependent axis or y-axis, referred to as Qx and Qy), and

the category of intended message and focused entity, if any, (referred to as Qm and Qf ) that will best

satisfy the user’s information need.

Given a new user query, it is parsed and noun phrases are extracted. Each query-phrase pair, consisting

of a query and an extracted noun phrase, is processed by a decision tree that determines whether the noun

phrase represents x-axis content, y-axis content, or neither. Attributes used by this decision tree include

whether the main verb of the query is a comparison verb (such as “differ” and “compare”) or a trend

verb (such as “change” and “decrease”), whether the noun phrase is preceded by a quantity phrase such

as “the number of” suggesting that the noun phrase specifies y-axis content of relevant infographics, and

whether the noun phrase describe a period of time.

Similarly, another decision tree is constructed to identify the category of graph intended message

(such as Trend or Rank) that the query desires, using a subset of the attributes from the axes decision tree

combined with the classification results of the axes decision tree. An example of the reused attributes is

the class of the main verb in the user query; for example, a comparison main verb suggests that relevant

infographics will convey a comparison-based intended message, such as a Relative-difference or Rank



intended message. Other attributes include the presence of a superlative or comparative in the query

and attributes depending on the identified content of the x and y axes by the axes decision tree, such

as the number of x-axis entities, their plurality, and whether an x-axis entity describes a time interval.

A third decision tree is constructed for identifying whether a noun phrase describes a specific focused

x-axis entity. Then the infographics in the digital library must be rank-ordered according to how well

they satisfy the requirements of the user query.

This paper is concerned with identifying the most important features in a metric for rank-ordering

the graphics in response to a user query. We experiment with two learning-to-rank algorithms and 56

features that include both general features such as bag of words comparisons and structural and content

features. Our hypothesis is that structural and content-based features play an important role in graph

retrieval and cannot be ignored. Section 5 discusses the features used in our experiments, Section 6

discusses the learning algorithms, Section 6.1 compares the resultant models with a baseline that uses

just general features treating query and graphic each as one bag of words, and Section 6.2 discusses the

features that appear most influential in the models.

5 Features

We consider three kinds of features: 1) general features that compare words in the query with words in

the graphic, 2) structural features that compare the requisite structure hypothesized from the query with

the structure of candidate infographics, and 3) content-based features that compare the requisite message

hypothesized from the user query with the intended message of candidate graphics.

Query expansion is a commonly used strategy in information retrieval to bridge the vocabulary gap

between terms in a query and those in documents. The basic idea is to expand the original query with

terms that are semantically similar to the ones in the query. This addresses the problem encountered when

the query uses the word car but the document uses the term automobile. But retrieval of information

graphics presents an additional problem. Consider a query such as “Which car manufacturer has the

highest net profit?” A graphic such as the one in Figure 1 displays a set of car manufacturers on the x-

axis (Toyota, Nissan, etc.) but nowhere in the graphic does the word car or a synonym appear. Identifying

the ontological category, such as car or automobile, of these labels is crucial since the user’s query often

generalizes the entities on the independent axis of relevant graphs rather than listing them.

To expand a given text string s, we use Wikimantic (Boston et al., 2013), a term expansion method

that uses Wikipedia articles as topic concepts. A topic concept is a unigram distribution built from words

in the Wikipedia article for that topic. A string s is interpreted by Wikimantic into a mixture concept that

is a weighted vector of topic concepts that capture the semantic meaning of the words in s. Each topic

concept is weighted by the likelihood that the concept (Wikipedia article) generates the text string s. The

weighted concepts are then used to produce a unigram distribution of words that serve as the expansion of

the terms in the string s. One issue in graph retrieval is correlating the requisite x-axis content specified

in the user query with the x-axis labels in graphs. A query such as “Which car manufacturer has ... ?”

is requesting a graph where “car manufacturers” are listed on the x-axis. Thus we need to recognize

individual x-axis words which are often proper nouns (e.g., “Ford”, “Nissan”, “Honda”) as instances of

car manufacturers. In the case of labels on the independent axis (such as Toyota, Nissan, Honda, etc.),

words such as car or automobile are part of the produced unigram distribution — that is, as a side effect,

the ontological category of the individual entities becomes part of the term expansion.

