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Abstract. Information graphics (bar charts, line graphs, grouped bar
charts, etc.) often appear in popular media such as newspapers and mag-
azines. In most cases, the information graphic is intended to convey a
high-level message; this message plays a role in understanding the docu-
ment but is seldom repeated in the document’s text. This paper presents
our methodology for recognizing the intended message of a grouped bar
chart. We discuss the types of messages communicated in grouped bar
charts, the communicative signals that serve as evidence for the message,
and the design and evaluation of our implemented system.

1 Introduction

Information graphics are non-pictoral graphics that display information, such
as bar charts, line graphs, grouped bar charts, and pie charts. The purpose of
an information graphic in popular media—national and local newspapers (USA
Today, Philadelphia Inquirer) and magazines (Time, Newsweek)—is usually to
communicate a high-level contextual message to the graph viewer, as opposed
to merely displaying data for analysis.

Grouped bar charts are a type of information graphic. They are similar to
simple bar charts in that they visually display quantifiable relationships of values;
however they contain an additional grouping dimension. Despite this additional
complexity, they still convey intended high-level messages. For example, the
grouped bar chart in Figure 1 ostensibly conveys the high-level message that
“China has a greater rate of software piracy than the rest of the world.”

Clark [6] noted that language is more than just words, but rather is any
“signal” or lack thereof, where a signal is a deliberate action that is intended to
convey a message, such as gestures and facial expressions. We can view infor-
mation graphics as a form of language. This paper presents a methodology for
automatically reasoning about the most likely intended message of a grouped
bar chart using their communicative signals as evidence; that is, we predict the
graphic designer’s high-level intention in designing the graphic.

Carberry [4] studied graphics from popular media and observed that the
graphic’s message was very often not repeated in the caption or headline, nor in



any article text. Thus, it is infeasible to perform only natural language processing
techniques on the caption and headlines of the graphic and expect to consistently
recognize high-level messages.
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Fig. 1. From NewsWeek, “Microsoft
Cozies Up to China”, June 28, 2004.

Some research has already considered
the communicative intent of information
graphics. Kerpedjiev et al. [14] proposed
a methodology for automatically gener-
ating graphics that realize desired inten-
tions. Fasciano [11], in the Postgraphe sys-
tem, generated graphics based on the in-
put of a communicative intention and a
data set. Mittal [16], in the SAGE sys-
tem, implemented a process which auto-
matically generates captions which can be
used to explain data in novel or creative
graphics. Although the concept of gener-
ating good captions bears some similarity
to identifying the intended message of a
graphic, Mittal is given the data points
that will be displayed and the communica-
tive goal of the graphic. In our work, the communicative goal must be inferred
by reasoning about the communicative signals in the graphic.

Both Elzer [9] and Wu [21] have implemented systems which automatically
recognize the most likely high-level message in simple bar charts and line graphs,
respectively. However, grouped bar charts are much more complex than simple
bar charts and line graphs; thus they convey a much richer and varied set of
messages, the kinds of communicative signals are different, and inferring the
intended message requires more complex reasoning.

At least three applications can greatly benefit from this research. The first
is a system which provides sight-impaired individuals with alternative access
to information graphics in multimodal documents by conveying the high-level
content of its intended message via speech. The second is to use a graphic’s
intended message to index it for retrieval from a digital library. The third is to
use the intended message of a graphic as its high-level content and take it into
account during the summarization of a multimodal document. Our colleagues
are actively investigating all three applications.

Section 2 describes our grouped bar chart collection, the identification of the
types of high-level messages that graphic designers overwhelmingly convey in
grouped bar charts, and the annotation of our corpus. Section 3 describes the
communicative signals that appear in grouped bar charts. Section 4 presents
our implemented Bayesian reasoning framework, describes how the extracted
communicative signals are used as evidence in inferring the intended message of
a grouped bar chart, and discusses the system’s evaluation. Section 5 discusses
future work motivated by the inherent additional complexity in grouped bar
charts.



