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ABSTRACT

Information graphics (line graphs, bar charts, etc.) are common in popular me-

dia and periodicals. They are usually included in such documents to convey a message.

This dissertation discusses the processing of one kind of information graphic, namely a

line graph. It presents a learned model for segmenting a line graph into visually distin-

guishable trends and a Bayesian network inference model that hypothesizes the intended

message of the graph based on communicative signals in the graphic. Besides recognizing

the intended message of line graphs, this dissertation also presents a method for identify-

ing the paragraph in the document that is most relevant to its information graphic. The

research results provided by this dissertation can be used for several purposes: to give

blind individuals access to information graphics in an article, to provide the basis for a

longer summary of the graphic, to build a summary that captures both the article and its

containing information graphics, and to indicate a graphic’s content when indexing it for

retrieval in a digital library.
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Chapter 1

INTRODUCTION

Information graphics are non-pictorial graphics such as bar charts and line graphs.

They appear in popular media such as New York Times, Businessweek, Wall Street Journal,

etc. as well as in scientific articles. Usually they are one part of a multimodal document

which contains both the textual article and the information graphic. Information graphics

in popular media differ from ones in scientific articles in several ways. First, graphics

in scientific articles are intended to display data and facilitate an analysis of it. Second,

the text of a scientific article generally refers explicitly to graphics with referents such

as “see Figure X” and often contains an explanation of the data depicted in its graphs.

On the other hand, the text of a document in popular media rarely references its graphics

explicitly and often says nothing about the content of its graphics.

The overwhelming majority of information graphics in popular media, such as

newspapers and magazines, have a message that they are intended to convey. For exam-

ple, the line graph in Figure 1.1 appeared in USA Today and ostensibly is intended to

convey the message that there has been a recent decrease in box office gross revenue in

contrast with the preceding rising trend. And the line graph in Figure 1.2 ostensibly is

intended to convey a changing trend in ocean levels from relatively stable between 1900

and 1930 to rising thereafter. We contend that a graphic’s intended message constitutes

a brief summary of the graphic’s high-level content and captures how the graphic should

be “understood”.

1
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Our goal is the development of a system that can recognize the intended message

of a line graph. The message recognition system could play an integral role in three very

different projects:

1. Many assistive technology projects designed for blind individuals are able to read

the text on the screen to users. But they have difficulty conveying the graphics in

multimodal documents. Although some images like a photograph of the subject

might be safely ignored, information graphics cannot be ignored since they often

support or complement the content of the text in the document. If the intended

message of a graphic can be identified, then it can be used as the core of a summary

of the graphic that is constructed and read to the user by an assistive technology

system. Chapter 9 discusses how we have incorporated our system for recognizing

the intended message of a line graph into SIGHT[31, 32], a system for providing
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blind individuals with access to information graphics.

2. Currently most document summarizers consider only the text of an article when

producing a summary even for a multimodal document. To incorporate the high-

level content of the information graphics in the summary and generate a rich sum-

mary of the multimodal document, a message recognition system could first iden-

tify the intended message of the graphic, and an English rendition of this message

(or a longer summary of the graphic based on this message) could be inserted into

the article at the most appropriate place. Then extractive summarization techniques

could be used to treat the flattened document as a whole and generate a summary

from it.

3. Traditional information retrieval systems have focused on text retrieval and, to a

lesser extent, image retrieval. But they are ineffective at retrieving information

graphics. For example, when we search “graph CBS revenue against other televi-

sion networks” in Google image search, none of the 20 results on the first page is

relevant. Most of the top results are tables instead of information graphics. Al-

though some results are indeed bar charts, they are either not about CBS or not

about revenue. This is because the image search for this type of query relies heav-

ily on the keywords matching words in the article instead of trying to recognize

what is conveyed in the image.

We thus hypothesize that a graphic’s intended message should play a major role in

deciding whether to retrieve the graphic in response to a user query. The message

recognition system can identify the high level content of the information graphic

first and then the query can be compared with the intended message to decide

whether to retrieve it. For example, a query such as “When did Nokia sales start

to fall?” requires the system to recognize that the query is seeking graphs with a

Change-Trend message, identify such graphics for Nokia sales, and then provide the
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results matching the query. Thus we believe that a successful retrieval system will

need to index information graphics by not only the words in its caption/description

but also by its intended message.

This dissertation presents a new methodology for inferring the intended message

of a line graph in a multimodal document. In previous research[11, 30], Elzer developed

a system for identifying the intended message of a simple bar chart. However, line graphs

differ from bar charts in several ways that significantly impact the required processing.

First, line graphs are the preferred medium for conveying trends in quantitative data over

an ordinal independent axis[57]. Second, as our corpus studies demonstrate, the kinds of

messages conveyed by line graphs differ from those conveyed by simple bar charts. For

example, the line graph in Figure 1.3 ostensibly is intended to convey a sudden big drop in

Afghanistan’s opium crop that is not sustained; in our research, we have not encountered

a bar chart that conveys a message of this type. Third, although line graphs and bar charts

share some of the same kinds of communicative signals, line graphs use other commu-

nicative signals that are not found in bar charts, such as the length of the ending segment.

Fourth, recognition of the message conveyed by a line graph must capture the viewer’s

tendency to perceive it as a sequence of visually distinguishable trends rather than as a

set of discrete data points. Thus we need a method for identifying these trend segments.

Moreover, these latter two factors necessitate a different structure and different processing

for the message recognition system than was used for bar charts where recognition relied

heavily on perceptual task effort.

This dissertation also provides a method for identifying the paragraph in a multi-

modal document that is most relevant to its constituent information graphic. We hypothe-

size that this is important for assistive technology that conveys graphics to blind users, for

summarization of multimodal documents, and for the retrieval of information graphics:

1. In providing blind users with full access to multimodal documents, we hypothesize
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Figure 1.3: A line graph from Newsweek which conveys a sudden big drop in
Afghanistan’s opium crop that is not sustained

that the brief summary of an information graphic should be read at the most coher-

ent place in the document’s text – that is at the paragraph that is most relevant to

the graphic. Otherwise, the purpose of assisting blind users to achieve better un-

derstanding of the multimodal document may be compromised. Our analysis has

shown that line graphs generally don’t occur adjacent to the most relevant para-

graph, so that reading the content of the information graphics at the point where the

graphic is located won’t necessarily result in a coherent presentation.

2. Extractive summarization techniques produce a summary by extracting multiple

sentences from an article and organizing them together as the summary of the ar-

ticle. Some heuristics are used to decide which sentences to extract, such as mea-

suring whether a sentence is the first sentence of a paragraph and whether two

sentences are coming from the same paragraph, etc. These heuristics assume that

the article is coherently organized. Thus to generate a coherent summary of a mul-

timodal document using extractive techniques requires that a coherent document

be passed as input to the summarization system; this requires that we first insert

5



the brief summary of the information graphic into the paragraph where it is most

relevant.

3. To develop a system for retrieving information graphics from a digital library, we

hypothesize that it will be necessary to take into account both the information in-

side a line graph and the information inside the article containing the line graph.

However, the article containing a graphic may cover multiple topics and not all of

them will be relevant to the graphic. Therefore if the retrieval system considers

only paragraphs relevant to a graphic in deciding whether to retrieve the graphic, it

will avoid extraneous text and presumably produce better results.

This dissertation is organized as follows. Chapter 2 presents related work on graph

design, comprehension, generation and summarization. Chapter 3 through Chapter 7

present the details of the intended message recognition system for line graphs. Chap-

ter 8 discusses our method for identifying the paragraph in a multimodal document that is

most relevant to a line graph. Chapter 9 discusses our contributions to SIGHT, an assis-

tive technology project which incorporates our research and provides a blind user with a

brief summary of a line graph at the most relevant paragraph in a multimodal document.

Chapter 10 presents ideas for future work. This dissertation ends with Chapter 11 which

summarizes our research and its contributions.
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Chapter 2

RELATED WORK

Various communities have pursued research on the analysis, design, and under-

standing of graphs. There are resources discussing how to generate a graph and how

different elements in a graphic can help the graph designers achieve their communica-

tive goals. Researchers from cognitive science have analyzed how people comprehend a

graph such as a bar chart or a line graph and what is the procedure that readers go through

while viewing a graphic. Some research efforts have focused on generating graphs that

achieve a communicative goal. Other groups of researchers have attempted to develop

machines that understand or at least extract information from an information graphic. Re-

searchers from the natural language processing area have also tried to develop software

for summarizing a graph in natural language.

This chapter is organized as follows. Section 2.1 covers related work on designing

a graph. Section 2.2 discusses related work from cognitive and psychological research on

comprehension of a graph. Section 2.3 presents work on information graphics generation.

Section 2.4 discusses existing work on understanding an information graphic and recog-

nizing its intended message, and also discusses existing work on summarizing graphs in

natural language.

2.1 Graph design

To analyze how people or even a computer can comprehend and understand an

information graphic, it is useful to first view the graph from a designer’s perspective. As
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discussed in the book “Elements of Graph Design”[49], many graphs are designed without

consideration for principles of human visual perception and cognition, and thus limit the

effective communication between designers and readers. A graphic designer should not

throw arbitrary information into a graphic, but instead should follow some rules to make it

easy for the readers to comprehend the pattern, trend or comparison. These design criteria

suggest important aspects of a graph understanding system.

1. “human minds are not cameras”[49]. Humans tend to interpret visual elements

by grouping them by proximity or similarity. According to this principle, a graph

designer should put similar elements together to reduce the reader’s cost of com-

prehension. In our research, we reduce a large number of data points sampled in a

line graph to a small group of visually distinguishable trends.

2. The human visual system and memory system tend to make a direct connection

between the properties of a pattern and the properties of the entities symbolized by

that pattern. For example, humans connect a picture of an elephant with the word

“elephant”. According to this principle, a designer might use “fall” or “drop” in

a graphic’s caption as a symbol to emphasize a falling trend conveyed in a graph.

We take this into account by incorporating such clue words into our recognition

system. Kosslyn[49] also explicitly discusses the caption which he states is a com-

ment on the display, a short description that explains key terms, or text that directs

the reader’s attention to specific features of the display. Thus it follows that the

graphic designer may use the caption to facilitate the understanding of a line graph,

so that a caption might not only indicate the subject of a line graph but also contain

clues for the reader to better comprehend the graph.1 In our research, the caption

contributes two features that are used to understand the graph: the verb/adjective

category in the text of the caption and the entity salience brought about by words

1Unfortunately, many captions in popular media are very short and unhelpful.
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in the caption – that is, a noun in the caption which refers to a point in the graphic,

thereby making that point salient.

3. Humans can keep only a certain amount of information in mind at any one time.

A graph should not require the reader to hold more than four perceptual groups in

mind at once. According to this principle, we hypothesize that graph designers are

unlikely to have communicative goals that would force the human viewer to mem-

orize more than four distinct segments; thus none of our 10 categories of possible

messages, such as Change-Trend, contains more than four segments.

In providing guidance for designing line graphs, several common practices are

also recommended, such as labelling critical points explicitly with their values when

a few specific point values are to be emphasized and avoiding the labelling of specific

points unless they are particularly important. This recommendation supports our hypoth-

esis that such annotations are intended by the graph designer to facilitate recognition of

the graph’s intended message and thus are communicative signals that should be utilized

in our graph understanding system. In the examples in the following chapter, we will

show how the location and number of annotations change how the system recognizes the

intended message of a line graph.

