Wikimantic: Disambiguation for Short Queries

Christopher Boston!, Sandra Carberry!, and Hui Fang?

! Department of Computer Science, University of Delaware,
Newark, DE; 19716
2 Department of Electrical and Computer Engineering, University of Delaware,
Newark, DE, 19716

Abstract. This paper presents an implemented and evaluated method-
ology for disambiguating terms in search queries. By exploiting Wikipedia
articles and their reference relations, our method is able to disambiguate
terms in particularly short queries with few context words. This work is
part of a larger project to retrieve information graphics in response to
user queries.

Keywords: disambiguation, short queries, context, wikipedia

1 Introduction

Disambiguation is the fundamental, yet tantalizingly difficult problem of anno-
tating text so that each ambiguous term is linked to some unambiguous represen-
tation of its sense. Wikipedia, the online encyclopedia hosted by the Wikimedia
Foundation, has garnered a lot of interest as a tool for facilitating disambigua-
tion by providing a semantic web of hyperlinks and “disambiguation pages” that
associate ambiguous terms with unambiguous articles [3-5, 7]. For an encyclope-
dia, English Wikipedia is monolithic. It contains over 3.5 million articles which
are connected by hundreds of millions of user-generated links. Although errors
do exist in articles and link structure, Wikipedia’s strong editing community
does a good job of keeping them to a minimum.3

This paper describes the methods and performance of Wikimantic, a system
designed to disambiguate short queries. Wikimantic is part of a larger digital
library project to retrieve information graphics (bar charts, line graphs, etc.)
that appear in popular media such as magazines and newspapers. Such graphics
typically have a high-level message that they are intended to convey, such as that
Visa ranks first among credit cards in circulation. We have developed a system
for identifying this high-level message [8,9]. We anticipate retrieving graphics
relevant to a user query by relating the query to a combination of the graphic’s
intended message, any text in the graphic, and the context of the associated
article. To do this, we must first disambiguate the words in the query.

Although there are many existing methods that extract semantic informa-
tion via disambiguation, most require large amounts of context terms or focus

3 Here, we refer primarily to clear technical problems such as duplicate articles or
dead links. We actually consider Wikipedia’s alleged susceptibility to bias and error
a boon since we expect to disambiguate correspondingly fallible user queries.

2 Wikimantic: Disambiguation for Short Queries

exclusively on named entities [1,2, 5, 7]. Our experiments have shown that most
queries are very short and that nouns and named entities convey only a portion
of the query’s full meaning. Thus a more robust method of disambiguation is
required.

Our work has several novel contributions to disambiguation which are im-
portant for information systems. First, we disambiguate text strings that to our
knowledge are the shortest yet. Second, our method is robust with respect to the
terms that can be disambiguated, rather than being limited to nouns or even
named entities. And third, our method can determine when a sequence of words
should be disambiguated as a single entity rather than as a sequence of individual
disambiguations. Furthermore, our method does not rely on capitalization since
users are notoriously poor at correct capitalization of terms in their queries; this
is in contrast to the text of formal documents where correct capitalization can
be used to identify sequences of words that represent a named entity.

The rest of the paper is organized as follows. Section 2 discusses related
research. Section 3 presents an overview of the proposed method. Section 4
describes the models that select possible concepts for a query, and Section 5
discusses how the models are used to disambiguate the individual terms in the
query. Section 6 presents an evaluation of the Wikimantic system and Section 7
concludes with a general summary and suggestions for future work.

2 Related Work

Bunescu and Pasca are generally credited with being the first to use Wikipedia
as a resource for disambiguation [1]. They formulated the disambiguation task
to be a two step procedure where a system must (1) identify the salient terms
in the text and (2) link them accurately. Though Bunescu and Pasca’s work
was initialy limited to named entity disambiguation, Mihalcea later developed a
more general system that linked all “interesting” terms [4].