2 Messages

Our corpus is a collection of 222 grouped bar charts from popular media (main-
stream newspapers and magazines).3 We analyzed the corpus to identify the
types of high-level messages that graphic designers communicate using grouped
bar charts and generalized these into message categories. This section discusses
our identified high-level message categories and presents examples from our
grouped bar chart corpus; Table 1 lists all of the message categories, and their
constraints and instantiated parameters.

2.1 Messages

Trend Messages. Trend messages convey a general trend (rising, falling, or
steady) over a set of ordinal data points. For example, the grouped bar chart in
Figure 2 ostensibly conveys the high-level message that “China increased spend-
ing on education, social security, military, and rural support from 2004 to 2006.”,
a Rising-Trends-All message category. Note that trends can be within-groups

in which case each group of bars comprises a data series or across-groups (as

in Figure 2 with the i
th bar in each group comprising the i

th data series). Ta-
ble 1 shows that the Rising-Trends-All message category requires at least 3 data
points for the trend and that data series be over a set of ordinal entities. The
trends hold for each series and the overall message of Figure 2 can be represented
as: Rising-Trends-All(across-groups: {Education, Social security, Military, Rural
support}).

Relationship Messages. Relationship messages capture the consistency of
the relative values for a set of entities, or the inconsistency of one set of relative
values with respect to the other sets. For example, the grouped bar chart in
Figure 8 ostensibly conveys the high-level message that “The increased funding
to Life Sciences is in contrast to the steady or decreased funding to the other
research areas.”, a contrasting message that we can represent with the message
category Entity-Relationship-Contrast. As with trend messages, the set of entities
may be within-groups, as in Figure 8, or across-groups (the i

th bar from
each group). The parameter <i> as listed in Table 1 is instantiated with the
contrasting entity, in this case: 1st group (Life Sciences). Thus for Figure 8, the
intended message is Entity-Relationship-Contrast(within-groups:{Life Sciences,
Psychology, . . ., Other}, 1st group: Life Sciences).

Gap Messages. Gap messages recognize a high-level message involving ei-
ther one gap, or a trend in the size of multiple gaps, where a gap is the approxi-
mate absolute difference between two values within the same entity. For example,
the grouped bar chart in Figure 3 ostensibly conveys that “There is an increasing
gap between the number of patents filed and the number of patents issued, over the
period from 1994 to 2003.”, and can be represented as Gap-Increasing(across-
groups:{’94,’95,. . . ,’03}). Figure 4 shows a Gap-Crossover message: “The gap
between the number of Internet users in the US and the number in China has

3 The corpus is available online at http://www.cis.udel.edu/∼burns/corpus



Table 1. Our grouped bar chart analysis identified numerous messages that graphic designers convey via grouped bar charts. Message
categories have constraints (for example, a trend must exist over at least three entities) and one or more parameters which are instantiated.
Constraints Key: O (ordinal entities are required), 3+ (at least three entities are required), 2 (two entity limit).

Message Category <Parameter(s)> Constraints Gloss

Rising-Trends-All <p>

O, 3+
There is the same trend (rising, falling, steady, or changing) for all entities in the <p> data
series where <p> is “within groups” or “across groups”.

Falling-Trends-All <p>
Steady-Trends-All <p>

Changed-Trends-All <p>

Opposite-Trends <p> O, 2
The two entities have opposite trends in the <p> data series where <p> is “within groups”
or “across groups”.

Contrast-Trend <p, i>

O, 3+

The <i>th trend is contrasting to all of the other trends in the <p> data series where <p>
is “within groups” or “across groups”.

Rising-Trends-Mostly <p>
There is some trend (rising, falling, steady) for a majority but not all entities in the <p> data
series where <p> is “within groups” or “across groups”.