These discussions about the design of information graphics give us insights into

how graph designers use different communicative signals in presenting the data and achiev-

ing their communicative intention. These are exploited in our graph understanding sys-

tem.

2.2 Graph comprehension

The graph design research discussed in the preceding section presents principles

and recommendations on graphics from a designing perspective. Many other research

efforts[81, 71, 45, 82] have investigated graphs from a comprehension perspective.
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Both Shah[82] and Pinker[71]’s work investigated the procedure for comprehend-

ing a graph. First, a viewer must capture the visual descriptions, which are the visual

features inside the graphic (such as a curved line). Second, a viewer must relate the vi-

sual features to the conceptual relations that are represented by those features. In Pinker’s

work, this process is described as a graph schema. A graph schema organizes the visual

descriptions and maps the visual descriptions to an interpretation. In our research, we

assume that some types of visual descriptions(visual features) for line graphs are identi-

fied and recorded in an XML schema. The XML representation contains all the necessary

primitive visual descriptions such as caption, label, data point coordinates, etc. The state-

ment in Shah et al.’s work[12, 82, 102] that viewers are more likely to describe x-y trends

when viewing line graphs than when viewing bar graphs also supports our method of

segmenting a line graph into a series of visually distinguishable trends.

Besides graph comprehension, Pinker’s work also discussed four procedures re-

quired for readers to make predictions. They are: a MATCH process that recognizes

individual graphs as belonging to a particular type, a message assembly process that cre-

ates a conceptual message out of the instantiated graph schema, an interrogation process

that retrieves or encodes new information on the basis of conceptual questions, and a set

of inferential processes that apply mathematical and logical inference rules to the entries

of the conceptual message. Although in our current research we don’t do prediction on

line graphs, it would be possible to extend our work to Pinker’s procedure. Such predic-

tions might be useful for blind users and for question answering systems. This potential

extension will be discussed in Chapter 10 as future work.

Schnotz’s book[81] is a collection on many topics about graph design and graph

comprehension. It includes research work on graphical codes, graphics processing and

graphics representations. The chapter by Maichle[64] talked about the cognitive pro-

cesses in understanding line graphs. He discussed individual differences when different

readers try to comprehend the same line graph , as a result of readers having different
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graph schemas in mind. A reader with sophisticated domain knowledge has a better line

graph schema than other readers who use only a general line graph schema. Regarding

line graphs used in popular media such as newspapers and popular magazines, we hypoth-

esize that the graphic designer doesn’t require readers to use specific graph schemas to

comprehend them. This hypothesis supports our approach of training a Bayesian network

with a set of line graphs to learn a model and testing it on another set of line graphs, which

can be regarded as learning a general graph schema from a set of common line graphs.

Otherwise, we would need to design individual graph schemas for each different domain

and only process a line graph within its already-known domain.

2.3 Graph and caption generation

Mittal et al.[67, 66] presented three strategies for generating explanatory captions

to accompany information graphics and implemented them in a caption generation sys-

tem. In their system, the graphical displays are designed by an automatic presentation

component SAGE and are often complex because they typically display many data at-

tributes at once. In their research, the information graphics are mostly composite graphs,

which is a combination of multiple attributes together in the same display. It is denoted

as “one space” if the graphic shows one relationship and denoted as “multiple spaces” if

the graphic shows multiple dependent attributes. For example, the two spaces graph may

have the same independent variable as the y axis and two dependent variables displayed

side by side. Mittal’s caption generation system was illustrated by generating explanatory

captions for a range of graphics from a data set about real estate transactions in Pittsburgh.

It employed three main strategies. The first strategy applied when the graphic had only

one space and the independent attribute was along one of the axes, or when there were

multiple spaces and the independent attribute was mapped to the axis of alignment. In this

case, the explanation should reinforce the organizing role of the functionally independent

attribute. The second strategy applied when there was only one space in the graphic; in

that case, the explanation emphasized the relation between the attributes encoded against
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the axes. The third strategy applied if the graphic had multiple spaces and the axis of

alignment encoded a dependent attribute. In this case, the explanation described each

space independently, using the appropriate strategy for each space.

Mittal et al.[67, 66] have adapted and integrated work in natural language gen-

eration in different subareas: text planning, aggregation, centering, computing refer-

ring expressions, example generation, and linearization. In addition to these NLG tech-

niques, their generation of the textual captions for information graphics required knowl-

edge sources such as a representation of the syntax of graphical displays which is the

structural, spacial and other relations among graphical objects and their properties; a

representation of the semantics of graphical displays; and a mechanism for determining

which aspects of graphical displays must be explained based on their perceptual complex-

ity.

Our work focuses on recognizing the intended message of line graphs which can

be used as the core of a natural language summary. Although Mittal et al.’s work has a

Complexity Metric Module which measures multiple complexities, it doesn’t capture the

intended message of the information graphics. It is partially a result of the information

graphics they processed being generated from SAGE which uses a variety of graphical

techniques to integrate multiple data attributes in a single display. But the emphasis of

Mittal’s work was the generation of captions that explained the attributes depicted in the

graph and their notes.

The AutoBrief project[38] designed a system which can generate a multimodal

document consisting of text and information graphics. AutoBrief includes a Presentation

Generator, which plans presentations that consist of communicative goals and designs

text and information graphics to achieve these communicative goals. In our research, we

are not generating information graphics; instead we try to capture the communicative goal

conveyed by the graph designer by analysing the graph’s communicative signals, which

is the inverse of the graph generation process.
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2.4 Graph understanding and summarization

In addition to investigating the design and comprehension of line graphs from a

cognitive or psychological perspective, researchers in artificial intelligence and natural

language processing have pursued research aimed at giving machines the ability to under-

stand and summarize a graph.

Ehud Reiter’s team has undertaken multiple projects on generating summaries

from non-linguistic input data[77, 83]. This is relevant to our work since they con-

sider patterns in the data and understanding line graphs also requires identifying patterns.

Their project on constructing textual summaries of time-series data sets for gas turbine

engines[99, 100] detects big spikes in gas turbine sensor readings and generates textual

summaries of the spikes. Their project for weather forecasts[78] matches weather features

such as wind strength, direction, and visibility with different textual patterns and gener-

ates a textual summary. Their BabyTalk project[73] applied their method to neonatal

intensive care data to generate a textual summary of 45 minutes of continuous physio-

logical signals and discrete events. The essential ideas behind their multiple projects is

to capture the most salient patterns inside the data of a specific domain, design the tex-

tual summarization framework based on domain knowledge, and combine the captured

pattern within a summarization framework to generate the final textual summaries. Our

project and Ehud Reiter et al.’s project differ in three respects:

1. They work with machine-generated data, not a human-generated graph, and thus

don’t have an intended message. They only consider the salient data patterns such

as a spike or a valley and do not consider the data series as a whole. Our project

recognizes the intended message conveyed by a graph, based on the kind of graph

selected, the data patterns, and the communicative signals in the graph.

2. Their project only deals with either time series data such as gas turbine sensor read-

ings and neonatal intensive care data signals, or categorical data such as weather

features. They rely on only the numeric data but our project has to consider various

13



communicative signals and combine all of the communicative signals together to

hypothesize the graphic’s message.

3. Their research relies on domain knowledge, so for different domains, different pro-

cessing and methods are required. Our research must consider data from any do-

main where the graph designer has a message that he/she intends to convey, and

thus we cannot rely on domain knowledge.

Ferres et al.[33, 50, 34, 35] constructed a system named iGraph which can provide

short verbal descriptions of the information depicted in graphs; the system includes a way

of interacting with it to request specific information. Their project shares many similari-

ties with our project. First, their system also detects trends, but the trends are only limited

to overall upward trend or downward trend, which is achieved by simply comparing the

two end-points of the time series data and doesn’t attempt to detect intermediate trends

as we do. Second, their project can generate a textual description of a line graph but the

description basically describes the characteristics of the line graph such as the label on the

x axis, the maximum/minimum value on the y axis, and the pointwise trend between each

pair of adjacent points. So although their project is also trying to build a textual summary

of a line graph, it works at a low level and focuses on the raw data that’s depicted in the

graph. On the contrary, our project recognizes the intended message of a line graph and

thus captures the high-level content of the graphic.

Elzer et al.[11, 30, 14] was the first to investigate recognition of the intended mes-

sage of a graphic. Her work was limited to bar charts. She put the possible messages into

categories and used a Bayesian network as the main framework. She also uses evidence

nodes to represent the communicative signals for or against an intended message. Line

graphs differ significantly from bar charts, as do the processes required for understanding

them.

1. A line graph consists of a very large number of sampled data points. Even if these

are combined to form a sequence of short jagged line segments, the set of line
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segments will still be very large and at too low a level to represent the kind of visual

features posited by Shah[82] and Pinker[71] for graph comprehension. Thus a line

graph must first be split into a sequence of visually distinguishable trends, thereby

converting the line graph into a set of discrete entities perceived by humans.

2. The intended message categories for line graphs differ from these for bar charts.

Bar charts can have a “Rank” message which conveys the rank of a particular ob-

ject in the whole set of objects but line graphs don’t have this kind of intended

message. On the other hand, line graphs have intended messages such as Contrast-

Trend-Last-Segment which contrasts a potential new trend at the end of a line graph

with the long trend preceding it, and Big-Jump which conveys an outstanding sharp

rising spike in the data. These intended message categories are not conveyed by bar

charts. We will discuss the intended message categories for line graphs in Section 3.

3. The communicative signals used in line graphs also differ from those in bar charts.

Bar charts use the relative effort of perceptual tasks that the viewer might perform

on the graphic as communicative signals[29], whereas line graphs use the features

extracted from the visually distinguishable trends as communicative signals. We

will discuss the communicative signals for line graphs in Section 4.

However, Elzer’s work[11, 30, 14] has heavily influenced our work on line graphs. We

also use a Bayesian network as our inference mechanism and we adopt her overall ap-

proach of extracting communicative signals from a graphic and using them as evidence

about the graphic’s intended message.

2.5 Summary

Researchers have investigated the design of information graphics and the process

of human comprehension. Other researchers have explored the automatic generation of

information graphics that achieve a specified communicative goal. Elzer was the first to
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devise a system for understanding a bar chart by recognizing the message it was intended

to convey. Although line graphs differ significantly from bar charts, our work on recog-

nizing the intended message of a line graph draws on the methodology espoused by Elzer

and exploits principles of graph comprehension identified by cognitive psychologists.
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Chapter 3

KINDS OF MESSAGES CONVEYED BY LINE GRAPHS

We collected a set of simple line graphs from various popular media, including

magazines such as Newsweek, Time, and Businessweek as well as local and national news-

papers. We limited our collection to simple line graphs consisting of a single set of con-

nected line segments. In addition, we have excluded line graphs that have y-axis tick

marks on a non-linear scale (such as a set of uniformly spaced tick-marks labelled as 10,

102, 103, etc.) because the interpretation of these line graphs may require domain knowl-

edge such as a logarithm transformation as often required in scientific articles. We were

interested in line graphs that ostensibly have a high-level message as opposed to graphics

that just present data. Thus we did not include graphics such as ones depicting the hourly

change in the Dow Jones Industrial Average which appear daily in the business section of

daily newspapers or some of the Businessweek graphs which have a standard presentation

and only display price data on a stock without any attempt to convey a message.