Mihalcea’s keyword extractor and disambiguator relied heavily on anchor
text extracted from Wikipedia’s inter-article links. When evaluating the disam-
biguator, Mihalcea gave it 85 random Wikipedia articles with the linked terms
identified but the link data removed, and scored it based on its ability to guess
the original target of each link. Mihalcea achieved an impressive F-measure of
87.73[4], albeit with one caveat. Regenerating link targets is significantly easier
than creating them from scratch, since the correct target must necessarily exist
in Wikipedia and be particularly important to the context. Wikimantic is tasked
with the more difficult problem of disambiguating all salient terms in the query
indiscriminately.

Many Wikipedia based disambiguation systems use variants of Mihalcea’s
method which attempt to match terms in the text with anchor text from Wikipedia
links [5,10]. When a match is found, the term is annotated with a copy of the
link. Sometimes, a term will match anchor text from multiple conflicting links,
in which case the system must choose between them. Milne and Witten’s con-
tribution was to look for terms that matched only non-conflicting links, and use
those easy disambiguations to provide a better context for the more difficult

Wikimantic: Disambiguation for Short Queries 3

ones [5]. Given a large text string, it’s always possible to find at least one trivial
term to start the process. However, short strings do not reliably contain trivial
terms.

Ferragina and Scaiella [3] addressed this problem by employing a voting
system that resolved all ambiguous terms simultaneously. They found that good
results were attainable with text fragments as short as 30 words each, which
would allow for the disambiguation of brief snippets from search engine results
or tweets. Although their results are very good, 30 words is still too large for the
short queries we wish to process. In our evaluation, we limit our full sentence
queries to a maximum of 15 terms in length. The average query length in our
test set is just 8.9 words, including stop words.

Ratinov et al. define a local disambiguation method to be one that disam-
biguates each term independently, and a global disambiguation method to be one
that searches for the best set of coherent disambiguations. Their recent work has
shown that the best ranking performance can usually be obtained by combining
local and global approaches [7]. Although their system was limited to named
entities, our performance seems to be best when combining our own local and
global approaches as well.

3 Method Overview

Given a sequence of terms, we seek to find a mapping from each salient term to
the Wikipedia article that best represents the term in context. More formally, let
5 = (t1,t2,...,t)5) be a sequence of |s| terms. For every term t;, if ¢; is salient
(not a function word), we wish to generate a mapping t; — C; where C; is the
Wikipedia article that best defines the concept ¢; referenced. For example, given
the sentence “Steve Jobs resigns from Apple”, an acceptable mapping would link
“steve” and “jobs” to the Wikipedia article about Steve Jobs, the former CEO
of Apple. “resigns” would be mapped to the article Resignation, and “apple”
would be mapped to the article for Apple Inc. Mapping “apple” to the article
for the actual apple fruit would be unacceptable in that context.

Our general strategy is to first summarize the meaning of s, and then use
that summary to choose the most probable mapping of terms to concepts. To
summarize s, we construct a “Concept”* object that represents the general topic
of s. The way we define and use Concept objects is based on our generative
model as described in Section 4. Specifically, we begin by naively building a set
of all Wikipedia articles that could possibly be referenced by terms in s. We
weight each article with the product of its prior probability of being relevant
and the degree to which terms in s match terms in the article. The weighted
set is packaged up in a data structure we call a MixtureConcept. Once we have
the weighted set, we begin searching for the best mapping from terms in s

4 In this paper, we follow the convention that object types from our model are written
in upper camel case. When we write ” Concept”, we refer specifically to the class of
object from our model. When we write ”concept”, we are simply using the term as
one would in every day speech.

4 Wikimantic: Disambiguation for Short Queries

to Wikipedia articles. We score each mapping according to the weights of the
articles in the set as described in Section 5.

4 Concept Selection

4.1 Generative Model

An author encodes ideas into words and puts the words on paper. A reader may
later take these words and decode them back into ideas. Our generative model
is based on the premise that every idea has certain associated words that are
used to talk about the idea. A person writing about the Apple Corporation may
use terms like “computer”, “iPhone”, “Steve”, or “Jobs”. A reader can use a
priori knowledge about these term-Concept associations to know that the writer
means Apple Corporation and not the fruit when they just say “apple”.