Falling-Trends-Mostly <p>
Steady-Trends-Mostly <p>

Same-Relationship-All <p>
Each entity in the <p> data series has the same relative ordering of bar values where <p> is
“within groups” or “across groups”.

Opposite-Entity-Relationship <p> 2
The two entities in the <p> data series have a different relative ordering of bar values where
<p> is “within groups” or “across groups”.

Entity-Relationship-Contrast <p, i> 3+
The <i>th entity has a contrasting relative ordering of bar values compared to all of the other
entities in the <p> data series where <p> is “within groups” or “across groups”.

Same-Relationship-Mostly <p>
The majority but not all entities in the <p> data series have the same relative ordering of
bar values where <p> is “within groups” or “across groups”.

Gap-Increasing <p>
O, 3+

The gap between two entities is trending (increasing, decreasing) over the <p> data series
where <p> is “within groups” or “across groups”.Gap-Decreasing <p>

Gap-Crossover <p>
The gap between two entities decreased so much that one entity caught-up-to and then crossed
the other where <p> (the sequence of gaps) is “within groups” or “across groups”.

Gap-Comparison-Single <p, i> 3+
The gap in the <i>th entity in the <p> data series is being compared to the gaps of the other
entities where <p> is “within groups” or “across groups”.

Gap-Comparison-Pair <p> 2
The two gaps in the <p> data series are being compared with each other where <p> is “within
groups” or “across groups”.

Entity-Comparison <p, i>
The <i>th entity in the <p> data series is being compared to the other entities where <p>
is “within groups” or “across groups”.

Rising-Entities-All <p>

O, 2

All entities in the <p> data series have two data points and are (rising, falling, steady) where
<p> is groups of series.

Falling-Entities-All <p>
Steady-Entities-All <p>

Rising-Entities-Mostly <p>
The majority but not all entities in the <p> data series have two data points and are (rising,
falling, steady) where <p> is groups of series.

Falling-Entities-Mostly <p>
Steady-Entities-Mostly <p>



steadily decreased until now China has more Internet users than the US.” As we
observe in Table 1, the Gap-Increasing and Gap-Crossover message categories
require similar data constraints to the Rising-Trend: namely that there are at
least three data points and that the trending is over a set of ordinal entities.
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Fig. 2. Graphic from The
Economist, “Planning the new
socialist countryside”, March 9,
2006.
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Fig. 3. Graphic from Technology Review, “A
Mixed Bag of U.S. Institutions”, July 2005.

Some gap messages compare the gaps in one entity with the gaps of the
other entities. For example, Figure 5 ostensibly conveys that “The difference
in North American revenue between 2007 and 2008 is much larger than the
difference in revenue between 2007 and 2008 for the other areas listed.” This can
be represented as Gap-Comparison-Single(within-groups: {N America, Europe,
Latin America, Asia Pacific}, 1st group: <N America>).

Entity Comparison Messages. Entity comparison messages compare one
entity against the other entities. For example, the grouped bar chart in Figure 1
ostensibly conveys that “China has a greater rate of piracy than the rest of
the world.”. This is captured by the Entity-Comparison message category and
is represented as Entity-Comparison(within-groups:{China,World}, 1st group:
China).

Additional Messages. Space limitations preclude us from describing all of
our 25 message categories listed in Table 1.

2.2 Annotation

Coders individually annotated each graphic in the corpus with the high-level
message that it conveyed by determining its message category and the instanti-
ation of its parameter.4 Where there was disagreement, the coders discussed the
graphic until a consensus was reached.

4 Only a small number of grouped bar charts did not contain an intended message.
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Fig. 5. Graphic from Wall Street Journal, “GM to
Build Diesel Engines in Thailand”, August 14, 2008.

3 Communicative Signals

Graph designers use communicative signals in grouped bar charts in order to
help convey their intended message. This section describers the kinds of com-
municative signals found in grouped bar charts. These signals are exploited as
communicative evidence in the intention recognition system presented in Sec-
tion 4.

