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Abstract. Information graphics (line graphs, bar charts, etc.) that ap-
pear in popular media, such as newspapers and magazines, generally have
a message that they are intended to convey. We contend that this mes-
sage captures the high-level knowledge conveyed by the graphic and can
serve as a brief summary of the graphic’s content. This paper presents a
system for recognizing the intended message of a line graph. Our method-
ology relies on 1)segmenting the line graph into visually distinguishable
trends which are used to suggest possible messages, and 2)extracting
communicative signals from the graphic and using them as evidence in a
Bayesian Network to identify the best hypothesis about the graphic’s in-
tended message. Our system has been implemented and its performance
has been evaluated on a corpus of line graphs.

1 Introduction

Information graphics are non-pictorial graphics such as bar charts and line
graphs. Although some information graphics are only intended to convey data,
the overwhelming majority of information graphics in popular media, such as
newspapers and magazines, have a message that they are intended to convey.
For example, the line graph in Figure 1 appeared in USA Today and ostensi-
bly is intended to convey the message that there has been a recent decrease in
box office gross revenue in contrast with the preceding rising trend. We contend
that a graphic’s intended message constitutes a brief summary of the graphic’s
high-level content and captures how the graphic should be “understood”.

This paper presents our methodology for inferring the intended message of
a line graph. In previous research[7], we developed a system for identifying the
intended message of a simple bar chart. However, line graphs differ from bar
charts in several ways that significantly impact the required processing. First,
line graphs are the preferred medium for conveying trends in quantitative data
over an ordinal independent axis[12]. Second, as our extensive corpus studies
demonstrated, the kinds of messages conveyed by line graphs differ from those
conveyed by simple bar charts. For example, the line graph in Figure 2 ostensibly
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is intended to convey a sudden big drop in Afghanistan’s opium crop that is not
sustained; in our research, we have not encountered a bar chart that conveys a
message of this type. Third, although line graphs and bar charts share some of
the same kinds of communicative signals, line graphs use other communicative
signals that are not found in bar charts. Fourth, recognition of the message con-
veyed by a line graph relies on the viewer’s ability to perceive it as a sequence
of visually distinguishable trends rather than a set of discrete data points. Thus
we need a method for identifying these trend segments. Moreover, these latter
two factors necessitate a different structure and different processing for the mes-
sage recognition system than was used for bar charts which relied heavily on
perceptual task effort.

We are pursuing several projects that utilize a graphic’s intended message.
Our digital library project will use the graphic’s intended message for indexing
and retrieving graphics and for taking graphics into account when summarizing
multimodal documents. Our assistive technology research is concerned with pro-
viding indiviuals with sight impairments with access to graphics in multimodal
documents. Other work has tried to render graphics in an alternative form (such
as musical tones or tactile images)[1, 18] or as verbal descriptions of the ap-
pearance and data points in the graph[8]. We are taking a radically different
approach. Rather than describing what the graphic looks like, we provide the
user with a brief summary based on the graphic’s intended message, along with
a facility for responding to followup questions about the graphic.

Section 2 describes our overall architecture. Section 3 presents our approach
to recognizing the intended message of a line graph. Section 4 presents the results
of an evaluation of our implemented system, and Section 5 presents examples
of graphics that have been processed by our system. Section 6 discusses related



work, and Section 7 presents our conclusions and discusses future work. To our
knowledge, our research group is the only effort aimed at automatically recog-
nizing the communicative goal of an information graphic.

2 System Architecture

Figure 3 shows our overall architecture. A Visual Extraction Module[3] is re-
sponsible for analyzing the graphic and providing an XML representation that
captures a sampling of the data points (thereby discretizing a continuous line
graph into a set of sampled data points), the axis labels, any annotations on the
graphic, the caption, etc. The Caption Tagging Module[6] is responsible for ex-
tracting evidence from the caption (see Section 3.3) and producing an augmented
XML representation that includes it. The Intention Recognition Module takes
as input the augmented XML representation of a graphic and uses a Bayesian
Network to identify its intended message. The remainder of this paper focuses on
the Intention Recognition Module, which is enclosed by a dashed box in Figure 3.
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3 Intended Message Recognition