Our generative model makes the simplifying assumption that it is the Con-
cepts themselves that generate terms in a text. When a writer wishes to write a
document or formulate a query about the Apple Corporation, we say that the
Concept of Apple_Corporation is actually generating the terms in the text di-
rectly. Therefore, a query about Apple_Corporation is likely to contain terms like
“computer” and “iPhone” due to the Concept Apple_Corporation’s propensity
to generate such terms.

To be more precise, our generative model states that texts are generated
term by term from some topic Concept. The a priori probability of a given
Concept C being the topic Concept of our text is denoted P(C). For every term
t, there is a probability P(t|C) that C will generate t as the next term in the
text. Documents, queries, and other forms of text are all considered to be of one
type, TermSequence. By incorporating knowledge of all possible Concepts and
their probability of generating each term, it is possible to take a TermSequence
and work backwards to find the Concepts that generated it. In order to get this
knowledge, we extract a set of fundamental AtomicConcepts from Wikipedia.

AtomicConcept: An AtomicConcept is a type of Concept. Like all Concepts,
an AtomicConcept has an a priori probability of being a topic Concept (denoted
P(A) by convention when the Concept is atomic), and probabilities P(¢|A) of
generating term t. We view each article in Wikipedia as a long TermSequence
that was generated by some AtomicConcept. Since every article is unique, there
is a one to one mapping between articles and the AtomicConcepts that generate
them.

In order to estimate the a priori probability P(A), we look at the relative
number of inter-article links that point to A’s article.

number of incoming links

P(A) =
(4) number of links in Wikipedia

Since Wikipedia articles link to the other articles they discuss, the fraction of

incoming links is a good estimate of the likelihood that an article’s subject (its

AtomicConcept) will be talked about.

Wikimantic: Disambiguation for Short Queries 5

To estimate P(t|A), we view the article body text as a sample of terms
generated by A. The probability of A generating a term t is:

count(t, A)
number of words in A

P(t|A) =

Because articles have finite length, some terms relevant to A won’t actually
show up in the body text of the article. For each term not present in the article,
we smooth the distribution by estimating the probability of A generating t to
be the probability of t occurring in the English language.®

MixtureConcept: Although Wikipedia covers a wide range of topics, it would
be overly simplistic to assume that each and every real world text can be ac-
curately summarized by just one AtomicConcept. A query about Apple Inc.’s
profits on the iPod Touch might better be summarized with a mixture of the
AtomicConcepts Apple_Inc., iPod_Touch, and Profit_(accounting). Thus we
instead model the topic using a MixtureConcept which is a set of weighted
AtomicConcepts. When a MixtureConcept generates a term, it randomly selects
one of its AtomicConcepts to generate in its stead. The weight of an Atomic-
Concept tells us the probability that it will be the one selected to generate, and
all weights necessarily sum to 1. Like all Concepts, a MixtureConcept M has
an a priori probability P(M) of being the topic, and probabilities P(¢|M) of
generating a given term t.

Let MixtureConcept M = {(w;, A;)| i = 1...n}

where w; = the weight of A; in M

P(M) = w;* P(4)
i=1

P(t|M) = Zw * P(t]A;)

If a term sequence s discusses Apple Inc., summarizes its profits and briefly
mentions the iPod Touch, the MixtureConcept for s may look something like:

M = {(0.5, Apple_Inc.), (0.3, Profit_(accounting)), (0.2, iPod_Touch)}

P(My) = 0.5%P(Apple_Inc.)+0.3xP(Profit_(accounting))+0.2x« P(iPod_T ouch)

® In Wikimantic, we use Microsoft n-Grams to give us P(t). Because probabilities
from Wikipedia and Microsoft n-Grams each sum to 1, the sum of P(¢ | A) over all
t equals than 2. In practice, estimated probability values for AtomicConcepts are
always stored as elements of normalized collections, which ensures that no probability
value falls outside the range [0,1].

6 Wikimantic: Disambiguation for Short Queries

To find the likelihood of the term “iPhone” in any term sequence with Mg
as it’s topic, one would calculate

P(“iPhone”| M) = 0.5 x P(“iPhone” | Apple_Inc.)
+0.3 x P(“¢Phone”|Profit_(accounting))
+0.2 x P(“¢Phone” |iPod_Touch)

The key problem is how to estimate the weight w; of each AtomicConcept. In the
following, we first present a method that uses the content of a concept’s article
to estimate w; and then a second method that uses references between concepts.