From this set of line graphs, we identified a set of 10 high-level message categories

that we believe capture the kinds of messages that are conveyed by a simple line graph.

The next section presents these message categories along with illustrative examples.

3.1 Message categories

We analyzed the initial set of 350 line graphs to identify a set of message categories

for line graphs. Each message category has a set of parameters that must be instantiated to

represent an actual message in that category. Table 3.1 presents these message categories
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Intention Category Description
RT: Rising Trend There is a rising trend from <param1 > to

<param2 >
FT: Falling Trend There is a falling trend from <param1 > to

<param2 >
ST: Stable Trend There is a stable trend from <param1 > to

<param2 >
CT: Change Trend There is a <slope2 > trend from <param2 > to

<param3 > that is significantly different from the
<slope1 > trend from <param1 > to <param2 >

CTLS: Change Trend
Last Segment

There is a <slope2 > segment from <param2 > to
<param3 > that is not long enough to be viewed as a
trend but which is different from the <slope1 > trend
from <param1 > to <param2 >

CTR: Change Trend Re-
turn

There is a <slope3 > trend from <param3 > to
<param4 > that is different from the <slope2 >
trend between <param2 > and <param3 > and re-
flects a return to the kind of <slope1 > trend from
<param1 > to <param2 >

CSCT: Contrast Seg-
ment Change Trend

There is a <slope3 > segment from <param3 > to
<param4 > that is not long enough to be viewed as a
trend but which suggests a possible return to the kind
of <slope1 > trend from <param1 > to <param2 >
which was different from the <slope2 > trend from
<param2 > to <param3 >

BJ: Big Jump There was a very significant sudden jump in value be-
tween <param1 > and <param2 > which may or may
not be sustained

BF: Big Fall There was a very significant sudden fall in value be-
tween <param1 > and <param2 > which may or may
not be sustained

PC: Point Correlation There is a correlation between the annotated points
< p1 >, ..., < pn > and the events referenced by the
annotations < a1 >, ..., < an >

Table 3.1: Categories of High Level Messages for Line Graphs
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Figure 3.1: Examples with Rising-Trend and Falling-Trend intended messages

along with English glosses describing what is conveyed by an instantiated message in that

category.

The first three (Rising-Trend, Falling-Trend and Stable-Trend) capture line graphs

that are intended to convey a single overall trend. They differ only in whether the trend

represents an increase, decrease, or lack of change over the ordinal independent axis.

These three categories of messages each take two parameters: the starting point of the

trend and the ending point of the trend. Figure 3.1 shows line graphs conveying Rising-

Trend and Falling-Trend intended messages.

Some line graphs are intended to convey a contrast between two trends, which

change directions at some point. It might be a continuous recovery from a bad situation(a

falling segment followed by a rising segment) or a long term under-perform after a long

success before it(a rising segment followed by a falling segment). We refer to this message

category as Change-Trend. Figure 3.2a shows a line graph with a Change-Trend message,

namely that global manufacturing capacity utilization dropped from 2000 to 2002 and
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Figure 3.2: Line graphs with Change-Trend intended message on the left and with
Change-Trend-Last-Segment intended message on the right

then rose from 2002 to 2006.

Sometimes the change from a trend might consist of a short segment at the end

of the graph. Our analysis of line graphs suggests that this short segment is intended to

convey the possibility of a changing trend but one that can only be confirmed by more

data. For example, after a long term employment rate decrease, the employment rate

might have increased for two months, but it is unclear whether this represents a new

trend or is just a short aberration. Such situations often occur when the end of the graph

captures data at the time that the graph was published. For example, a company with long

term success might have a surprising decrease in revenue when the article is published,

and the graph designer is warning investors that the depression may continue. Thus we

have chosen to capture this in a separate message category which we call Change-Trend-

Last-Segment. Figure 3.2b shows a line graph with a Change-Trend-Last-Segment, which

shows that movie theater gross revenue rose from 1994 to 2004 and drops to 2005. Both

Change-Trend and Change-Trend-Last-Segment take three parameters: the starting point,
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Figure 3.3: Line graphs with Change-Trend-Return intended message on the left and with
Contrast-Segment-Change-Trend intended message on the right

the changing point and the ending point.

Some line graphs convey a message involving three trends. We refer to this mes-

sage category as Change-Trend-Return. For example, Figure 3.3a shows that the cancel-

lations by major U.S. airlines rose from 1998 to 2001 and then dropped to 2002, but rose

again until 2005. However, as was the case with the message category Change-Trend-

Last-Segment, the initial and contrasting trends may be followed by a short segment that

only suggests the possibility of a return to the initial trend. Thus we included another

message category which we refer to as Contrast-Segment-Change-Trend. Figure 3.3b

presents a graph whose message is ostensibly that oil prices may be rising again follow-

ing a stumble, which interrupted a previous rising trend. Both Change-Trend-Return and

Contrast-Segment-Change-Trend take four parameters: the starting point, the first chang-

ing point, the second changing point and the ending point.

Although the differentiation of Change-Trend-Last-Segment from Change-Trend

and Contrast-Segment-Change-Trend from Change-Trend-Return makes the recognition
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Figure 3.4: Line graphs with Big-Jump intended message on the left and with Big-Fall
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of intended message more complex, we believe it better captures the message conveyed

by the graphic designer because it distinguishes new trends depicted in a graph from

potential trends. Since one application of our message recognition system is to convey

the high-level content of information graphics to blind individuals, this differentiation

enables us to construct different summaries and avoid misleading the users.

Occasionally the graphic designer wants to emphasize a sudden big change that

has occurred. This leads to a Big-Jump and a Big-Fall message category. In such graphs,

the graphic designer uses the portion of the graph before a sharp rise or sharp drop to

capture the situation prior to the sudden change and the portion of the graph afterwards

to convey whether the sudden change was sustained. Thus as discussed in Chapter 7,

we differentiate Big-Jump and Big-Fall messages as to whether they are sustained or

not sustained. Big-Jump and Big-Fall share similarity with research[99, 83, 78, 77, 73,

100] on detecting interesting patterns in time series data such as gas turbine and neonatal
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]

Figure 3.5: A line graph with Point-Correlation intended message

intensive care data. However, the Big-Jump and Big-Fall capture instances where the

graphic designer intends to convey a sudden change as opposed to merely using rules to

detect spikes in machine-generated data. Figure 3.4 shows examples with Big-Rise and

Big-Fall intended messages. Figure 3.4a shows a sudden rise in job cuts between 2000

and 2001; however, this big jump was not sustained. Figure 3.4b conveys a sudden big

fall in U.S. airline industry quarterly operating profits between 2000 and 2001.

We have also noticed that some line graphs are intended to correlate events with

changes occurring in the data. We refer to this category of messages as Point-Correlation.

Although the causality relationship may be unclear, the line graph conveys the message

that there is some connection between the events and the changes occurring in the graph.

Figure 3.5 illustrates a line graph with a Point-Correlation intended message. It shows the

correlation between U.S. military expenditure and the several wars deployed by the U.S.

army.
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Summary

This chapter has presented the categories of messages that are typically conveyed

by line graphs. Each of the message categories is defined as a parameterized schema as

shown in Table 3.1. Instantiating the parameters with actual values from a graphic pro-

duces a possible message that might be what the graphic designer intended to convey.

Chapter 4 discusses communicative signals that the graphic designer expects the viewer

will use to recognize the graphic’s intended message. Chapter 5 then presents the archi-

tecture for constructing candidate messages and for exploiting the communicative signals

as evidence in choosing among the proposed candidates.

24



Chapter 4

COMMUNICATIVE SIGNALS IN LINE GRAPHS

Just as listeners use evidence to identify the intended meaning of a speaker’s ut-

terance, so also must a viewer use evidence to recognize a graphic’s intended message.

In the case of an utterance, the evidence includes explicit communicative signals such as

cue words and intonation as well as the context established by the preceding dialogue and

the assumed mutual beliefs of speaker and hearer. Similarly, evidence about the intended

message of a line graph includes communicative signals such as annotations of certain

points in the graphic as well as features of the line segments themselves. The rest of

this chapter discusses the kinds of communicative signals found in simple line graphs;

Chapter 7 then discusses how this evidence is extracted from the augmented XML repre-

sentation of a line graph, and where the communicative signal is captured in a Bayesian

network that hypothesizes a graphic’s intended message.

4.1 Explicit signals by the graphic designer

We hypothesize that if the graphic designer goes to the effort of entering attention-

getting devices into a graphic to make one or more of the entities in the graphic particu-

larly salient, then the designer probably intends for these entities to be part of the graphic’s

intended message. There are several ways in which a graphic designer explicitly makes

an entity in a line graph salient, as discussed in the following subsections.
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4.1.1 Annotations

Elzer[29] found that a bar in a bar chart could be made salient by coloring it

differently from the other bars or by annotating it with its value. Similarly the graphic

designer may annotate a point on a line graph with a value or a piece of text. This

draws attention to that point in the line graph and serves as evidence that the point

plays a role in the graphic’s intended message. However, in contrast with bar charts,

several points may be annotated and become jointly salient. Consider the graphic in

Figure 4.1. The high point in the graphic is annotated with its value, as are the two

end points. This suggests that these points are particularly important to the graphic’s in-

tended message — in terms of our representation, the points might serve as parameters

of the graphic’s intended message. This provides strong evidence for a Change-Trend-

Return(98, rise, 01,fall, 02,rise, 05) message since three of the four annotated points are

parameters of the message.
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Similarly, consider Figure 4.2. The low point in the graphic is annotated with text,

suggesting that it is important to the graphic’s message. This annotation might provide

evidence for a Big-Fall(00,01) or for a Falling-Trend(00,01) (where the annotation is on

the end of the fall), for a Rising-Trend(01,02) (where the annotation is on the start of the

rise), for a Change-Trend-Return (where the annotation is on the point where the return

begins), or perhaps for a Change-Trend (where the annotation is on the point at which the

trend changes). Alternatively, since the annotation is text, it could provide evidence for a

Point-Correlation message.

4.1.2 Nouns in the caption/description 1

Elzer[28] found that a bar in a bar chart becomes salient when a noun in a caption

matches the label of the bar. Similarly a point in a line graph can become salient by virtue

of its being referenced by a noun in the caption. However, in contrast with bar charts, this

can occur in one of two ways: by the caption referring to the point’s x-axis value or to

the point’s y-axis value, although the latter occurs less often. For example, if the caption

on the graphic in Figure 4.2 were “Poppies Missing in 01”, the reference to the year “01”

would lend salience to the low point in the graphic even if it were not annotated. And in

Figure 4.3, the number one-seventh in the caption makes the last point of the line graph

salient because the y-value of the last point is approximately 1/7 as referred to by the

caption.