3.1 Salience via Visual Signals

Visual signals are often used by graphic designers to make an entity (a bar or set
of bars) salient. This suggests that the salient entity is an important part of the
graphic’s intended message—in our terminology, it should be an instantiation of
the <i> parameter in the message categories of Table 1.

An entity can be made salient by coloring it differently from the other entities
in the graphic. Figure 6 shows a graphic from Time, where coloring creates
salience. Here the ’04 bar in the first group is colored differently from the ’04
bars in the other groups, thereby drawing attention to the increased instruction
on reading, in contrast with the decreased instruction for other subjects.

Sets of bars can become salient based on their position in the graphic. For
example, in Figure 8 the group “Life Sciences” is salient by virtue of its leading
position which is not part of a natural (such as alphabetical) ordering of the
groups.

A dramatic difference in height between one entity and the other entities can
make an entity salient. The “Life Sciences” entity in Figure 8 also jumps out
because it is so much taller than the other groups.

3.2 Linguistic Signals

Although Elzer [7] observed that captions in popular media very often do not
capture a graphic’s intended message, captions often contain linguistic signals



that help convey the message. We observed two kinds of linguistic signals in
grouped bar charts: verb signals and linguistic structure signals.

Certain kinds of verbs can signal one or more high-level message categories.
For example, in the caption for Figure 7, “Shrinking Giants”, the verb shrink-
ing suggests the message categories: Falling-Trends-All, Falling-Trends-Mostly,
Falling-Entities-All, or Falling-Entities-Mostly.

The linguistic structure of the caption can signal the salience of a specific
entity. For example, in the caption for Figure 9, “Obama captured first-time
voters, but Clinton was strong among older voters”, three of the four graphed
entities (Obama, Clinton, older) are mentioned. They are each mentioned once
in the caption in independent clauses; Obama and Clinton are both in subject
position; older is in object position; however, Clinton is in a contrastive clause
introduced by “but”. This suggests that Clinton is a salient entity that is to be
compared.

3.3 Relative Perceptual Effort as a Communicative Signal

Green et al. [12] hypothesized that graphic designers construct graphics that fa-
cilitate as much as possible the tasks that the graph viewer will need to perform
to understand the graphic’s message. Thus, following Elzer [10] we view relative
perceptual task effort as a communicative signal: messages that require more
perceptual effort than others are less likely to be the message that the graph
designer intended to convey. This correlates with Larkin and Simon [15] who
observe that informationally equivalent graphics are not necessarily computa-
tionally equivalent, and Peebles and Cheng [17] who note that seemingly minor
design changes can greatly affect performance on graph reading tasks.

For example in Figure 10, although both graphics contain the same data,
individually they convey two different messages. The high-level message conveyed
by the left graphic is ostensibly that male salaries are greater than female salaries
in all of the subject areas, while the message conveyed by the right graphic is
ostensibly a message of rank: that engineering and the physical sciences have
the greatest salaries for both men and women. While this information can be
obtained from either graphic, the design of the graphic affects the perceptual
effort required and thus the intended message of the graphic.

We have built a cognitive model which produces a relative estimate of the
perceptual effort required given a message and graphic, which is also considered
as communicative evidence in the intention recognition system. This model is
built in the ACT-R [2] cognitive framework, following the ACT-R theory as
well as graph comprehension work from the psychological literature. Pilot eye-
tracking experiments, in which we asked human subjects to perform specific
graph tasks on grouped bar charts and subsequently analyzed their eye scan
patterns and fixation and attention locations, also helped us identify the factors
in grouped bar charts which affect the required recognition effort.