4.2 Content-based Topic Modeling:

To build a MixtureConcept M that represents the meaning of a TermSequence
s constituting a query, we first populate the set with AtomicConcepts and then
weight the AtomicConcepts. Our base method uses the content of a concept’s
article to estimate the concept’s weight in the MixtureConcept.

To construct the elements of the set, we look at every subsequence of terms
in s and attempt a direct lookup in Wikipedia. Any article that has a title that
matches a subsequence of terms in s is added to the set. Any article that is
disambiguated by a page whose title matches a subsequence of terms in s is also
added to the set. Finally, all articles that share a disambiguation page with an
article already in the set are added. For example, if s = “Steve Jobs resigns”:

Steve — Matches title of disambiguation page Steve. Add all articles disambiguated
by that page.
Jobs — Matches the title of a redirect page that points to Jobs_(Role). Add
Jobs_(Role) and all other articles that Jobs_(disambiguation) link to.
Resigns — Matches the title of a redirect page that points to Resignation. Add
Resignation and all other articles that Resignation_(disambiguation) link
to.

Steve Jobs — Matches the title of the article Steve_Jobs.

Jobs Resigns — Matches nothing, so no articles added.

Steve Jobs Resigns — Matches nothing, so no articles added.

Once our unweighted set M is populated, it will contain a large number
of candidate AtomicConcepts of varying degrees of relevance, and we rely on
weights to mitigate the impact of spurious concepts. We weight each Atomic-
Concept according to the probability that every term in s was generated by that
AtomicConcept, ignoring stopwords.

Is|
w; = P(Als) =] P(Alt;) (1)
j=1

Wikimantic: Disambiguation for Short Queries 7

This weighting schema ensures that an AtomicConcept will only get a high score
if it is likely to generate all terms in the sequence. A Concept like Jobs_(Role)
may have a high probability of generating “jobs”, but its low probability of gener-
ating “steve” will penalize it significantly. We can expect the Concept Steve_Jobs
to generate “steve”, “jobs”, and “resigns” relatively often, which would give it
a larger weight than Jobs_(Role) would get.

Once M, the estimated topic concept, has been populated and weighted, it
can be used to guide disambiguation. Since AtomicConcepts in M are weighted
by their propensity to generate terms in s, our first method makes the somewhat
strong assumption that the probability of an AtomicConcept generating the
string s is roughly equal to its probability of being the correct mapping for a
term in s.

4.3 ReferenceRank: Mg

Our second method, ReferenceRank, uses references between AtomicConcepts
to estimate the weights w;. In Mg, AtomicConcepts are weighted according
to the probability that they describe the sense of a given term in s, rather
than the probability that they will generate a given term in s. Consider the
following example where M might be misleading if it is weighted by probability
of generating.

M; = {(0.5, Apple_Inc.),(0.5,Whole_Foods) }
M = {(0.5, Apple_Inc.),(0.2,iPhone), (0.2,Apple_Safari), (0.1,iPad)}

In the text described by Mj, the topic is 50% about Apple Inc. and 50% about
the grocery store Whole Foods. In the document described by My, the topic is
50% about Apple Inc. and 50% about various Apple products. Since iPhone,
Apple_Safari, and iPad are all concepts that are likely to generate the term
“apple” (referring to the company), one would expect Apple Inc. to be referenced
more often in M, than M;. However, Apple Inc. is weighted equally in M; and
Ms. Tt’s subtle, but there is a very real difference between the probability that a
Concept will generate terms in our query and the probability that a Concept will
be referred to by concepts associated with other terms in our query. To account
for this, we extend our generative model by making the claim that Concepts
generate references to other concepts as well as terms.