4.1.3 Other signals in the caption/description

As shown by Corio and LaPalme[18] and by our own corpus study, captions are

often very general and do not capture a graphic’s intended message. For example, the

caption on the graphic in Figure 4.2 fails to capture its message that there was a sudden

1The description is a piece of text following the caption of an information graphic to complement

its content. For example, the sentence “Afghanistan accounts for 76 percent of the world’s illicit opium

production” is the description in Figure 4.2.
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big fall (that was not sustained) in Afghanistan opium production. Moreover, even when a

caption conveys some of the graphic’s message, it is often ill-formed or requires extensive

world knowledge to understand. However, as in Elzer’s work[28] on simple bar charts,

captions often contain simple signals that help identify the graphic’s message. Elzer[28]

found that verbs and adjectives in a caption suggest the general category of message.

We have found the same to be true for line graphs. For example, the word “decline” in

the caption of Figure 4.4 suggests a Falling-Trend message or perhaps a Change-Trend

message where the trends change from rising to falling. In another example shown in

Figure 4.5, the word “bumpy” suggests that there is a change in the line graph.

4.2 Salient features inherent in a line graph

Certain parts of a graphic become salient without any effort on the part of the

graphic designer. For example, a viewer’s attention will be drawn to a sudden large rise

or fall in a line graph — one that not only has a large absolute slope but also represents

a large change in value relative to the range of values depicted in the graph, such as in

Figure 4.6. Similarly, a viewer will be interested in the segment at the end of a line graph

both because it captures the end of the quantitative changes being depicted and because
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the end of the line graph may display the most recent data that has an affect on real life at

the moment that the line graph is published. Although no specific effort is required by the

graph designer, we posit that it is mutually believed by both graph designer and viewer

that such pieces of the graphic will be salient.

4.3 Evidence from other features of the graphic

Several features of the sequence of points in a graph covered by a suggested mes-

sage also provide evidence for or against that proposed message being the intended mes-

sage of the graphic. The graphic designer presumably had a reason for including all of the

points in a line graph. Thus the fraction of a line graph covered by the portion of a graph

comprising a suggested message serves as evidence about whether that was the graphic

designer’s intended message — presumably, messages that cover much of the line graph

are more likely to be the designer’s intended message. (However, the intended message

need not cover the entire graphic. For example, it appears that when conveying a Rising-

Trend, the graphic designer sometimes includes a small number of points prior to the start

of the trend in order to keep the viewer from inferring that the rise might have started

at earlier points not depicted in the graphic.) As discussed earlier, viewers are naturally

interested in the end of the line graph, particularly if it reflects recent events. However,
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a segment at the end may be short and only suggest the possibility of a new trend, rather

than capturing an actual trend in the data, such as in Figure 4.7. Thus the relative width

of the last segment serves as evidence for or against messages such as Change-Trend and

Contrast-Trend-Last-Segment.

4.4 Summary

This chapter has identified the kind of communicative signals that appear in line

graphs. Chapter 7 will discuss how to extract them from a line graph. An overview of

our architecture for utilizing these communicative signals to hypothesize the intended

message of a line graph is presented in Chapter 5.
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Chapter 5

SYSTEM ARCHITECTURE

To recognize the intended message of a line graph, we have to know what kinds of

intended messages could be conveyed by the line graph designer. Chapter 3 discussed the

kind of messages conveyed by line graphs and represented them as message categories

with parameters. Since a graphic designer for popular media is not only showing data to

the reader as in scientific articles but is also trying to convey a message, he/she will use

multiple clues(i.e. communicative signals) to help the reader achieve his/her communica-

tive goal. The kinds of communicative signals present in line graphs was described in

Chapter 4. This chapter discusses the motivation for our overall approach and presents

our system architecture for inferring the intended message of a line graph.

5.1 Motivation for the overall approach

In Chapter 2 on related work, we discussed how the line graph designer uses mul-

tiple visual features in designing a line graph and then the human reader plugs those visual

features into a graph schema to comprehend the line graph. Although we are not trying to

simulate human graph comprehension, we can relate our work to Pinker’s[71] concepts of

visual descriptions and graph schema, and view our work as constructing a graph schema

which utilizes the communicative signals (which can be regarded as visual descriptions)

to identify the graph’s intended message.

In our research, we assume that line graphs from popular media shouldn’t require

a specific graph schema since the audience consists of normal people without extensive
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domain knowledge. So our goal is to construct a general graph schema without using

domain knowledge such as stock market knowledge or geographical knowledge. The

graph schema discussed in [71] is an automata with vertex representing the visual features

and the directional edges representing the relationship between visual features. We have

also chosen a graphical model[48, 70] in which the communicative signals are connected

to possible candidate messages but we want to add probabilistic inference to the graphical

model; thus we have selected a Bayesian network[48, 70, 22, 3] as our representation and

inference model.

To let the inference model determine the final intended message of a line graph,

we need to provide it with a set of intended message candidates, each associated with

the evidence provided by their corresponding communicative signals, to do probabilistic

reasoning. These different kinds of communicative signals provide viewers with clues to

infer the intended message of a line graph. The Bayesian network inference model uses

the a priori distribution and likelihood of evidence to update the posterior probability of

the intended message for the line graph. After the belief update, the Bayesian network

chooses among multiple candidate messages, where a candidate message is an intended

message category with instantiated parameters which can potentially be the true intended

message of a line graph. The intended message might be ambiguous and the probabilistic

inference within the Bayesian network arbitrates among the possible candidate messages

by giving us a probabilistic confidence of each intended message instead of casting a

hard classification of the line graph to a single category. The Bayesian network learns

the model (the a priori distribution and the conditional probability tables) from real data

instead of being manipulated by researchers based on domain knowledge so that the graph

schema does not reflect human-generated rules and the bias is minimized. Learning from

training data from different domains also provides a general graph schema which doesn’t

rely on domain knowledge.

The Bayesian network must be provided with a set of candidate messages from
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which to choose, thus a mechanism for suggesting candidate messages is required. For

line graphs, the suggestion of intended message candidates differs from other kinds of

information graphics. A line graph is continuous but we need to work with discrete enti-

ties. Even if we sample the line graph to get a set of discrete data points, it is impossible

to consider every possible data point as an instantiation of a parameter in the message

categories. For example, if there are n sampled data points for a line graph, the simplest

Rising-Trend intended message (with two parameters) will have n(n− 1)/2 possible pa-

rameter pairs, so there will be n(n− 1)/2 candidate messages for Rising-Trend category

only. According to the grouping principle discussed in [49] on the limitation of the human

brain, the series of data points tend to be grouped into a smaller set of segments by the

human reader. Although our research is not attempting to simulate the way humans com-

prehend line graphs, the human perception and comprehension process indeed suggests

the following:

1. The curved line should be segmented into a few visually distinguishable trends.

This is supported by the grouping principle discussed in [49].

2. An annotation in the graphic should not only be matched with a single data point

but also to the beginning or ending of a trend segment if the end-points of a trend

segment are close to the annotation. Associating the annotations with trends is

supported by the psychological fact that people do not like to expend effort; asso-

ciating annotations with single data points requires the reader to spend more effort

on judging the influence of the annotation on other adjacent data points.[49]

Thus if a line graph is segmented into a small set of visually distinguishable trends,

candidate messages (suggestions) can be proposed based on the segmented visually dis-

tinguishable trends. Each intended message candidate has a set of communicative signals

so that the Bayesian network can not only hypothesize the correct intended message from

candidates but also has the communicative signals of each candidate as evidence for or

against the candidate in the inference process.
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5.2 System architecture

Figure 5.1 shows the overall architecture of our system for recognizing the in-

tended message of a line graph. A Visual Extraction Module[14] is responsible for an-

alyzing the graphic and producing a XML representation. The XML representation is a

complete specification of the graphic, including the following:

1. A sampling of the data points, thereby discretizing a continuous line graph into a

set of sampled data points.

2. The annotations on the line graph.

3. The full caption and description: the caption is the title of the line graph, and the

description consists of the sentences that expand on the caption. Figure 5.2a and

Figure 5.2b both have a caption and a description. The captions are “Coming soon:

Summer movies” and “Poppy paradise”, and the descriptions are “A massive cam-

paign is underway to attract moviegoers to theaters this summer.” and “Afghanistan

accounts for 76 percent of the world’s illicit opium production” respectively.

4. Text-in-graphic, which is a piece of text appearing in the graphic area. The words

“Afghanistan’s opium crop” inside Figure 5.2b is a text-in-graphic element.

5. Axis labels, tick-marks on both axes, etc.

After the Visual Extraction Module generates the XML containing the line graph

elements and the raw sample points, the Caption Tagging Module[28] is responsible for

extracting communicative signals from the caption/description and producing an aug-

mented XML representation that includes this information. It is described further in

Chapter 7.

The Message Recognition Module takes as input the augmented XML representa-

tion of a graphic and produces as output a logical representation of the graphic’s intended

message. The Message Recognition Module includes several submodules: the Graph
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Segmentation Module which breaks the line graph into a set of visually distinguishable

trends, the Suggestion Generation Module which uses the results from the Graph Seg-

mentation Module to generate a set of candidate messages, and a Bayesian Network In-

ference Module which collects the evidence (present as communicative signals in the

graph) for or against each candidate, and enters the candidates and collected evidence

into a Bayesian network which identifies the candidate message with the largest poste-

rior probability as the recognized intended message. The Graph Segmentation Module

is elaborated in Chapter 6. The Suggestion Generation Module and Bayesian Network

Inference module will be discussed in Chapter 7.

After a logical representation of the intended message is generated, FUF/SURGE

is used to generate a natural language sentence conveying the line graph’s intended mes-

sage. However, the logical representation produced by the Bayesian network does not

include a referent for the dependent axis and this is needed in order to generate a coherent

natural language sentence. Unfortunately, line graphs often fail to explicitly label what is
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being measured on the dependent axis. For example, the dependent axes on the graphs

in Figure 5.3a and Figure 5.3b are not labelled, but the referents “Durango sales” and

“annual difference from Seattle’s 1899 sea level, in inches” respectively are needed to

generate an English realization of the intended message. Thus a module named Measure-

ment Axis Descriptor Module is needed to identify this referent from other information

in the graphic. It is discussed further in Chapter 9.

The Visual Extraction Module was developed by Daniel Chester[14]. The Mea-

surement Axis Descriptor Module was designed by Seniz Demir. My research is encap-

sulated in the Message Recognition Module which is shown in rectangles with solid lines

in Figure 5.1.

5.3 Summary

This chapter has presented an overview of our framework for recognizing the in-

tended messages of line graphs. Using Pinker’s[71] concepts of visual descriptions and

graph schema, our approach is to construct a general graph schema to utilize visually

distinguishable trends and communicative signals which can be regarded as visual de-

scriptions. Our research is not attempting to simulate the way humans comprehend line
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graphs. However, the human perception and comprehension process supports our design

of the Message Recognition Module which contains multiple sub-modules. The details

of each module will be discussed in the following chapters.
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Chapter 6

SEGMENTING A LINE GRAPH INTO VISUALLY

DISTINGUISHABLE TRENDS

In the related work in Chapter 2, we discussed how the line graph designer uses

multiple visual features in a line graph and these are recognized by human readers and

plugged into the general graph schema to comprehend the line graph. According to the

grouping principle discussed in [49] on the limitation of the human brain, the series of

data points tend to be grouped into a smaller set of segments by the human viewer who

has difficulty holding more than four entities in mind at once[49]. There is a also psycho-

logical principle that people do not like to expend effort and often will not bother to do

so, particularly if they are not sure in advance that the effort will be rewarded[49].