Clark[4] has noted that language is more than just words; it is any deliberate
action (or lack of action when one is expected) that is intended to convey a mes-
sage. Under this definition of language, information graphics in popular media
are a form of language with a communicative goal or intended message. In lan-
guage understanding research, listeners use the communicative signals present in
an utterance (such as cue words, intonation, mood, etc.) to deduce the speaker’s
intended meaning. We are extending this to the understanding of information
graphics. Our methodology relies on extracting communicative signals from the
graphic and using them as evidence in a Bayesian Network that hypothesizes
the graph designer’s communicative goal — i.e., the graphic’s intended message.
Of course, a graphic might be poorly designed, in which case the message that
the graphic conveys might not be what the graph designer intended. But this is
true of language in general; for example, if a speaker chooses the wrong words
or uses the wrong intonation, his utterance will be misunderstood.

Our methodology for recognizing the intended message of a line graph con-
sists of three steps: 1) segment the line graph into visually distinguishable trends,
2) use this segmentation to suggest possible messages for consideration by a
Bayesian Network, and 3) extract communicative signals from the line graph
and use them as evidence in the Bayesian Network to identify the graphic’s
intended message. The following sections discuss each of these steps.

3.1 Segmenting a Line Graph into Trends

In recognizing a line graph’s intended message, human viewers do not reason
about the set of individual data points connected by small line segments. In-
stead, they appear to treat the line graph as capturing a sequence of visually
distinguishable trends. For example, the line graph in Figure 4 consists of many
short rises and falls, but a viewer summarizing it would be likely to regard it as
consisting of a short overall stable trend from 1900 to 1930, followed by a long
rising trend (both with high variance). As observed by Zacks and Tversky[24],
this tendency to associate lines with trends exists in part because of cognitive
naturalness and in part because of ease of perceptual processing. In comparing
bar charts and line graphs, they claim that people “should more readily associate
lines with trends because lines connect discrete entities and directly represent
slope” and their experiments uphold this prediction. In fact, the cognitive “fit”
of the line graph for representing trends is upheld by multiple findings from the
basic Gestalt principles to the Wickens and Carswells’ Proximity Compatibil-
ity Principle (grouping objects that are meant to be processed together) [22] to
Pinker’s model of graph comprehension [16]. As Zacks and Tversky noted[24],
once this cognitive bias is utilized consistently by graph designers, viewers may
come to rely on it. This is consistent with our view of graphics as a form of lan-
guage with communicative signals. The graph designer is attempting to convey
a trend, and is trying to make this message as easy as possible for the viewer to



−1

0

2

4

6

8

1900 ’10 ’20 ’50 ’60 ’70 ’80 ’90 ’03’30 ’40 2000

10
8.9

1.97

9 inches over the past century. Annual difference from Seattle’s
In the seattle area, for example, the Pacific Ocean has risen nearly 
they are rising about 0.04−0.09 of an inch each year.
Sea levels fluctuate around the globe, but oceanographers believe
Ocean levels rising

1899 sea level, in inches:

Fig. 4: Line graph from USA Today which consists of many short rises and falls

extract from the graph. Over time, the choice of graph type itself may become
a type of communicative signal.

Our Graph Segmentation Module takes a top-down approach[11] to identi-
fying sequences of rising, falling, and stable segments in a line graph. It starts
with the original graphic as a single segment and decides whether it should be
split into two subsegments; if the decision is to split the segment, then the split
is made at the point which is the greatest distance from a straight line between
the two end points of the segment. This process is repeated on each subsegment
until no further splits are identified. The Graph Segmentation Module returns
a sequence of straight lines representing a linear regression of the points in each
subsegment, where each straight line is presumed to capture a visually distin-
guishable trend in the original graphic.

We used SMO (Sequential Minimal Optimization)[17] for training a support
vector machine that makes a decision about whether a segment should be split.
18 attributes, falling into two categories, are used in building the model. The
first category captures statistical tests computed from the sampled data points
in the XML representation of the graphic. Two examples of such attributes are:

– Correlation Coefficient: The Pearson product-moment correlation coefficient[19]
measures the tendency of the dependent variable to have a linearly rising or
falling relationship with the independent variable. We hypothesized that the
correlation coefficient might be helpful in determining whether a long set of
short jagged segments, such as those between 1930 and the end of the graph
in Figure 4, should be captured as a single rising trend and thus not be split
further.