We use Wikimantic to interpret and expand each of the graph components Gx, Gy , Gf , and Gc. The

expansion of the graph components (as opposed to the typical expansion of the query) accomplishes two

objectives: 1) it addresses the problem of sparse graphic text by adding semantically similar words and

2) it addresses the problem of terms in the query capturing general classes (such as car or automobile)

when the graphic instead contains an enumeration of members of the general class. Expansion of the

words in the graphics, unlike query expansion, has the added advantage that it is completed in advance

and off-line.



5.1 General Features

Our general feature set includes 17 general features capturing a variety of different kinds of relevance

scorings between two bags of words consisting respectively of words from the user query and words

from the candidate infographic:

• GF1: A modified version of Okapi-BM25 (Fang et al., 2004) calculated as:

Okapi-BM25 Score =
∑

w∈Q log |D|+1
dfw+1 · tfw·(1+k1)

tfw+k1

where Q is a query, |D| is the number of graphs in the digital library, w is a query word in Q,

dfw is the frequency of graphs containing word w in the digital library, tfw is the frequency of

word w in the text expansion of the given graphic, and k1 is a parameter that is typically set to 1.2.

Okapi-BM25 is a bag-of-words ranking function used in many information retrieval systems. Our

modified version of Okapi-BM25 addresses the problem of negative values that can occur with the

original Okapi formula. In addition, our formula does not take text length or query term frequency

into account since graphics have relatively similar amounts of text and most terms in a query occur

only once.

• GF2: The term frequency-inverse document frequency (tf-idf) value of query words that appear in

the expanded graphic.

• GF3: The maximum, minimum, and arithmetic mean of the term frequency (tf) of query words that

appear in the expanded graphic.

• GF4: The maximum, minimum, and arithmetic mean of inverse document (graphic) frequency (idf)

of query words that appear in the expanded graphic.

5.2 Structural Features

Our structural feature set includes 35 features: 17 that address how well a graphic’s x-axis (independent

axis) relates to the requisite x-axis content hypothesized from the user’s query and 18 that address how

well a graphic’s y-axis (dependent axis) content captures the requisite dependent axis content hypothe-

sized from the query. The following are a few of the x-axis features:

• SFX1: The Okapi-BM25 value using the same modified formula as for general features, given the

query x-axis words and the text expansion of the x-axis labels in the graphic.

• SFX2: The tf-idf of x-axis words hypothesized from the query that appear in the expansion of the

x-axis labels in the graphic.

• SFX3: The maximum, minimum, and arithmetic mean of tf of x-axis words hypothesized from the

query that appear in the expansion of the x-axis labels in the graphic.

• SFX4: The maximum, minimum, and arithmetic mean of idf of x-axis words hypothesized from

the query that appear in the expansion of the x-axis labels in the graphic.

The y-axis features (SFY1, SFY2, SFY3, and SFY4) include the same relevance measurements as

used for the x-axis features; for example, feature SFY1 captures the Okapi-BM25 score for the y-axis

content hypothesized from the query and the text expansion of the graphic y-axis words, and feature

SFY2 is the tf-idf score for the y-axis content hypothesized from the query and the expansion of the

graphic y-axis words. One additional feature that is specific to the y-axis is:

• SFY5: The posterior probability of the Wikimantic (Boston et al., 2013) mixture concept2 for the

y-axis words hypothesized from the query, given the Wikimantic mixture concept representing the

y-axis words in the graph, referred to as p(Qy|Gy). Both query y-axis words and the graphic y-axis

2A Wikimantic mixture concept is a set of weighted concepts (Boston et al., 2013).



descriptor are each interpreted by Wikimantic into a mixture concept, Mqy and Mgy respectively.

Recall from the introduction to Section 5 that a mixture concept is a weighted vector of topic con-

cepts that defines the semantic meaning of a term or set of terms. For example, the mixture concept

for the country China is represented by a vector of topic concepts such as “China”, “People’s Re-

public of China”, “Mainland China”, and so on. Wikimantic estimates the probability of a concept

given another concept by the amount of overlapping words between the two concepts. For example,

the topic concept for the country “United States” is likely to contain similar words to the concept

for “China”, such as the words “country”, “nation”, “region”, “capital”, “GDP”, etc. Therefore

the probability of United States given China is likely to be higher than that of United States given

the topic “rugby”.