Our research is not attempting to simulate the way humans comprehend line graphs.

However, the human perception and comprehension process indeed supports our hypoth-

esis that the series of data points should be segmented into visually distinguishable trends

rather than working with the large set of data points connected by short line segments. As

an example, we see that Figure 6.1 shows two visually distinguishable trends for ocean

levels — a relatively stable trend from 1900 to 1930 and a rising trend from 1930 to 2003

(both with high variance).

This chapter presents our model for segmenting a line graph into a set of visu-

ally apparent trends. The model is constructed by a support vector machine that takes

into account both local and global attributes. The advantage of using machine learning to

produce the graph segmentation model is that a machine learning algorithm can consider
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Figure 6.1: A jagged line graph

a variety of candidate attributes and emphasize those that are important in producing a

segmentation that captures trends which are visually apparent to humans, as opposed to

using an algorithm that comes from the perspective of error minimization. To our knowl-

edge, our work is the first approach to graph segmentation that 1) captures trends that

are visually apparent to humans, 2) uses both global and local information, and 3) uses

machine learning to produce a learned graph segmentation model.

This chapter is organized as follows: Section 6.1 discusses related work which

is primarily on time series segmentation done by researchers from computer science or

mathematics. Section 6.2 describes our approach to building a model of graph segmen-

tation. Section 6.3 presents several examples of segmentations produced by our system,

and Section 6.4 presents our evaluation experiments, including a cross-validation of our

decision module that determines whether to split a segment, a comparative evaluation

with another method, and an evaluation of the quality of our segmentations. We work

with hand-coded XML representations of line graphs which contain a relatively uniform

sampling of points in the line graph, including change points. This is because the Visual

Extraction Module currently can handle only a few of the line graphs in our corpus. Ap-

pendix A presents a Resampling Module that addresses the issue of converting the data
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points provided by the VEM into the set of sampled data points needed for the statistical

tests used in the Graph Segmentation Module.

6.1 Related work

Our line graph segmentation task is related to research on time series segmenta-

tion. One major group of researchers[41, 46, 39, 88, 87, 43] use the top-down, bottom-up

or sliding window approaches to splitting a time series into segments. The top-down

approach inserts splitting points (locations specified for dividing one segment into two

sub-segments) into the segment recursively until the constraint within each segment or

the constraints on the whole set of segments are satisfied. The bottom-up approach starts

with each pair of adjacent data points as a segment and each non-boundary data point as a

splitting point, and keeps merging segments by removing splitting points, until some cri-

terion is reached. The sliding window method does not view the whole data set at once but

instead moves a fixed size window from one side to the other side. It accepts a segment

whenever a continuous series of data points within the window satisfies a criteria, such

as reaching an error upper bound, etc. It is appropriate for online segmentation where an

unknown data stream is processed as input.

Most of these projects focused on splitting a given time series into a number of

segments by finding the piecewise linear approximation or piecewise aggregate approx-

imation which provides the smallest total error or conforms to a maximum error bound

within each segment. Piecewise linear approximation uses a regression line to represent

a segment and piecewise aggregate approximation uses the horizontal segment whose

y-value is the mean value of the data points within the segment to represent it. These

research efforts either ask for an a priori fixed number of segments or place a fixed upper

bound on errors, either on each individual segment or on the whole series of segments.

These thresholds require prior knowledge about the time series data and can limit the

usage of a method. Although some research[43, 90] also suggested using AIC (Akaike

Information Criterion)or BIC (Bayesian Information Criterion) to trade off between the
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total amount of error and the total number of splitting points or the degrees of freedom (in

the regression formula), the remaining problem of where to split is still an active research

issue. So for the general time series segmentation algorithm based on error reduction, the

two problems are where to split and when to stop. Our algorithm uses a splitting module

and a decision module to handle the two problems, and the decision module is a learned

model from human judgement data, instead of using a fixed error bound or parameters

(such as the number of segments provided as result).

Besides the error reduction methods, another time series segmentation algorithm[79]

applies the formalism of knowledge-based temporal abstraction to the sliding window ac-

cording to a priori rules extracted from knowledge about the time series data. Another

kind of similarity based time series segmentation research[52, 15] matches the time se-

ries data to some predefined patterns, and thus the predefined pattern categories have a

large influence on the final result. The a priori knowledge dependent methods are not easy

to generalize to data sets from different domains.

As opposed to the above piecewise approximation approach, another set of time

series segmentation research focuses on detecting change points or anomalies in the data.

The ARIMA (autoregressive integrated moving average)[13] or ARMA (autoregressive

moving average)[95] models fit a formula to the existing data points and predict the range

of the incoming data point. Some other regression models[63] fit the time series data

using regression methods and calculate the confidence interval of the incoming data point.

Change points are identified at those data points outside the predicted upper/lower bound

or the defined confidence interval. These methods face the problem of determining a priori

how many past data points should be used in their prediction model. Furthermore, the

change point detection procedure is very susceptible to the chosen model and distribution.

Another set of change point detection methods, such as maximum vertical distance[59],

also require a priori knowledge to define the threshold used in the model, and different

thresholds will yield much different results. Similar to our project, some time series
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segmentation methods[36, 55, 68] rely on statistical tests. However, they use only one or

two statistical tests to determine if a segment should be split into subsegments.

These research efforts differ from our work in several ways. They are not con-

cerned with extracting visually identifiable trends but are instead concerned with seg-

menting based on error minimization, or with pattern detection, prediction, or anomaly

detection. In addition, they use only one or two statistical tests or a limited amount of

information calculated from one criterion; although they are able to describe the segment

under consideration for their particular usage, they are not able to fully capture the char-

acteristics of the segment. In our research, the decision module uses a machine learning

framework to combine a wide variety of features and construct a learned model.

6.2 Problem formulation and algorithms

6.2.1 General framework

Given a series of sampled data points from a line graph, we need to segment

this data set into one or several sequences where each sequence of sample points can be

represented by either piecewise linear interpolation or piecewise linear approximation[46]

to show a visually distinguishable trend.

The data in a line graph can be discretized into a set P of two dimensional sam-

ple points, P = {Pk|k = 1, ..., n}, with the ith data point Pi having xPi
and yPi

as

coordinates. The problem of segmenting the line graph into a sequence of visually distin-

guishable trends can be described as constructing a set of ordered pairs

Q = {< Qk,1, Qk,2 >, k = 1, ...,m}, where m < n, Qk,i ∈ P , Q1,1 = P1 and Qm,2 = Pn.

Each pair < Qk,1, Qk,2 > represents a trend in the line graph, with xQk,1
< xQk,2

and

xQk,2
= xQk+1,1

, i.e. the end point of the first trend segment is the starting point of the

second trend segment.

As in [46], the trend can be represented by either piecewise linear interpolation,

which connects Qk,1 and Qk,2 with a straight line, or by piecewise linear approximation,
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which calculates a least squared regression line using all data points Pi in P such that

xQk,1
≤ xPi

≤ xQk,2
.

The future application of our research requires that we use a method that has three

characteristics:

1. A fast algorithm so that it can be used in a message recognition system that produces

a natural language description of the high-level content of a given line graph in

real time, thus providing blind users with efficient alternative access to information

graphics.

2. Some line graphs can be very smooth, but others can be very jagged with large

variance, as in Figure 6.1. Rather than having a set number of segments or threshold

of error, our algorithm must deal with a wide variety of line graphs and determine

the number of segments as it produces the segmentation for a particular graphic.

3. The existing algorithms for time series segmentation are mainly based on error

reduction methods. Since our goal is to identify a segmentation that captures human

perception of visually apparent trends, we must use machine learning to consider

a variety of different attributes and produce a learned model that emphasizes the

most important attributes in identifying visually distinguishable trends.

We have chosen a top-down approach for our segmentation task[46]. An advan-

tage of the top-down approach for our purpose is, as the segmentation moves from the

whole graph to individual segments, it is possible to record global information about the

larger graphic and pass it for consideration when analyzing the subsegments and deciding

whether to divide them further.

Our segmentation algorithm is a recursive algorithm that starts from the whole line

graph as one segment. Given a segment as input, the decision module makes a split/no-

split decision. If a split decision is made, the splitting module will determine the splitting

point, split this segment into two subsegments, and call the decision module on each new

44



subsegment. Recursion stops when the decision module makes a no-split decision on a

segment. The following algorithm shows our mechanism in pseudo-code:

Algorithm 1 segmentation algorithm using splitting module and decision module
Q ⇐ < P1, Pn >
repeat

Let < Qk,1, Qk,2 > be the first unprocessed ordered pair of Q
Q ⇐ Q− < Qk,1, Qk,2 >
if DecisionModule(< Qk,1, Qk,2 >)=split then
Ps =SplittingModule(< Qk,1, Qk,2 >)
Q ⇐ Q

∪
{< Qk,1, Ps >,< Ps, Qk,2 >}

else
Q ⇐ Q

∪
{< Qk,1, Qk,2 >}

end if
until all pairs in Q are processed by DecisionModule
Return Q as the segmentation

The splitting module and decision module are covered in Section 6.2.2 and Sec-

tion 6.2.3 respectively.

6.2.2 Splitting module

The splitting module is responsible for selecting the splitting point for each seg-

ment once the decision module determines that the segment should be split. Fu-lai Chung

et. al.[52] introduced a simple method which uses the PIP (perceptual important point)

as the splitting point in a segment. The idea can be simply described as finding the point

which has the largest perpendicular distance from the straight line which connects the two

endpoints of the segment. The formula can be represented as:

argmax
k

(yk −
[
1 xk

] 1 xi

1 xj

−1 yi
yj

)
Choosing the PIP as the splitting point is only complexity O(n), as opposed to

choosing a splitting point that minimizes the sum of squared errors which would be

O(n2). However, human perception is sometimes more sensitive to the maximum or
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minimum point than to the PIP. If two points are close to one another, with one being

the PIP PPIP and the other being the maximum/minimum point PM , we hypothesize that

it might be better to select the maximum/minimum point as the end of one trend seg-

ment and the start of the next trend segment. For example in Figure 6.2, the PIP point

and maximum/minimum point are both circled, with the PIP point on the left and max-

imum/minimum point on the right. In this case, if the decision module made a split

decision, the maximum/minimum point appears to be a better choice for splitting the line

graph than the PIP point. Thus we consider both the PIP and the maximum/minimum

points as candidate splitting points. To choose between them, we examine how much one

data point stands out against the other with respect to its own direction (perpendicular

or vertical), by comparing 1) the difference Dp in their perpendicular distances from the

straight line connecting the two end points of the segment against 2) the difference Dv

in their vertical locations (or y-values), as shown in Figure 6.3. If Dp ≥ Dv, we choose

PPIP as the split point; otherwise, we choose PM .

6.2.3 Decision module

The Decision Module is responsible for analyzing a segment and making a de-

cision about whether it should be split into two subsegments. Since the output of the

decision module is a binary value, it can be reduced to a binary classification problem. In

our project, we use 18 local and global attributes and a support vector machine with SMO

(Sequential Minimal Optimization)[72]. We explored decision tree learning since the re-

sultant tree is easy to understand and analyze, but as the number of features increases,

a decision tree may encounter an over-fitting problem because the decision branches in-

crease exponentially as the number of features increase. A support vector machine can

overcome this overfitting problem as the feature set increases[5, 85], so it is better for

possible future research with an enlarged feature set.