– Runs Test: The Runs Test estimates whether a regression is a good fit for
the data points[2]. A run is a sequence of consecutive sampled points that all
fall above the regression line or all fall below the regression line. The number



of runs is then compared with an estimate of the expected number of runs
Rmean and its standard deviation RSD; if the actual number of runs exceeds
(Rmean − RSD), then the Runs Test suggests that the regression is a good
fit and the segment should not be split. We hypothesize that the Runs Test
might be helpful when a segment consists of more than two trends.

The second category of attributes captures explicit features of the segment and
the graphic. The following is an example of such an attribute:

– Segment Fraction: This attribute measures the proportion of the total graph
that comprises this segment. We hypothesize that segments that comprise
more of the total graph may be stronger candidates for splitting than seg-
ments that comprise only a small portion of the graph.

We trained our graph segmentation model on a set of 649 instances that required
a split/no-split decision. These instances were recursively constructed from a
corpus of line graphs: each line graph constituted a training instance and, if
that instance should be split, then each of the segments produced by splitting
represented other training instances. Using leave-one-out cross validation, in
which one instance is used for testing and the other 648 instances are used for
training, our model achieved an average success rate of 88.29%.

The output of this Graph Segmentation Module is a sequence of segments
that are hypothesized to represent visually distinguishable trends. For example,
after the Visual Extraction Module converted Figure 4 from GIF format into an
XML representation and the data points were sampled, the Graph Segmentation
Module then segmented the data series into two visually distinguishable trends:
a relatively stable trend from 1900 to 1930 and a rising trend from 1930 to 2003.
As another example, the Graph Segmentation Module segmented the data series
produced by the VEM for Figure 7 into two visually distinguishable trends: a
rising trend from 1997 to 1999 and a falling trend from 1999 to 2006.

3.2 Suggesting Possible Messages

We analyzed a set of simple line graphs collected from various popular media,
including magazines such as Newsweek, Time, and BusinessWeek as well as local
and national newspapers. We identified a set of 10 high-level message categories
that we believe capture the kinds of messages that are conveyed by a simple line
graph. Table 1 presents these message categories.

To utilize a Bayesian Network for identifying the intended message of an in-
formation graphic, we need a means for suggesting the set of possible messages
that should be considered in the network. The Suggestion Generation Module
uses the 10 high-level message categories to construct all possible messages from
the sequence of segments produced by the Graph Segmentation Module. In addi-
tion, we hypothesize that small changes at the end of a line graph, as in Figure 1,
may be particularly salient to a viewer, especially if they represent the value of
an entity near the current time. However, the Graph Segmentation Module will
most likely smooth such small changes into an overall longer smoothed trend.



Intention Category Description

RT: Rising-Trend There is a rising trend from <param1 > to <param2 >

FT: Falling-Trend There is a falling trend from <param1 > to <param2 >

ST: Stable-Trend There is a stable trend from <param1 > to <param2 >

CT: Change-Trend There is a <slope2 > trend from <param2 > to <param3 >
that is significantly different from the <slope1 > trend from
<param1 > to <param2 >

CTLS: Contrast-
Trend-Last-Segment

There is a <slope2 > segment from <param2 > to
<param3 > that is not long enough to be viewed as a
trend but which is different from the <slope1 > trend from
<param1 > to <param2 >

CTR: Change-Trend-
Return

There is a <slope3 > trend from <param3 > to <param4 >
that is different from the <slope2 > trend between
<param2 > and <param3 > and reflects a return to the
kind of <slope1 > trend from <param1 > to <param2 >

CSCT: Contrast-
Segment-Change-
Trend

There is a <slope3 > segment from <param3 > to
<param4 > that is not long enough to be viewed as a trend
but which suggests a possible return to the kind of <slope1 >
trend from <param1 > to <param2 > which was different
from the <slope2 > trend from <param2 > to <param3 >

BJ: Big-Jump There was a very significant sudden jump in value between
<param1 > and <param2 > which may or may not be sus-
tained

BF: Big-Fall There was a very significant sudden fall in value between
<param1 > and <param2 > which may or may not be sus-
tained

PC: Point-Correlation There is a correlation between changes at
{<param1 >,. . .,<paramn >} and the text annota-
tions {<annot1 >,. . .,<annotn >} that are associated with
these points.