Pinker [18] identified high-level visual patterns such as linear lines and quadratic
curves which are easily identifiable for most graph viewers. In our pilot experi-
ments, we found that subjects fixated less on sets of entities whose bar heights
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resembled an easily identifiable visual pattern. Shah [19] noted that the grouping
of data points will influence the perceived pattern recognition of trends and in
our pilot experiments, subjects could still perceive trends despite the presence of
exceptions (a data point which does not follow the trend). Peripheral vision—the
ability for multiple objects to be processed in parallel in a guided search [1]—was
present in our experiments: subjects showed the ability to perform some graph
tasks without fixating on the first or last groups. Wickens and Carswell [20]
defined the proximity compatibility principle and showed how close perceptual
proximity is advised (the perceptual similarity of two elements) if and only if
closeness in processing proximity is intended (the extent to which elements are
used as part of the same task). We observed an increase in the time for subjects
to perform graph tasks for grouped bar charts with increased noise and visual
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Fig. 10. Two bar charts designed from the same data.

clutter, where visual clutter is the close spatial proximity of two perceptually or
semantically contrasting elements which should not be compared.

The design of our model of relative perceptual effort incorporates these fac-
tors so that the presence of high-level visual patterns in a graphic enables the
model to process a graph quicker while the presence of visual clutter and excep-
tions cause an increase in processing time.

Our model was validated for a subset of our message categories in an initial
experiment [3] where the relative time required for our model to perform graph
tasks on a range of graphics was compared with the relative average for human
subjects to perform the same tasks with the same graphics. Our current work
includes validating our complete model for all message categories.

4 Recognizing the Intended Message

4.1 System Architecture

Our system for recognizing the intended message of a grouped bar chart requires
an XML representation of a graphic which specifies each bar, each series and
group of bars, their heights, colors, annotations, the axes labels, caption, etc.
This is the responsibility of a visual extraction module [5]. The generated output
is similar to Huang [13] who in addition to representing the graphic also considers
vision issues such as identifying an information graphic, locating an information
graphic within a noisy pdf document, and performing OCR on the text within
the graphic.

Our intention recognition system for grouped bar charts is modeled with a
Bayesian reasoning framework which captures the relationship between commu-
nicative signals and intended messages. Figure 11 shows the general structure
of our Bayesian network. There is an Intended Message node at the top whose
states are either message categories that still need to be further instantiated
or messages that can only have within-groups or across-groups as their possi-



ble instantiation.5 The five most prevalent states in our corpus are shown along
with their a priori probabilities before any evidence is entered into the network.
The communicative signals for a graphic are the evidence for or against possible
messages. These are represented in the leaves of the network as evidence nodes.
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Fig. 11. Network structure which captures the probabilistic relationship between in-
tended messages and communicative evidence.

The grey nodes in Figure 11 between the top-level and leaves are deter-
ministic, generalizing nodes which group together message categories that have
a general feature in common. This alleviates the data sparseness problem that
arises due to the limited size of our corpus. For example, the Directional Message
node groups together message categories which convey the same direction, such
as Rising-Trends-All, Rising-Trends-Mostly, Rising-Entities-All, Rising-Entities-
Mostly, into the Rising Messages category. Then, the child evidence nodes (Ling
Rising, Ling Falling, etc.) capture the probabilistic relationships between a Ris-
ing Message and the “signal verb” communicative signals. Similarly, the Focused
Entity Message node generalizes those message categories that focus on a specific
entity (<i>) (such as Contrast-Trend and Entity-Comparison) and captures the

5 Thus, we can effectively treat these as message categories in our design.



probabilistic relationship between the evidence node Num Salient Entities which
represents how many entities in a graphic are salient. Finally, the Generalized
Message node categorizes those message categories together (such as Rising-
Trends-All and Falling-Trends-All) for which we expect naive evidence (such as
the number of bars per group) to have the same affect on each.

Message categories at the top level that have a parameter instantiation be-
sides within-groups or across-groups are instantiated with a specific entity lower
in the network. In this case, evidence nodes appear as children for each possible
instantiation and are able to capture evidence that is only relevant for a specific
parameter instantiation. For example, in Figure 11 the Gap-Comparison-Single
message category node is instantiated for every possible group entity instantia-
tion in Figure 5. The value for the Salient Gap evidence node will be positive
only for the instantiated node Gap-Comparison-Single(within-groups, 1st).