We build the feature base from both local and global information. As opposed

to other segmentation algorithms which only consider local information obtained solely
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Figure 6.3: Relationship between PPIP

and PM

from the segment under consideration, we also take advantage of global information ob-

tained from outside the segment (such as the relative length of the segment with respect to

the whole line graph). Section 6.2.4 describes the local features, Section 6.2.5 describes

the global features, and Section 6.2.6 describes our use of a support vector machine.

6.2.4 Local features

The local feature base is composed of various statistical tests on the segment and

other attributes which represent characteristics of the segment. The following discusses

all of the local features that are considered by the SVM in building the decision module

for graph segmentation.
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6.2.4.1 Correlation coefficient

A trend can be viewed as a linear relation between the X and Y variables. The

Pearson product-moment correlation coefficient measures the tendency of the dependent

variable to have a rising or falling linear relationship with the independent variable. It is

obtained by dividing the covariance of two random variables X ,Y by the product of their

standard deviation.

rXY =
n
∑

xi yi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2

The correlation is between −1 and 1, where 1 means an increasing linear relationship

and -1 means a decreasing linear relationship. The closer the coefficient is to either 1 or

-1, the stronger the correlation between the variables. We use the absolute value of the

correlation coefficient as a feature in our classifier. Because the correlation coefficient

measures the strength of the linear dependence between two variables, we hypothesize

that the strong linear segment shouldn’t be split as in Figure 6.4 and that a low correlation

coefficient suggests that the segment is not linear and should be split as in Figure 6.5 and

Figure 6.6.

6.2.4.2 Q-test and F-test

Although the correlation coefficient is useful in detecting when a segment should

be viewed as a single trend (and thus not split further), it is not sufficient by itself. A
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Figure 6.7: An example line graph with
high correlation coefficient but which
should be split into two subsegments,
as indicated by the dark circles. The
light colored circles are the sampled
data points, the three dark circles are the
splitting points, and the solid lines are
the regression lines for the two subseg-
ments.
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Figure 6.8: Graph with low correlation
coefficient, but which should be treated
as a single trend

flat portion of a line graph may be followed by a very steep rise, resulting in a high

correlation coefficient even though the graph should be split into two segments, as in

Figure 6.7. Similarly, a relatively flat segment, such as the line graph in Figure 6.8, will

have a low correlation coefficient, even though it should not be split into subsegments.

To address this, we make use of the Q-test[74] and F-test[92, 2] which are mea-

sures of change point detection; both test whether a two-segment regression is signifi-

cantly different from a one-segment regression based on the differences in their respective

residuals. The null hypothesis is that no change point has occurred so the two regression

models are equal, suggesting that the segment need not be split further into subsegments.

The Q-test is specifically designed for this purpose. But as analyzed in [74], the Q-test has

less power when the change point is closer to the two endpoints. And according to [27],

the Q-test is sensitive to the change in sample size – the larger the sample size, the better

its performance. On the other hand, the F-test was designed as a general model fitting test
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but has been adapted to the two-phase regression problem. The F-test may compensate

for problems with the Q-test since it empirically works better when the change point is

towards one of the two endpoints. Because the Q-test and F-test are both calculated from

residuals, they can be calculated together, thereby reducing the computational complexity,

although they have different statistics and critical values.

Both the Q-test and the F-test postulate the existence of two relationships in a

given segment consisting of a sequence of data points (xi, yi), i = 1, 2, ..., n. These two

relationships can be written as:

yi =

a1 xi + b1 + u1 if i ≤ k

a2 xi + b2 + u2 if i > k

(6.1)

where u1 and u2 are normally and independently distributed error terms with mean zero

and standard deviations σ1 and σ2. The null hypothesis for both tests is H0 : a1 =

a2, b1 = b2, σ1 = σ2 against H1 : a1 ̸= a2 or b1 ̸= b2 or σ1 ̸= σ2. Figure 6.7 plots the two

relationships with two solid lines where the circled data point in the middle represents

the k in Equation 6.1. Accepting the null hypothesis means that a one-phase regression

model better captures the segment, and the segment should not be split.

The Q-test analyzes the likelihoods of the first k data points and the following

n − k data points from a Gaussian distribution and takes the logarithm of the likelihood

ratio λ:

λ =
l(k)

l(n)
=

σ̂1
k σ̂2

n−k

σ̂n

where σ̂1 and σ̂2 are the estimates of the standard errors of the two regression lines, and

σ̂ is the estimate of the standard error of the overall regression line for all data points in

the segment. According to Quandt[75], the statistic −log(λ) follows the distribution table

listed in [75].

The F-test statistic is computed as

F =
(RSSL−RSS) /2

RSS/ (n− 4)
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Figure 6.9: Line graph with three trends
in it, sampled from Business Week
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Figure 6.10: Line graph of falling trend,
sampled from USA Today

where RSSL is the residual sum of squares of the overall regression line, and RSS is the

residual sum of squares of the two-phase piecewise regression lines. The value F here is

distributed as an F-distribution with (2, n− 4) degrees of freedom as given in [2].

For each sample point Pk in a segment, where 1 < k < n − 1 and n is the total

number of data points in the segment, we build the two-phase linear regression models

for the data points from P1 to Pk, and from Pk+1 to Pn respectively. We consider three

significance levels α = 0.05, α = 0.01, and α = 0.005 for the Q-test, and two significance

levels α = 0.1 and α = 0.05 for the F-test in the feature base. Thus we consider a

total of five attributes based on the two tests. If a statistic calculated from any k where

1 < k < n − 1 generates a significant result corresponding to one of the significance

levels of the Q-test or the F-test, we set the value of the corresponding attribute to 1;

otherwise, if no 1 < k < n− 1 in the given segment makes the statistic significant for the

corresponding significance level, the attribute is set to 0.

6.2.4.3 Runs test

Although the two-phase Q-test and F-test may help address the problem of recog-

nizing segments that represent a sequence of two trends, they can give a wrong prediction
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in some situations where the segment consists of more than two trends, such as in Fig-

ure 6.9. However, computational complexity prevents us from calculating more than a

two phase F-test to fit the data points since O(nd) combination of points would need

to be considered for a d − 1 phase F-test. Failing to reject the null hypothesis for the

one-phase regression model doesn’t mean the one-phase regression line necessarily fits

the data points well since the data points may be better captured by a k-phase regression

model where k > 2. Therefore, we need a more general statistic to test the goodness of

fit between the piecewise linear regression model and the data points.

We make recourse to the Runs Test[4]. The Runs Test detects if a model fits the

data points well. For each data point, we calculate its residual from the regression line

and categorize it as +1 or −1, according to whether the residual is positive or negative.

Then the number of runs is calculated, where a run is a continuous sequence of residuals

which belong to the same category, such as consecutive +1 or −1. If N+ is the number of

positive residual points and N− is the number of negative residual points, the mean and

standard deviation of the number of runs suggested by the data points are approximated

as

Rmean =
2N+ N−

N+ + N−
+ 1

RSD =

√
2N+ N− (2N+ N− − N+ − N−)

(N+ + N−)2 (N+ + N− − 1)

If the number of runs computed from the data points is sufficiently close to Rmean±RSD,

the residual is probably a reasonable approximation of the error from the regression, and

this regression model may be regarded as a good fit to the data points.

We use the Runs Test to check how well the least squared linear regression for a

given segment fits the data points in the segment. If the actual number of runs R is larger

than Rmean − RSD, it suggests the least squared linear regression line is a good fit to the

segment. We include five features from the Runs Test: the result of the Runs Test, the
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actual runs R, mean runs Rmean, standard deviation of runs RSD for a segment, and the

ratio difference between actual runs and mean runs calculated as |R−Rmean|/Rmean.

Although the Runs Test appears powerful in suggesting whether a segment should

be split further, it alone is insufficient. The Runs Test only uses the sign of the residual,

not its value. It may suggest that the line graph in Figure 6.10 should be split, rather

than viewing it as a single falling trend. However, other attributes, such as the correlation

coefficient discussed earlier, will suggest otherwise.

6.2.4.4 Outlier detection

A line graph may have one or more points that significantly diverge from the

overall trend; such points perhaps should be viewed as outliers and not cause a segment

to be split further. Thus we employ an outlier detection test based on residuals[89]. To

detect the presence of outliers, we assume that the trend can be represented as a regression

line; thus all the points within the segment can be represented as yi = b+ a xi + ei where

a and b are calculated from least squared regression. The residual is ei = yi − b − a xi

and the estimated standard deviation of ei is

si = σ̂

√
1− 1

n
− (xi − x̄)2∑

(xi − x̄)2

where σ̂ =
√∑

e2i /(n− 2). If σ̂ equals 0, there are no outliers; otherwise, the standard-

ized residuals ri = ei/si are computed and Rm = max|ei/si| is used as a test statistic for

outlier detection. We use a significance level of α = 0.01 and the critical value given in

[89]. If Rm is greater than the critical value, outlier detection suggests the presence of an

outlier in the sampled data points. If there are multiple ri that exceed the critical value,

then multiple outliers are suggested. We use two features – the result of the outlier test

and the number of outliers detected – in our feature base.
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6.2.4.5 Other local features

Besides the statistical tests and their corresponding results, other features which

help describe the characteristics of the segment are also recorded and passed to the clas-

sifier to make a decision. They include:

• Number of data points in the current segment. Hypothesis tests such as the Q-test

are sensitive to the number of data points. So this feature is used by the classifier to

incorporate the consideration of sample size.

• We hypothesize that the variance in the segment may influence human perception

on the split/no-split decision, so we consider the standard deviation of residuals in

the segment rescaled by the horizontal length of the segment. If we represent the

residuals as a column vector r, this local feature is simply calculated as:

rn =

√
rT r/n

(xj − xi)

where n is the number of data points in the segment, xi and xj are the X coordinates

of the two end points of the segment, and xj > xi. The reason for rescaling the

standard deviation by the horizontal length is that we are dealing with line graphs

of different sizes, and we hypothesize that the standard deviation of residuals per

unit length may affect visual perception.

• Standard deviation of the perpendicular distance between the data points and the

regression line for the segment, rescaled by the length of the regression line between

the two end points of the segment, which is rn cos2 α, where rn is defined as above

and α is the angle between the regression line and the x axis (so tanα is the slope

of the regression line). This feature captures the rescaled deviation existing in the

segment from a perpendicular perspective.
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6.2.5 Global features

As opposed to other segmentation algorithms which only consider local informa-

tion obtained solely from the segment under consideration, we also include global features

that enable the classifier to consider the individual segment within a larger environment.

Global features capture information about the whole graph rather than just the segment

being examined. For example, the relative length of the segment compared with the whole

graph can be used as a global feature. We hypothesize that global features may play an

important role in deciding whether to split a segment. Thus the following attributes are

included:

• The total number of data points in the whole line graph.

• The relative length of the current segment as a percentage of the whole graph. This

feature is included to capture a global view of the segment with respect to the whole

graph.