Given that AtomicConcept A; generated a reference to another concept, the
probability that the referenced concept is As is estimated as the probability that
clicking a random link in A;’s article will lead directly to the article for As.

number of links from A; to A
P(RA2 ‘Al) f f 1 2

~ total number of links originating at Ay

The probability that a MixtureConcept M will generate a reference to a Concept
C (denoted R¢) is just a mixture of the probabilities of the AtomicConcepts in
M generating a reference to C:
n
P(Rc|M) = w; * P(Rc|A;)

=1

8 Wikimantic: Disambiguation for Short Queries

where w; = the weight of A; in M (Equation 1)

For a TermSequence s, we compute the special MixtureConcept Mg that con-
tains all relevant AtomicConcepts weighted by their probability of being refer-
enced.

Let MixtureConcept Mp = {(w;, 4;)| i = 1...n}

where w; = P(Rg,|M)

This reweighting in Mg is very similar to one iteration of the PageRank algo-
rithm, where nodes in a graph vote for other nodes to which they link. In our
case, AtomicConcepts in M vote for other AtomicConcepts in M, and the power
of each vote is proportional to the weighting of that AtomicConcept in M.

5 Disambiguation

The weights of M and My, tell us a lot about the probability that a term in s will
reference a given AtomicConcept A. Since AtomicConcepts in My are weighted
by their chances of being referenced in s, and each term we are disambiguating
comes from s, one could simply use A’s weight in Mg as an estimate of the
probability that A is the correct sense of the term. As it turns out, Mg’s reliance
on Wikipedia’s relatively sparse link structure causes some problems. “Do Life
Savers cause tooth decay?” is a perfectly reasonable query, but there are no
direct links between the articles for Life Savers and tooth decay. This means
that neither will receive a vote and therefore their weights in Mg will be zero.
Although My is useful when links are found, it must be supplemented with
information from M. For this reason, the mixture P(A|s) = (1—d)«M +d*(Mg)
is used. The optimal value of d is determined experimentally.

In many disambiguation papers[1,2,4, 7], the important term strings are as-
sumed to be marked ahead of time and the system must simply choose the single
best Wikipedia article for the marked string. For queries, the number of map-
pings are not known a priori, which makes disambiguation considerably more
difficult. Does “life saver” refer to the brand of candy or a person who saved a
life? If we are talking about junk food, then “life saver” should entail a single
mapping to the AtomicConcept Life_Saver, otherwise it entails two separate
mappings to Life and Saver. Although these kinds of conflicts seem like they
should be rare, the vast coverage of Wikipedia actually makes them common.
Company names, book titles, and music album titles are particularly trouble-
some since they are often common phrases; moreover, they are often the topics
of graphs in popular media and thus occur in user queries for these graphs.

If it weren’t for these conflicts, disambiguation would be simple. For each
term t, one could simply choose the AtomicConcept A that maximizes P(A|s)
from the list of all AtomicConcepts that were added to the MixtureConcept by
t in Section 4.2.

If a problematic sequence of terms like “life saver” or “new york city” is found,
every possible breakdown of the sequence is disambiguated. Each breakdown
yields a unique candidate set of disambiguations that is scored according to its

Wikimantic: Disambiguation for Short Queries 9

new vyork city

P(Concepty,, | s) * P(Concepty,, | s) * P(Concept,, | s) ‘JNEW ‘York ‘City ‘

P(Conceptye, vor | 5)2 * P(Concepty,, | s)- ‘New_York ‘ ‘City ‘

P(Concept

New

| 5) * P(Conceptyo ciy | s)zi‘NeW‘ ‘YOI’k_City ‘

P(Conceptye,, york city | 5> ‘New_ York_City ‘

Fig. 1. Product method’s scoring of four possible disambiguations of “new york city”.

probability of being the correct one. The scoring is calculated using either the
Mixture method or the Product method.

5.1 Product Method

The Product method scores a candidate set as the product of the probabilities
of each mapping of term to AtomicConcept. Figure 1 depicts the four candi-
date sets that are considered when the string “new york city” is broken down.
We use italics to refer to AtomicConcepts by name, so P(Conceptyey|s) refers
to the probability of the Concept New being the disambiguation of the term
“new”. The first set contains the three AtomicConcepts New, York, and City.
The score of the set is simply the product of their probabilities multiplied to-
gether. When n adjacent terms should be disambiguated as a single entity, the
Product method scores it as n disambiguations of the entity, as shown by the
fourth row in Figure 1, where the score for the sequence “new york city” is
P(Concept New._york_city) to the third power.