4.2 Extracting Evidence

The evidence provided by visual communicative signals (such as whether a group
of bars is colored differently from the other bars) is automatically extracted from
the XML representation of a graphic and entered into evidence nodes. The text
of accompanying captions and headlines is extracted and parsed to identify the
presence of any signal verbs.

The extraction of linguistic structure signals is more complex. Headlines and
captions are parsed into their clausal structures. A support vector machine was
trained on our corpus of captions to produce a learned model that decides which
of several mentioned entities is most linguistically salient. It uses features such as
the frequency with which the entity is mentioned, the source of the mentioning
(main headline, caption, etc.), the ordering of mentions (is one entity preced-
ing), subject position, object position, main/subordinate clausal structure. The
decision of the model is entered into the Linguistic Classifier evidence nodes.

The relative perceptual effort model takes the XML representation and out-
puts a relative time for the expected recognition of some message. This relative
time is discretized and is entered into the Effort evidence nodes.

4.3 Training

Associated with each node in the Bayesian network is a conditional probability
table that captures the probability of each value for the node given the values
for its parent nodes. The conditional probability tables are learned from our
corpus of graphics. The Bayesian network applies Bayes’ rule to the network
constructed for a new graphic to propagate the evidence through the network and
compute the posterior probability for each node. Table 2 shows the conditional
probability table that captures the probabilistic relationship between the high-
level Gap-Comparison-Single(within-groups) message category and any visual
gap salience of the instantiated <i> entity or the other within-group entities.6

6 The Gap-Comparison-Single(within-groups) message category generalizes the Gap-
Comparison-Single(within-groups,<i>) messages where <i> is a group entity.



Table 2. Learned conditional probability table for the Gap Salience evidence node
under the Gap-Comparison-Single(within-groups) message category.

Gap Comparison-Single This Entity This Entity Other Entities No
<WithinGroups, i> Only Plus Others Only Entities

Intended 58.3% 24.9% 8.3% 8.3%

Not Intended 6.9% 14.8% 65.3% 12.9%

4.4 Current Performance and Discussion

We evaluated our system using leave-one-out cross-validation7, where the XML
representation of each of the 222 graphics is in-turn used as a test graphic with
the conditional probability tables computed from the other 221 graphs. Results
are averaged over all the tests. Currently our system’s accuracy rate is 65.6%:
that is, the message category and instantiation that the system predicts matches
exactly the consensus-based annotation. Table 3 shows our results. As a baseline,
we use the message category that appears most often in our corpus; however, note
that our system must recognize not only the correct message category but also
the instantiated parameters. Our system more than triples the baseline success
rate. Although our success rate is lower that that achieved by Elzer or Wu for bar
charts and line graphs (78.2% and 73% respectively), grouped bar charts involve
more than twice as many message categories and convey far richer messages,
making recognition more complex. Note that our success rate improves to 78.6%
if we use the top two system hypotheses; this results from grouped bar charts
having secondary messages, where occasionally it is difficult to determine which
message is primary and which is secondary. (See Future Work).

7 Leave-one-out cross-validation, as opposed to 10-fold cross-validation, was used to
mitigate some sparseness issues in the data set.

Table 3. Results of our system.