Table 1: Categories of High Level Messages for Line Graphs

Thus, a short routine using a statistical test is run that examines the end of
the line graph and if it represents a change in slope from the preceding points,
that short portion is treated as a separate segment. This short segment (if any)
is merged with the result produced by the Graph Segmentation Module, and a
Contrast-Trend-Last-Segment (CSCT) and a Contrast-Segment-Change-Trend
(CSCT) message are proposed for the last two or three segments of the graphic
respectively.

Consider, for example, the graphic in Figure 5. The Graph Segmentation
Module produces a sequence of three visually distinguishable segments. The
Suggestion Generation Module proposes the following 11 possible messages3:

3 Our system works with the actual points in the graph; for clarity of presentation,
we only show the x-values for the points corresponding to <parami > in Table 1.



12−month average for regular unleaded

5/21/2005 8/1/2005 11/1/2005 2/1/2206

Gas prices

$2.05

$2.25

$2.45

$2.65

$2.85

$3.05

Fig. 5: Line graph from a local
newspaper

133.7

’05’04’01

144.5

’00’99’98

231.21

’02 ’03

No departure
Cancellations by major U.S. airlines (in thousands):

200

150

100

50

0

Fig. 6: Line graph from USA Today with
multiple annotations. (This graphic ap-
peared on a slant in its original form.)

200620052004200320021997 1998 1999 20012000

200,000

150,000

1999:
189,840

70,606
2006:

50,000

100,000

Declining Durango sales

0

Fig. 7: Line graph from a local newspaper

RT (5-21-05, 9-1-05) CT (5-21-05, 9-1-05, 12-1-05)
RT (12-1-05, 4-25-06) CT (9-1-05, 12-1-05, 4-25-06)
FT (9-1-05, 12-1-05) CTR (5-21-05, 9-1-05, 12-1-05, 4-25-06)
BJ (5-21-05, 9-1-05) CTLS (9-1-05, 12-1-05, 4-25-06)
BF (9-1-05, 12-1-05) CSCT (5-21-05, 9-1-05, 12-1-05, 4-25-06)

PC (5-21-05, 9-1-05, 12-1-05, 4-25-06)

3.3 Communicative Signals as Evidence

Just as listeners use evidence to identify the intended meaning of a speaker’s
utterance, so also must a viewer use evidence to recognize a graphic’s intended
message. We hypothesize that if the graphic designer goes to the effort of entering
attention-getting devices into a graphic to make one or more of the entities in the
graphic particularly salient, then the designer probably intends for these entities
to be part of the graphic’s intended message. There are several ways in which a
graphic designer explicitly makes an entity in a line graph salient.



The graphic designer may annotate a point on a line graph with a value or a
piece of text. This draws attention to that point in the line graph and serves as
evidence that the point plays a role in the graphic’s intended message. Consider
the graphic in Figure 6. Three points in the graphic are annotated with their
value. This suggests that these points are particularly important to the graphic’s
intended message — in terms of our representation, the points might serve as
parameters of the graphic’s intended message. This provides strong evidence for a
Change-Trend-Return(’98,’01,’02,’05) message since three of the four parameters
of the message are salient in the graphic. Similarly, consider Figure 2. The low
point in the graphic is annotated with text, suggesting that it is important to the
graphic’s message. This annotation might provide evidence for a Big-Fall(00,01)
or for a Change-Trend-Return (where the annotation is on the point where the
return begins), among others. The Visual Extraction Module is responsible for
producing an XML representation of a graphic that indicates any annotated
points and their annotations.

A point in the line graph can also become salient by virtue of its being
referenced by a noun in the caption. This can occur by the caption referring to
its x-axis value or even to its y-value, although the latter occurs less often. For
example, if the caption on the graphic in Figure 2 were “Poppies Missing in 01”,
the reference to the year “01” would lend salience to the low point in the graphic
even if it were not annotated. The Caption Tagging Module is responsible for
augmenting the XML representation of a graphic so that it indicates any points
that are referenced by nouns in the caption.

Certain parts of a graphic become salient without any effort on the part of the
graphic designer. For example, a viewer’s attention will be drawn to a sudden
large rise or fall in a line graph. Similarly, a viewer will be interested in the
segment at the end of a line graph since it captures the end of the quantitative
changes being depicted. Although no specific effort is required by the graph
designer, we posit that it is mutually believed by both graph designer and viewer
that such pieces of the graphic will be salient. Our system extracts such evidence
by analyzing the segments produced by the Graph Segmentation Module and
using their slopes, their relative change with respect to the range of y-values in
the graph, and their positions in the graphic as evidence.