5.2 Mixture Method

The Mixture method treats a set of possible disambiguations as a mixture of the
AtomicConcepts that disambiguate terms in the set. The AtomicConcepts in
M. are given equal weight. Under the Mixture method, a set’s score is simply
equal to the average of the probability values of all Atomic Concepts in the set;
once again, n adjacent terms that were disambiguated as referring to a single
entity are counted as n disambiguations. For example, the fourth line of Figure 2
shows the sequence “new york city” being disambiguated as a single entity but
the score in this case is just the probability of the concept New_York_City (ie.,
the average of the scores for three disambiguations of the sequence).

6 Evaluation

Our system, named Wikimantic, includes four alternative methods for disam-
biguation: the Product and Mixture methods with M as the topic model and
the Product and Mixture methods with (1-d)*M+d*Mp as the topic model.

10 Wikimantic: Disambiguation for Short Queries

new vyork city

[P(Concepty,,, | s) + P(Concepty,, | s) + P(Conceptgy, | s) 1/ 3- ‘NEW‘ ‘YOI‘k ‘ ‘Cjty ‘

[2 * P(Conceptye, vork | 5) + P(Concepty, | 5) 1/ 3‘7‘N€W_ York ‘ ‘C/'ty ‘

[P(Concepty, | 5)+2 * P(Conceptyyy iy | 511/3- |New| York_City |

3* P(ConceptNeinorkifity | 5) /3‘ ‘NEW_ YOf'k_ Clty ‘

Fig. 2. Mixture method’s scoring of four possible disambiguations of “new york city”

Each method was evaluated using 70 queries from the Trec 2007 QA track and
26 queries collected for our Information Graphic Retrieval project. The QA track
was chosen because we intend to eventually incorporate Wikimantic into a larger
system that operates on short grammatically correct full sentence questions, but
it is worth noting that Wikimantic is in fact entirely agnostic to the grammatical
structure of its input. The queries acquired from the Information Graphic Re-
trieval Project were collected from human subjects who were given information
graphics and told to write queries they might have used to find them. All queries
contain at least one (but usually more) salient word that must be disambiguated.
The word count of each query is no less than 4 and no greater than 15. Out of
the 850 words in the set, evaluators identified about 349 nouns (they disagreed
on a couple due to ambiguous phrasing of the queries). About 110 words were
content words that were not nouns. We present results for disambiguating just
nouns and for disambiguating all non-function words.

To measure correctness, we gave the system results to two evaluators and
instructed them to decide for each term whether the linked page correctly de-
scribed the meaning of the word as it was used in the query. The general rule
was that a disambiguation was wrong if a better page could be found for the
term. For non-nouns, it was considered correct if a verb or adjective was linked
to its noun-equivalent article. For example, it would be acceptable to annotate
the term “defect” (to betray) with the page “Defection”. If a term appeared in
the query with a sense that has no equivalent article in Wikipedia, the evaluators
were instructed to mercilessly mark the output wrong.

Tables 1 and 2 present statistics on precision and recall for the four methods.
Precision is equal to the number of terms correctly mapped to concepts divided
by the number of terms mapped by the system. Recall is equal to the number
of correct mappings divided by the number of terms fed to the system.

Overall, the Product method fared better than the Mixture method, and
performance was better on nouns than on non-nouns. With the Mixture method,
it’s possible for an obviously incorrect mapping to be offset by a high scoring one.
With the Product method, a mapping with a near-zero probability will cause
the score for the entire set to be near-zero. The Product method is therefore a
more conservative scoring method that favors well rounded sets over sets with
some likely and some unlikely references. The exceptional performance on nouns

Wikimantic: Disambiguation for Short Queries 11

Performance (Nouns Only)
Topic Model: M ||[Model: (1-d)*M+d*Mpg

Mixture|Product || Mixture Product
Precision | 78.71 | 80.51 81.38 82.76
Recall 75.21 | 76.93 77.65 79.08
F-Measure| 76.92 | 78.68 79.47 80.88

Table 1. Performance on Nouns Only

Performance (All Terms)
Topic Model: M ||[Model: (1-d)*M+d*Mpg

Mixture|Product || Mixture Product
Precision | 66.82 68.28 69.52 70.57
Recall 61.47 | 62.45 63.96 64.61
F-Measure| 64.04 | 65.23 66.62 67.46

Table 2. Performance on all Non-function Words

seems to be partly due to Wikipedia’s greater coverage of nouns. Additionally,
Wikimantic did not incorporate a stemmer, which occasionally prevented it from
recognizing matches between alternate conjugations of the same verb.