5.3 Content Features

Our content feature set contains four features that address how well the intended message of a graphic

captures the requisite message content hypothesized from the user’s query. Ideally, a relevant graphic’s

intended message Gm will match the message category Qm hypothesized from the user’s query. When

the two do not match exactly, we use a hierarchy of message categories and the concept of relaxation

as the paradigm for estimating how much perceptual effort would be required to extract the message

specified by the query from the graphic. For example, suppose that the query requests a Rank message;

graphics with Rank messages will convey the rank of a specific entity by arranging the entities in order of

value and highlighting in some way the entity whose rank is being conveyed. Graphics with a Rank-all

intended message will convey the rank of a set of entities without highlighting any specific entity; the

Rank-all message category appears as a parent of Rank in the message hierarchy since it is less specific

than Rank. Although one can identify the rank of a specific entity from a graphic whose intended message

is a Rank-all message, it is perceptually more difficult since one must search through the graph for the

entity whose rank is desired. By moving up or down the message hierarchy from Qm to Gm, Qm is

relaxed to match different Gm. The greater the degree of relaxation involved, the less message-relevant

the infographic is to the user query. The four content-based features are:

• CF1: Whether the message category Qm hypothesized from the user’s query matches exactly the

intended message category Gm of the graphic.

• CF2: The amount of relaxation needed to relax the message category Qm hypothesized from the

user’s query so that it matches the intended message category Gm of the graphic.

• CF3: The Okapi-BM25 value given the intended message focused entity Qf (if any) hypothesized

from the user’s query and the focused entity Gf in the graphic, if any.

• CF4: The Okapi-BM25 value given the intended message focused entity Qf (if any) hypothesized

from the user’s query and the non-focused x-axis entities Gnf in the graphic.

6 Constructing a Ranking Model for Graph Retrieval

Learning-to-rank algorithms (Liu, 2009) construct a learned model that ranks objects based on partially

ordered training data. Tree-based ensemble methods have been shown to be very effective (Chapelle

and Chang, 2011). We experimented with two state-of-the-art tree-based learning-to-rank algorithms as

implemented in the RankLib library (http://people.cs.umass.edu/vdang/ranklib.html): Multiple Additive

Regression Trees abbreviated as MART (Friedman, 2001) and Random Forest (Breiman, 2001).

A human subject experiment was performed to collect a set of 152 full sentence user queries from

five topics. The queries were collected from 5 different tasks and covered a variety of topics involving

companies. Two sample queries are “What credit card company made the most money in 2008?” and

“How does Avis rank compared to other car rental companies in revenue?”. We used the collected

queries to search on popular commercial image search engines to get more infographics from the same

topics. These commercial search engines include Google Image, Microsoft Bing Image Search, and

Picsearch. This produced a set of 257 infographics that are in the topics of the collected queries. Each



query-infographic pair was assigned a relevance score on a scale of 0-3 by an undergraduate researcher.

A query-infographic pair was assigned 3 points if the infographic was considered highly relevant to the

query and 0 points if it was irrelevant. Query-infographic pairs where the graphic was somewhat relevant

to the query were assigned 1 or 2 points, depending on the judged degree of relevance of the graphic to

the query. This produced a corpus for training and testing.

Using MART and Random Forest, we developed four models from all 56 features, including the

structural and content features. Two of the models were built using our learned decision trees (Li et

al., 2013b; Li et al., 2013a) to analyze the queries and hypothesize the requisite x-axis content, y-axis

content, message category, and focused entity (if any); see the second row of Table 1. Since the learned

decision trees are not perfect, the other two models were built from hand-labelled data; see the last row of

Table 1. In addition, two baseline models were constructed using only the general features and omitting

the structural and content-based features.