Captions are often very general and do not capture a graphic’s intended mes-
sage[6]. For example, the caption on the graphic in Figure 2 fails to capture its
message that there was a sudden big fall (that was not sustained) in Afghanistan
opium production. Moreover, even when a caption conveys some of the graphic’s
message, it is often ill-formed or requires extensive world knowledge to under-
stand. However, as in our work on simple bar charts, we have found that verbs in
a caption often suggest the general category of the graphic’s message. Adjectives
and adverbs function similarly. For example, the adjective “declining” in the cap-
tion of Figure 7 suggests a Falling-Trend message or perhaps a Change-Trend
message where the trends change from rising to falling.

Using WordNet, we identified potentially helpful verbs and organized them
into classes of similar verbs. For example, the verbs “jump” and “boom” reside



in one verb class, whereas the verbs “resume” and “recover” reside in a different
verb class. The Caption Tagging Module is responsible for extracting such helpful
words from the caption and augmenting the XML representation of the graphic
to indicate the presence of any of our six identified verb classes.

Several features of the segments comprising a suggested message also provide
evidence for or against that proposed message being the intended message of the
graphic. The graphic designer presumably had a reason for including all of the
points in a line graph. Thus the fraction of a line graph covered by the segments
comprising a suggested message serves as evidence about whether that was the
graphic designer’s intended message — presumably, messages that cover much of
the line graph are more likely to be the designer’s intended message. (However,
the intended message need not cover the entire graphic. For example, it appears
that when conveying a Rising-Trend or a Falling-Trend, the graphic designer
sometimes includes a small segment of points prior to the start of the trend in
order to keep the viewer from inferring that the rise or fall might have started
at earlier points not depicted in the graphic.)

3.4 The Bayesian Network

A Bayesian Network is a probabilistic reasoning system that can take into ac-
count the multiple pieces of evidence in a line graph in order to evaluate the var-
ious message candidates proposed by the Suggestion Generation Module. Rather
than identifying an intended message with certainty, a Bayesian Network gives
us the posterior probability of each candidate message, thereby reflecting any
ambiguity in the graphic. In our project, a new Bayesian Network is built dy-
namically (using Netica[15]) each time a line graph is processed. The top-level
node of our Bayesian Network represents each of the possible high-level mes-
sage categories, such as Change-Trend or Big-Jump. Each of these high-level
message categories appears as a child of the top-level node; this is purely for
ease of representation. The children of each of these high-level message category
nodes are the suggested messages (with instantiated parameters) produced by
the Suggestion Generation Module.

Once nodes for each of the messages suggested by the Suggestion Gener-
ation Module have been added to the Bayesian Network, evidence nodes are
entered into the network to reflect the evidence for or against the different sug-
gested messages. Verb and adjective/adverb evidence suggest a general category
of message, such as Rising-Trend or Change-Trend; thus they are attached as
children of the top-level node in the Bayesian Network. Other evidence, such as
whether there are annotations and whether they correspond with parameters of
a message, serve as evidence for or against each suggested message; thus these
evidence nodes are entered as children of each suggested message node.

Associated with each node in a Bayesian Network is a conditional probability
table that reflects the probability of each of the values of that node given the
value of the parent node. (The conditional probability table for the top-level node
captures the prior probabilities of each of the message categories.) To construct
the conditional probability tables, each line graph in our corpus of 215 line



Endpoints Annotated Table

Rising-Trend(<param1 >, <param2 >) InPlan NotInPlan

Only one endpoint is annotated 12.3% 26.2%
Both endpoints are annotated 55.4% 3.6%
No endpoint is annotated 32.3% 70.2%

Table 2: A sample conditional probability table

graphs was first annotated with its intended message as identified by consensus
among three coders; we then analyzed each line graph to identify the evidence
that was present, and computed the conditional probability tables from this
analysis. One such conditional probability table is shown in Table 2. It gives
the conditional probability that the endpoints <param1 > and <param2 > of a
Rising-Trend(<param1 >, <param2 >) message are annotated in the graphic,
given that the intended message is (or is not) a Rising-Trend. For example, the
InPlan column of the conditional probability table shows that the probability
that both endpoints are annotated is 55.4% if a Rising-Trend is the intended
message, and the NotInPlan column shows that the probability is 3.6% if it is
not the intended message.