For each of the two methods described in Section 5.1, we evaluated Wiki-
mantic using the mixture (1 —d)* M +d* Mg with varying values of d. Improved
performance occurred for small values of d (d<.2). Although the optimal value of
d was found to be very small (d = 0.0001), the effects of ReferenceRank were still
surprisingly significant. MixtureConcepts often get weighted in such a way that
one AtomicConcept has virtually all the weight, which gives it extremely high
voting power. The top AtomicConcept’s votes are then so powerful that they
have disproportionate sway over the lesser AtomicConcepts. The small value of
d works to correct for this.

Our results show that our system Wikimantic has very good success at dis-
ambiguating terms in short queries, even without capitalization or a priori iden-
tification of multi-word strings that should be mapped to a single concept.

7 Conclusion

In this paper, we presented a robust disambiguation method that performs well
on short text fragments in which context words are scarce, that is not limited
to nouns, that does not rely on correct capitalization, and that can determine
when a sequence of words should be disambiguated as a single entity. Thus the
approach will be useful in retrieval systems that must handle short user queries.
Our disambiguation method used a two step process in which topic concepts
were hypothesized via a local approach and refined with a global approach. Our
experimental results show the success of the methodology and that a combination

12 Wikimantic: Disambiguation for Short Queries

of M and Mg (ReferenceRank) has the potential to improve results, but that the
disproportionate weighting of MixtureConcepts causes the top AtomicConcept
to have too much voting power. Future work will explore a smoother method of
weighting MixtureConcepts to overcome this problem.

Acknowledgments

This work uses Microsoft Web N-gram Services and was supported by the Na-
tional Science Foundation under Grants II1I-1016916 and IIS-1017026.

References

1. Bunescu, R., Pasca, M.: Using Encyclopedic Knowledge for Named Entity Disam-
biguation. In: Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 9-16. EACL , Trento, Italy (2006)

2. Fader, A., Soderland, S., Etzioni, O.:Scaling Wikipedia-based Named Entity Dis-
ambiguation to Arbitrary Web Text. In: WikiAI09 Workshop at IJCAI 2009.

3. Ferragina, P., Scaiella, U.: TAGME: On-the-fly annotation of short text fragments
(by Wikipedia entities). In: Proceedings of the 19th ACM international conference
on Information and knowledge management, pp. 1625-1628. ACM, New York (2010)

4. Mihalcea, R., Csomai. A.: Wikify!: Linking documents to encyclopedic knowledge.
In: Proceedings of the sixteenth ACM conference on Conference on information and
knowledge management, pp. 233-242. ACM New York (2007)

5. Milne, D., Witten, I.H.: Learning to Link with Wikipedia. In: Proceedings of the
17th ACM conference on Information and knowledge management, pp. 509-518.
ACM, New York (2008)

6. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking;:
Bringing Order to the Web. Technical report, Stanford InfoLab (1999)

7. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and Global Algorithms
for Disambiguation to Wikipedia. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pp.
1375-1384. Association for Computational Linguistics (2011)

8. Elzer, S., Carberry, S., Zukerman, I.: The Automated Understanding of Simple Bar
Charts. Artificial Intelligence. 175(2), 526-555 (2011)

9. Wu, P.; Carberry, S., Elzer, S., Chester, D.: Recognizing the Intended Message of
Line Graphs. In: Proceedings of the International Conference on the Theory and
Application of Diagrams, pp. 220-234. Springer-Verlag, Heidelberg (2010)

10. Li, C., Sun, A., Datta A.: A Generalized Method for Word Sense Disambiguation
based on Wikipedia. In: Proceedings of the European Conference on Information
Retrieval (2011)