6.1 Evaluating the Models

Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2002) is used to evaluate

the retrieval result. Table 1 displays the NDCG@10 results. In each case, we averaged together the

NDCG results of 10 runs using the Bootstrapping Method (Tan et al., 2006) in which the query data set

is sampled with replacement to select 152 queries; these 152 queries, and for each query the relevance

judgements assigned to each of the graphics, comprised the training set, with the unselected queries

and their relevance judgements comprising the testing set. The Bootstrapping method is a widely used

evaluation method for small datasets. Typically, approximately 63% of the dataset is selected for the

training set (with some items appearing more than once in the training set) and 37% for the testing set.

The second row of Table 1 provides results when each query is processed by our learned decision trees to

extract the structural content and message category that the query specifies. However, the decision trees

are imperfect. To determine whether our system could do even better if the decision trees were improved,

the third row of Table 1 reports results when each query was hand-labelled with the correctly extracted

structural and message content.

The models using all 56 features produced significantly better results than the baseline model that

used just the general features, indicating that structural and content-based features are very important

and must be taken into account in graph retrieval. In addition, the models built from the hand-labelled

data produced better results than the models where the structural and content features were automatically

extracted from the queries using the learned decision trees; this suggests that improving the decision trees

that process the queries would improve the accuracy of the learned graph retrieval models. In some cases,

the Random Forest learned model performed better than the MART model, but the improvement was not

significant. The experimental results show that both MART and Random Forest using all 56 features,

either using the hand-labelled query data or decision tree query data, provide significantly better results

than the baseline approach (p<0.0005).

Algorithm MART Random Forest

Baseline 0.4943 0.4935

Decision Tree Query Data 0.6239 0.6258

Hand-labelled Query Data 0.6723 0.6758

Table 1: NDCG@10 Results

Figure 2 displays the NDCG@k results for different values of k. The bottom solid line and the line

composed of triangles depict the baseline results, the middle dashed line and the line composed of circles

depict the results using the decision tree query data, and the top solid line and the line composed of

triangles depict the results using the hand-labelled data. All of the models improve as k increases. Most

important, both our MART and Random Forest models constructed from all 56 features perform much

better than the baseline models for all values of k. Thus we conclude that the use of structural and content

features helps in selecting the most relevant graphic as well as the most relevant sets of graphics.



Figure 2: NDCG@k for Various Values of n

6.2 Analysis of Influential Features

In both MART and Random Forest, features that are used at the top levels of each tree are more important

in ranking a graphic than features that appear lower in the tree. We analyzed the importance of each of

the 56 features based on the level in each tree where the feature is first used. 70% of the top ten most

important features in the trees produced by both MART and Random Forest were structural or content

features. The most influential two features in trees produced by MART were SFY5 which captures

p(Qy | Gy) and SFX2 which captures the tf-idf of x-axis words hypothesized from the query that appear

in the expansion of the x-axis labels in the graphic. Although these two features were not the two

most influential features in the trees produced by Random Forest, they did appear among the top 5

features. Two content-based features appeared among the top ten most important features: CF3 which

captures the relevance of the focused entity Qf (if any) hypothesized from the query to the focused

entity Gf (if any) in the graphic and CF4 which captures the relevance of the focused entity Qf (if any)

hypothesized from the query to the non-focused entities Gfx in the graphic. The content features CF1

and CF2 that measure relevance of the message category hypothesized from the query to the intended

message category in a candidate graphic appeared among the top 20 features but not among the top 10

features. Further inspection of the trees and analysis of the queries and graphics leads us to believe

that message category relevance is influential in refining the ranking of graphics once graphics with

appropriate structural content have been identified. Our future work will examine these two features

more closely and determine whether modifications of them, or changes in how they are used, will improve

results.

Based on these results, we conclude that structural and content-based features are important when

ranking infographics for retrieval and must be taken into account in an effective graph retrieval system.

7 Conclusion and Future Work

To our knowledge, no other research effort has considered the use of structural and content-based fea-

tures when ranking graphics for retrieval from a digital library. We developed learned models that take

into account how well the structure and content of an infographic matches the requisite structure and con-

tent hypothesized from the user query, and showed that these models perform significantly better than

baseline models that ignore graph structure and message content. In addition, an analysis of the learned

models showed which structural and content features were most influential. In our future work, we will

improve our methods for hypothesizing requisite features of relevant graphics and will analyze our re-

laxation metric to determine whether an improved metric will play a more influential role in ranking

graphics for retrieval.
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