4 Evaluation of the System

We evaluated the performance of our system for recognizing a line graph’s in-
tended message on our corpus of 215 line graphs that were collected from var-
ious magazines such as Newsweek, BusinessWeek, and from local and national
newspapers. Input to the Intention Recognition Module is the augmented XML
representation of a graphic. We used leave-one-out cross validation in which each
of the graphics is used once as the test graphic, with the conditional probability
tables computed from the other 214 graphics. Our system recognized the correct
intended message with the correct parameters for 157 line graphs, which gave
us a 73.0% overall success rate.

The system’s errors are primarily due to sparseness of data. For example, if
we have only one graphic where a particular verb class is used to indicate an
intention category, then leave-one-out cross validation has no means to connect
the verb class with that intention category and we are likely to get an incorrect
result when hypothesizing the intended message of that graphic. In addition,
if the Graph Segmentation Module does not produce the correct segmentation
of a graphic, the Suggestion Generation Module is unlikely to produce a set of
suggested messages that includes the graphic’s intended message, and thus the
Bayesian Network will not correctly hypothesize it. Therefore to improve the
performance of our intention recognition system, we are working on identifying
additional attributes that can produce a better learned model for graph segmen-
tation, and we are collecting additional line graphs for training our Bayesian
Network. However, even when our system does not produce the ideal result, the
message hypothesized by our system still reflects the information in the graphic.



5 Examples

Consider the graphic in Figure 5. As described in Sections 3.2, our Graph Seg-
mentation Module hypothesizes that the graphic consists of three visually dis-
tinguishable trends and our Suggestion Generation Module suggests a set of
11 possible messages for consideration by the Bayesian network. The Bayesian
network hypothesizes that the graphic is conveying a Change-Trend-Return mes-
sage — in particular, that the trend in gas prices changed in 9/1/05 (from rising
to falling) but returned in 12/1/05 to its previous trend (rising). The system
assigns this message a probability of 98.7% indicating that it is very confident
of its hypothesis. Next consider the line graph in Figure 4 which illustrates the
processing of a line graph consisting of a large number of short line segments.
Our Graph Segmentation Module segments this line graph into two visually dis-
tinguishable trends, and the Bayesian network hypothesizes that the graphic
conveys a changing trend from relatively stable between 1900 and 1930 to rising
between 1930 and 2003 and assigns this hypothesis a probability of 99.9%

Now let us consider two graphics where the system is less certain about its
hypothesized messages. In the case of the graphic in Figure 6, the system hy-
pothesizes that the graphic is conveying a Change-Trend-Return in cancellations
by major U.S. airlines (rising, then falling, then returning to a rising trend) and
assigns the hypothesis a probability of 63.1%. However, the system also assigns a
probability of 36.1% to the hypothsis that the graphic’s intended message is that
there was a big fall in cancellations between 2001 and 2002. The system prefers
the change-trend-return hypothesis due to the stronger evidence — for example,
there is no annotation on the low point at 2002 (thereby suggesting that the fall
is not the primary message of the graphic), and there are annotations on other
points in the graphic (thereby suggesting that those points should be parameters
of the message).

As a second example where the system is less certain about its hypothesized
message, consider the graphic in Figure 7 and two of the suggestions proposed
by the Suggestion Generation Module: a Change-Trend(1997,1999,2006) and a
Falling-Trend(1999,2006). There are a number of communicative signals in the
graphic that were deliberately entered by the graph designer: 1) the annotation
giving the value for the year 1999, 2) the annotation giving the value for the year
2006, and 3) the adjective “declining” in the caption “Declining Durango sales”.
Other evidence entered into the Bayesian Network includes (among others) the
portion of the graphic covered by each suggested message, and the relative width
of the last segment of each message. For the Change-Trend message, the message
covers the whole graphic and the last segment covers more than half of the
graphic; for the Falling-Trend message, the last (and only) segment covers much,
but not all, of the graphic.