6.2.6 Support Vector Machine as classifier

To produce a training set, each graph in our corpus must be collected from popular

media, scanned and sampled, and the ideal segmentation identified by human viewers.

These are very time-consuming tasks. Therefore the size of the training set is limited.

There are 18 features associated with each training instance, so the feature space is an 18

dimensional space.

Generally we can choose any classifier appropriate for the problem and the feature

base used. For our segmentation problem, we chose a support vector machine as classifier

because it works very well with high-dimensional data and a relatively small training

set and avoids the curse of dimensionality problem[85]. SVM also lessens the chance

of overfitting by using the maximum margin separating hyperplane which minimizes the

worst-case generalization errors[5, 85]. Furthermore, as opposed to local methods such as

nearest neighbor which require locating a small neighborhood for each new test instance,
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the SVM can build the global hyperplane once from the training set and apply it to test

cases with little computation.

The support vector machine provides a maximum margin hyperplane to divide the

18 dimensional space into two parts. In our project, the feature vector is first normalized,

and the linear kernel is applied to the feature space to generate a linear hyperplane. We

use a linear kernel because an inappropriately chosen degree of polynomial kernel which

generates a nonlinear hyperplane might induce overfitting.

We collected a corpus of 234 line graphs and built our training set from this corpus.

Each line graph was entered as one instance in the training set along with the appropriate

split or no-split decision. In the case of a split decision, each resulting segment is entered

as an instance in the training corpus, along with their respective split or no-split decisions,

and the process is recursively repeated. This produced a corpus of 649 segments; the fea-

ture values were recorded for these segments which were then used to train our decision

module.

For example, consider a line graph which is eventually split into three final seg-

ments. Initially, the whole line graph is recorded as one training instance; after the first

segmentation, two subsegments are generated and recorded as two new training instances;

one of these new segments is again split, producing two more subsegments as new train-

ing instances. The segmentation process ends up with a total of five segments entered into

the training set – two intermediate segments with split decisions and three segments with

no-split decisions.

6.3 Examples

Figure 6.11 displays three examples of segmentations produced by our graph seg-

mentation system. The three line graphs come from three different sources, USA Today,

BusinessWeek, and a local newspaper, and differ from one another with respect to the

number of trends and the amount of variance in each trend. The original line graphs
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Figure 6.11: Three examples of segmentations produced by our graph segmentation sys-
tem. The solid lines are the original line graphs, the small circles are the split points, and
the dashed lines are the regression lines for the resulting trend segments.

are plotted with solid black lines. The split points identified by our segmentation al-

gorithm are shown as circles (the start and end point of the line graph are also shown

as circles because they are the boundaries of the beginning and ending segments). The

high-level trends are located between each adjacent pair of splitting points, represented

by dashed regression lines. We can see from the results that our segmentation algorithm

accurately segmented the line graphs with different variances into visually apparent high-

level trends.

6.4 Evaluation

The line graphs we collected for the graph segmentation evaluation came from

multiple sources including USA Today, Businessweek, Newsweek, the Wilmington News

Journal, etc. Table 6.1 lists the distribution of the number of segments of the line graphs

from different sources. Because the three main sources are the USA Today, Businessweek

and Newsweek, we have named all the other sources as “Other Sources”.

To evaluate our graph segmentation methodology, we performed three evaluation

experiments: cross-validation of the learned decision module which is responsible for

making a split/no-split decision, and two human subjects experiments which evaluated
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Sources 1 2 3 >4
USA Today 49.0% 35.7% 12.2% 3.1%
Businessweek 29.7% 36.3% 20.9% 13.2%
Newsweek 29.4% 47.1% 17.6% 5.9%
Other Sources 32.0% 32.0% 28.0% 8.0%

Table 6.1: Distribution of the number of segments of the line graphs from different sources

the entire segmentation algorithm incorporating both the splitting module and the decision

module.

6.4.1 Evaluation of the decision module

Since our corpus is small, we use leave-one-out cross validation to test the accu-

racy of the decision module, where each instance is used once as a test case and all the

other 648 instances are used as training cases. The results of all 649 experiments are

averaged together to obtain the accuracy of the model.

The accuracy obtained from leave-one-out cross validation is 88.3%, compared

with the 67.2% accuracy of the baseline decision of no-split (the decision for the majority

of instances in the training set). Thus our algorithm has a 31.4% improvement over the

baseline. Table 6.2 gives the confusion matrix; it shows that our model is slightly biased

toward avoiding splits when one should be made.

classified as no-split classified as split
actual no-split 410 26
actual split 42 171

Table 6.2: Confusion matrix

To identify the importance of the 18 features used by our support vector machine,

we applied the recursive feature elimination(RFE) algorithm introduced by Guyon et.

al.[40]. It measures the discriminating ability of the attributes by comparing their weights

for the corresponding dimension of the hyperplane. It first calculates the weight vector

of the SVM which produces the hyperplane that maximizes the margin, and recursively
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1) eliminates the feature with the lowest absolute weight in the representation of the hy-

perplane and 2) rebuilds the hyperplane, until all attributes have been removed one by

one. The earlier an attribute is removed, the less discriminating it is and thus the lower its

rank. Table 6.3 lists the features in rank order from most significant to least significant.

Rank Feature name
1 rescaled standard deviation of perpendicular distance
2 relative length of current segment
3 difference between actual runs and mean runs
4 rescaled standard deviation of vertical distance
5 correlation coefficient
6 number of points in current segment
7 Q-test in 995 significance level
8 Q-test in 95 significance level
9 runs test
10 standard deviation of runs
11 outlier detection
12 Q-test in 99 significance level
13 F-test in 95 significance level
14 mean runs
15 total number of points
16 number of outliers
17 actual runs
18 F-test in 90 significance level

Table 6.3: Features listed in rank order

Let us examine the top ranked features. The first and fourth features measure

the standard deviation of the segment in unit length, either from a perpendicular or a

vertical perspective. The rank of these two features indicates that the rescaled standard

deviations within a segment play a very important role in making a split decision. The

second feature captures global information by measuring the relative length of the current

segment; it reveals the fact that when a split/no-split decision is made, features based on

local information in the segment are not enough. For identifying trends that are visually

apparent to humans, we must consider the segment in a larger context. Although we only

have one global feature among the top ten features, it plays an important role in the model,
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and this global information is ignored by other time series segmentation algorithms. In

future work, we will consider other global features, such as the relative location of the

segment. In addition to the two standard deviations and the relative length of the segment,

the correlation coefficient, Q-test, Runs Test, and number of points in the segment all rank

among the top ten features and thus play a significant role in the model.

It is interesting to note that the features coming from the F-test and outlier detec-

tion are not ranked in the top ten. This indicates that although the F-test is also a change

point detection statistic, it is not as powerful as the Q-test for our segmentation task.

6.4.2 Evaluation of the entire segmentation algorithm

Recall that our leave-one-out cross validation tested our decision module’s ability

to make split/no-split decisions on individual segments. To test how well our segmen-

tation algorithm segments entire line graphs into visually apparent trends (both deciding

when to split segments and where to split them), we used seven human evaluators. The

human subject evaluation had two parts. The first part, described in Section 6.4.2.1, com-

pared the segmentations produced by our system with those produced by another seg-

mentation method from the literature. The second part, described in Section 6.4.2.2, was

a qualitative evaluation of our graph segmentations. In both experiments, our segmenta-

tion for each graph was produced by a model constructed from the other 233 graphs, thus

avoiding the problem of biasing the results by including the test graphic in the corpus

used to train the model.

6.4.2.1 Comparative experiment

In this comparative experiment, seven human evaluators were each given 234 line

graphs with two segmentations, one produced by our segmentation algorithm and the

other produced by the comparative segmentation algorithm.

The comparative algorithm reflects existing approaches to time-series segmenta-

tion based on error minimization[41, 46, 39, 46] and looks for a predefined k number of
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segments to minimize the residual sum of squares of the piecewise linear regression. This

error reduction algorithm can be implemented top-down or bottom-up. To be comparable

with our top-down segmentation approach, we used the top-down one.

A critical aspect of this method is how to define the number of segments k since

the same k for all line graphs is not appropriate. Salvador et. al.[80] suggest a method for

identifying the appropriate k for a given line graph by locating the knee of the plot of the

residual sum of squares against the number of segments, as in Figure 6.12 which is called

an evaluation graph.

The knee is the point which generates a two-phase regression in the evaluation

graph and minimizes the residual sum of squares of the evaluation graph. The evaluation

graph is generated by a top-down iterative process in which one splitting point (i.e. one

segment) is added in each iteration. On each iteration, a new splitting point is added such

that it results in the largest reduction of R(Y, Ŷ ), thereby generating one more segment.

R(Y, Ŷ ) is the risk(expected loss) between real data Y and the estimated data Ŷ using the

least squares regression with the newly added splitting point. After the n−2 intermediate

points are all added as splitting points where n is the total number of points in the line

graph, there will be k = n − 1 segments. An evaluation graph, such as the one shown

in Figure 6.12, plots R(Y, Ŷ ) for each number of segments. Then the optimal number of

segments is determined by the location of the knee in the evaluation graph of errors versus

number of segments, where the knee is a change point in the evaluation graph, identified

by fitting a two-phase regression model which minimizes the residual sum of squares in

the evaluation graph. The number of segments corresponding to the identified knee is

used as the number of segments k for the comparative algorithm.

For each line graph, the human evaluator was given two segmentations, one pro-

duced by our segmentation algorithm and one produced by the above comparative algo-

rithm. The order of the appearance of the two segmentations was randomly assigned,

to avoid bias resulting from the order of presentation. The evaluators had three options:
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Figure 6.12: A plot of segmentation errors against number of segments

“The segmentation on the left is better”, “The segmentation on the right is better”, and “I

have no preference”.

For 218 of the 234 line graphs, a majority of the evaluators had the same response;

on only 16 line graphs was there no majority decision, indicating that these line graphs

had differences that made it difficult to identify the better segmentation. For the 218 line

graphs where there was a majority decision, the segmentation produced by our system

was preferred for 76.1% of the graphs, there was no preference for 8.8% of the graphs,

and the segmentation produced by the comparative algorithm was preferred for 15.1% of

the graphs. Thus we see that the segmentations produced by our system were preferred

five times more often than the segmentations produced by the comparative algorithm.

We also computed how often each evaluator preferred our segmentation, had no

preference, or preferred the segmentation produced by the comparative algorithm. The

preference data for each individual evaluators are shown in Table 6.4, with the last two

rows showing the mean and standard deviation of the percentage evaluation. All evalu-

ators preferred our segmentation more often than they preferred the other segmentation.
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Evaluator Our Algorithm Comparative Algorithm No Preference
1 72.5% 20.6% 6.9%
2 60.1% 36.9% 3.0%
3 85.4% 5.6% 9.0%
4 56.7% 17.6% 25.8%
5 59.2% 23.2% 17.6%
6 50.6% 31.8% 17.6%
7 82.8% 11.6% 5.6%
Mean 66.8% 21.0% 12.2%
SD 13.6% 10.9% 8.3%

Table 6.4: Preference table against comparative algorithm

Averaging the results for the seven evaluators, we find that our system performed better

than or equal to the comparative algorithm 79% of the time.