Grouped Bar Chart System

Average number of possible messages for a grouped bar chart: 20.2

system criteria accuracy

Grouped Bar Chart System top message matches annotation 65.6%

Grouped Bar Chart System
either of top 2 messages match

annotation
78.6%

Baseline: predict most common
possible message

top message matches annotation 20.2%

Other Systems

Simple Bar Chart System (Elzer) [9] top message matches annotation 78.2%

Line Graph System (Wu) [21] top message matches annotation 73.0%



As an example of a graphic processed by our system, consider the grouped
bar chart in Figure 8. The graph is processed by the Visual Extraction Mod-
ule to produce an XML representation. Our system correctly predicts an in-
tended message of Entity-Relationship-Contrast (within-groups:{Life Sciences,
Psychology,. . .,Other},1st group:Life Sciences) with an almost certain proba-
bility of 99.5%. Three communicative signals are automatically entered in the
evidence nodes for the Entity-Relationship-Contrast message category node in-
stantiated with <p>=within-groups, <i>=1st, namely that it is the only entity
mentioned in the caption, that it is the only entity that is visually salient by
height, and that it is positioned first in a set of more than two entities. Table 4
shows how the network’s prediction of this message decreases if the graphic were
altered to eliminate some of the communicative signals and thus alter the ev-
idence in the Bayesian Network. We see that the height salience and leading
position of the entity are very important for the system’s hypothesis of this
message. The effect of removing Life Sciences from the text, and thus chang-
ing the evidence in the Linguistic Classifier evidence node, follows our intuition
that an intended contrasting message may not always be linguistically salient
in accompanying text. In each case, the presence of two other kinds of salience
compensates when one kind of salience is removed as shown in the top half of
Table 4. The bottom half of Table 4 shows the cumulative affect of removing
several communicative signals. As we adjust the evidence entered into the net-
work, the system’s confidence in this message as the graph’s intended message
decreases and the likelihood of other possible messages increases.

5 Conclusion

5.1 Future Work

Sparseness of data and reference resolution issues (such as determining that
USA refers to United States) are two major causes of our system’s errors. We
are working to address these problems.

Grouped bar charts are much more complex than simple bar charts because
of their additional “grouping” dimension. This facilitates the communication of
additional high-level messages, such as in Figure 1, “the rate of Chinese piracy
decreased less than the rest of the world” which supplements our previous ob-
served message that “China has a greater rate of software piracy than the rest of
the world.” Such secondary messages are novel to grouped bar charts and were
not observed in the work of simple bar charts and line graphs by Elzer [8] and Wu
[21], respectively. In general, secondary messages were not as apparent during
the annotation of our corpus and their realization produced more disagreement
among the coders. We are currently working on expanding our framework to
automatically identify secondary messages in grouped bar charts.

5.2 Summary

We have presented an implemented system which automatically hypothesizes the
high-level intended message of a grouped bar chart. To our knowledge, no one



Table 4. Example showing that removing communicative evidence for Figure 8 af-
fects the network’s prediction that Entity-Relationship-Contrast(within-groups:{Life
Sciences, Psychology, . . ., Other, 1st group:Life Sciences}) is the intended message.

Likelihood Node Evidence Evidence Likelihood

Before Before After After

only one piece of evidence removed:

99.5% Linguistic Classifier
only entity
mentioned

no entities
mentioned

94.1%

99.5% Salient By Height
only entity that is
salient by height

no entities salient
by height

90.1%

99.5% Positioning first entity
neither first nor

last
74.3%

evidence removed sequentially, one after another:

99.5% Linguistic Classifier
only entity
mentioned

no entities
mentioned

94.1%

94.1% Salient By Height
only entity that is
salient by height

no entities salient
by height

44.2%

44.2% Positioning first entity
neither first nor

last
1.25%

has previously investigated the communicative signals in grouped bar charts, the
wide variety of messages that grouped bar charts can convey, and a methodology
for recognizing these messages. Our system automatically extracts communica-
tive evidence from the graphic and incorporates it as evidence in a Bayesian
network that hypothesizes the graphic’s intended message. This work has sev-
eral significant applications: (1) a system which provides sight-impaired individ-
uals with alternative access to information graphics in multimodal documents,
(2) indexing and retrieving grouped bar charts in digital libraries, (3) and the
summarization of multimodal documents.
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