The system considers all of the suggested messages and the evidence entered
into the Bayesian Network; it hypothesizes that the graphic’s intended message
is that there is a falling trend in Durango sales from 1999 to 2006 and assigns this
hypothesis a probability of 54.06%. The hypothesis that the graphic is intended
to convey a Change-Trend (rising from 1997 to 1999 and then falling from 1999 to



2006) is assigned a probability of 45.90%. All the other suggested messages share
the remaining 0.04% probability. The probabilities assigned to the Falling-Trend
and Change-Trend messages reflect the ambiguity about the intended message
that is inherent in the graphic. The presence of the adjective “declining” and the
annotations on both points that are parameters of the Falling-Trend message,
but only annotations on two of the three points that are parameters of the
Change-Trend message, caused the system to prefer the Falling-Trend message
over the Change-Trend message. Notice that while the graphic in Figure 7 does
show a short rising segment prior to the long falling trend from 1999 to 2006,
the focus of the graphic is on the falling trend rather than on a change in trend.
(Production of Durango cars only started in 1997, so the first part of the graph
primarily reflects the “ramp up” in initial sales, not a changing trend.)

Now let us examine how the system’s hypothesis changes as we vary the
communicative signals in the graphic. Suppose that we add an extra annotation
giving the value of Durango sales in 1997. Now the system’s hypothesis changes
dramatically — it identifies the Change-Trend as the intended message of the
graphic and assigns it a probability of 99.5%, with the Falling-Trend message
assigned a probability of 0.5%. Note that although the adjective “declining”
is most associated with a Falling-Trend message, it can also be used with a
Change-Trend message to draw attention to the falling portion of the changing
trend.

Now let’s return to the original graphic in Figure 7 with only two points
annotated, but let’s change the caption to “Durango sales changed”. Whereas
“declining” might be used in the caption of a Change-Trend message, it is less
likely that the verb “changed” would be used with a Falling-Trend message.
Once sgain, the system hypothesizes that the graph is intended to convey the
changing trend in Durango sales, rising from 1997 to 1999 and then falling from
1999 to 2006, but only assigns it a probability of 95.2% due to the ambiguity
resulting from only two points being annotated.

6 Related Work

Shah et. al.[20] had people describe line graphs to examine how the graph design
affects what people get as the message of the graphic. Our work used Bayesian
network to reason about the messages of the graphic from the evidences, which
implemented the automated recognition of line graph’s messages.

Yu et. al.[23] developed a pattern recognition algorithm for summarizing in-
teresting features of automatically generated time-series data such as from a gas
turbine engine. However, they were analyzing automatically generated machine
data, not graphs designed by a graphic designer whose intention was to con-
vey a message to the viewer. Futrelle and Nikolakis[10] developed a constraint
grammar for parsing vector-based visual displays and producing structured rep-
resentations of the elements comprising the display. The goal of Futrelle’s work
is to produce a graphic that is a summary of one or several more complex graph-



ics[9]. Note that the end result will again be a graphic, whereas our goal is to
recognize a graphic’s intended message.

A number of researchers have studied the problems of classifying time series
data into a pattern category[14] or judging the similarity between time-series
data[13, 21]. Their main goal is to identify the pattern of a query time series
by calculating its similarity with a predefined pattern. Dasgupta et.al[5] identify
anomalies or events in a data series. Our research differs from these efforts in that
we are segmenting line graphs into visually distinguishable trends that can be
used to suggest possible messages for consideration by a system that recognizes
the graphic’s intended message.

7 Conclusion and Future Work

Information graphics in popular media generally have a message that they are
intended to convey, and this message is often not captured by the graphic’s cap-
tion or given in the accompanying article’s text. This paper has presented an
implemented and evaluated methodology for identifying the intended message
of a line graph. Our methodology involves segmenting the graphic into visually
distinguishable trends, extracting communicative signals from the graphic, and
using these in a Bayesian Network that hypothesizes the graphic’s intended mes-
sage. The evaluation of our system’s performance demonstrates the effectiveness
of our approach.

Our current work is using a graphic’s recognized message as the basis for
summarizing the high-level content of graphics from popular media, in order to
provide alternative access for individuals with sight-impairments. We are also
investigating the use of the intended message to index and retrieve information
graphics, to produce summaries that take into account a multimodal document’s
information graphics as well as its text, and to extract information from mul-
timodal documents. To our knowledge, our project is the only current research
effort to identify an information graphic’s intended message and utilize it in
processing multimodal documents.
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