These results show that our learned graph segmentation algorithm produces better

segmentations of line graphs into visually apparent trends than does a traditional algo-

rithm based on error minimization.

6.4.2.2 Qualitative evaluation of segmentations

Seven human evaluators were given 254 line graphs along with candidate seg-

mentations; 234 of the line graphs were the ones in our corpus with the segmentations

produced by our system and 20 were additional line graphs with bad segmentations. The

latter were scattered throughout the evaluation set and were included to avoid bias by the

evaluators. The evaluators were not told that intentionally bad segmentation examples had

been included in the evaluation set. The evaluators were asked to assign a score between

1 and 5 to each segmentation as shown in Table 6.5.

The average rating for the segmentations produced by our system was 4.25 with

0.55 standard deviation across the 234 line graphs, showing the performance of our seg-

mentation algorithm is between “Very good” and “Ideal”. The 20 extra graphs with bad

segmentations received an average rating of 1.57± 0.44 which is between “Terrible” and

“Poor”. These results verify that our graph segmentation algorithm successfully segments
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Rate Description
5 Ideal
4 Very Good
3 Acceptable
2 Poor
1 Terrible

Table 6.5: 5-points rate of the segmentation

line graphs into visually apparent trends. This good performance is a result of the learned

model generated by our machine learning framework.

6.5 Summary

This chaplter has presented the Graph Segmentation Module, whose goal is to seg-

ment the line graph into a series of visually distinguishable trends. Our methods provides

significantly better results than an error reduction based method with heuristics determin-

ing the number of segments. In particular, our method uses a set of features, including

both local and global features, with a SVM classifier to provide a learned model rather

than using error minimization with a pre-determined threshold chosen by a prior domain

knowledge.

The segments produced by the Graph Segmentation Module correlate with the

visual descriptions proposed by [82, 71]. They are thus used as the discrete entities which

are used to propose candidate meassages fro consideration by the Bayesian network, as

discussed in Chapter 7.
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Chapter 7

RECOGNIZING THE INTENDED MESSAGE OF LINE GRAPHS

WITH A BAYESIAN NETWORK

In Chapter 5, we argued that a Bayesian network would be an appropriate in-

ference mechanism for identifying the intended message of a line graph. This chapter

presents the Bayesian network. Section 7.1 discusses how candidate messages are con-

structed. Section 7.2 discusses the structure of our Bayesian network. Section 7.3 presents

several examples of graphs that are processed by our system and Section 7.4 presents an

evaluation of the system.

7.1 Generating intended message candidates

Given that our inference mechanism will be a Bayesian network, we need to con-

struct a set of candidate intended messages that the Bayesian network will choose among.

Each candidate message will consist of one of the ten high-level message categories iden-

tified in Chapter 3 along with instantiations of each of its parameters. As argued in Chap-

ter 5, it is unreasonable to use every sample point (or even every short segment of a very

jagged line graph) as a possible instantiation of these parameters. Thus the Graph Seg-

mentation Module described in Chapter 6 was designed to segment the line graph into

a sequence of visually distinguishable trends. The boundary points of these trend seg-

ments will be used as parameters for the intended message candidates. The module that

produces the candidate messages is called the Suggestion Generation Module.

Before generating the appropriate suggestions, the Suggestion Generation Module

needs to do some preprocessing:
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1. It needs to categorize every segment detected by the Graph Segmentation Module as

a “rise”, “fall” or “stable” trend. The reason for doing this is so that only appropriate

segments are used to generate each kind of intended message. For example, we

would not want to instantiate the parameters of a Rising-Trend message category

with the end points of a segment that is actually falling.

Rising segments can be differentiated from falling segments by the slope direction

of the least square linear regression across the segment. Difficulty arises in deter-

mining whether to classify a segment as stable. Instead of assigning a hard threshold

to the slope of the regression line, we measure the 95% confidence interval of the

regression line. If the upper bound has a slope where the sign is different from that

of the lower bound, the segment is classified as “stable”; otherwise, it is classified

as “rise” or “fall” according to the sign of its slope. This method is much better

than using a hard threshold. For example, if we use a hard threshold such as ±5°,

then the line graph in Figure 7.1 will be categorized as a stable trend segment since

the slope of its regression line is −4.04°. But the upper bound and lower bound of

the 95% confidence interval of the regression line both have a negative slope and

thus it is classified as a falling segment with very small slope.

2. We hypothesize that small changes at the end of a line graph, as in Figure 7.2, may

be particularly salient to a viewer, especially if they represent the value of an entity

near the current time. However, the Graph Segmentation Module will most likely

smooth such small changes into an overall longer smoothed trend. Thus, a short

routine based on the F-test examines the end of the line graph and if it represents a

change in slope from the preceding points, that short portion is treated as a separate

segment. This short segment (if any) is added to the result produced by the Graph

Segmentation Module so that it can be used in constructing Change-Trend-Last-

Segment candidate messages.

The suggestion generation process proceeds as follows:
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Figure 7.1: Line graph with a falling trend, but the slope is only −4.04°

• Generate a Rising-Trend or Falling-Trend candidate message for each rising or

falling segment respectively. The parameters are instantiated with the beginning

and ending points of this single segment.

• Generate one Change-Trend suggestion for each pair of adjacent segments belong-

ing to different trend types. The parameters are the beginning point of the first

segment, the change point between segments, and the ending point of the last seg-

ment.

• Generate one Change-Trend-Return suggestion for each series of three adjacent

segments. The parameters are the beginning point of each of the three segments

and the ending point of the last segment.

• Generate one Change-Trend-Last-Segment suggestion for the pair of adjacent seg-

ments if the second segment touches the end of the line graph. The parameters are
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Figure 7.2: Line graph from a local newspaper

the beginning point of the first segment, the change point between segments, and

the ending point of the last segment.

• Generate one Contrast-Segment-Change-Trend suggestion for the series of three

adjacent segments if the third segment touches the end of the line graph. The pa-

rameters are the beginning point of the each of the three segments and the ending

point of the last segment.

• Generate one Big-Jump or Big-Fall suggestion for each rising segment or falling

segment respectively if the segment is not the last segment of the graph. (It is be-

cause we assume that a Big-Jump has a Big-Jump-Sustain or a Big-Jump-NotSustain

as a sub-intended message which requires a segment following the Big-Jump seg-

ment; the same assumption also applies to Big-Fall. This will be discussed further

in Section 7.5) The parameters are the beginning point of the sudden rising or falling

segment, the ending point of this segment, and the ending point of the line graph.

• Generate one Point-Correlation intended message for the whole line graph.
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Figure 7.3: Line graph from a local newspaper

.

Consider, for example, the graphic in Figure 7.3. The Graph Segmentation Module

produces a sequence of three visually distinguishable trends. The Suggestion Generation

Module proposes the 11 possible messages shown in Table 7.11:

RT (5-21-05, rise, 9-1-05)
CT (5-21-05, rise, 9-1-05, fall, 12-1-05)
RT (12-1-05, rise, 4-25-06)
CT (9-1-05, fall, 12-1-05, rise, 4-25-06)
FT (9-1-05, fall, 12-1-05)
CTR (5-21-05, rise, 9-1-05, fall, 12-1-05, rise, 4-25-06)
BJ (5-21-05, rise, 9-1-05)
CTLS (9-1-05, fall, 12-1-05, rise, 4-25-06)
BF (9-1-05, fall, 12-1-05)
CSCT (5-21-05, rise, 9-1-05, fall, 12-1-05, rise, 4-25-06)
PC (5-21-05, rise, 9-1-05, fall, 12-1-05, rise, 4-25-06)

Table 7.1: The 11 possible messages generated for Figure 7.3

1Our system works with the actual points in the graph; for clarity of presentation, we only show the

x-values for the points corresponding to <parami > in Table 3.1.

69



7.2 Bayesian network inference

A Bayesian network[70, 48] is a probabilistic graphical model for inferring a con-

clusion from observations. It uses knowledge of the likelihood p(child nodes|parent nodes)

and the prior probability of each parent node calculated from the training set to compute

the posterior probability of a parent node using Bayes rule:

p(Parent|Child) ∝ p(Child|Parent)p(Parent) (7.1)

Our Bayesian network is a tree structure that is generated as a top down process:

1. Root Node: The top level node is the root node and contains each of the ten intended

message categories as its possible values.

2. Category Nodes: The second level consists of one node for each intended message

category in the root node at the top level. The ten message category nodes are

generated as the children of the root node. They are just drawn out of the top level

node for ease of representation so that the complexity of the conditional probability

table for both the root node and the message category nodes can be reduced.

3. Candidate Message Nodes: Beneath each of the Category Nodes are a set of can-

didate message nodes, one for each instantiated candidate message in that message

category. The candidate message nodes represent the suggestions generated by the

Suggestion Generation Module. If there are any suggestions belonging to some in-

tended message category, the candidate message nodes are attached as child nodes

of the corresponding category node. Since only one suggestion belonging to an

intended message category can be the true intended message, we want the multi-

ple suggestions generated for the same intended message category to compete for

all the probability calculated for the intention category node. To accomplish this,

we add inhibitory links among the multiple suggestions generated for the same

intended message category. Figure 7.4 shows part of the top three levels of the
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Figure 7.4: The top three levels of our Bayesian network

Bayesian network constructed for Figure 7.3, with the dashed lines representing the

inhibitory links.

4. Evidence Nodes: Evidence nodes capture the evidence for or against a message cat-

egory or a candidate intended message. As discussed in the next section, evidence

specific to a candidate intended message is attached as a child of that node whereas

evidence for or against a message category is attached as a child of the top level root

node. Figure 7.5 shows multiple evidence nodes at different levels of the Bayesian

network, plotted as dashed ovals.

When the evidence is entered and the Bayesian network updates its belief, the

Top Level Node contains the posterior probability of the 10 intended message categories.

The intended message category with the highest probability is selected, and the intended

message within this category with the highest posterior probability is regarded as the final

intended message for the line graph.

7.2.1 Extracting evidence and entering it into the Bayesian network

The evidence nodes in the Bayesian network record the communicative signals

present in the line graph. Table 7.2 through Table 7.3 list the evidence nodes and their

corresponding possible values for a candidate message node.
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Table 7.2: The evidence nodes and their corresponding values

Name of Node Description and values
Percentage Records the proportion of the entire line graph that is cov-

ered by the candidate message. It can take values: 100%,
≥ 80%, < 80%.

EndpointsAnnotated Records whether the two endpoints of a candidate mes-
sage are annotated. It can take values: none,one,both.

SplittingAnnotated Records whether the splitting points of a candidate mes-
sage are annotated. It can take values: none, some, all.

OtherAnnotated Records whether there are any other annotations not on
either endpoints or splitting points of a candidate message.
It can take values: none, one, more.

NumMiddleAnnotations Records the number of annotations which appear on points
other than the two ends of the line graph. It counts all the
annotations on either the splitting points or other points,
except the two endpoints. It can take values: none, one,
more.

EndpointsSalient Records whether the endpoints are salient. Salience means
that the points are referred to by a word or words in the
caption or description in the line graph. It can take values:
none, one, both.

SplittingSalient Records whether the splitting points are salient. It can take
values: none, some, all.

OtherSalient Records whether there is any other salient point other than
endpoints and splitting points. It can take values: none,
one, more.

LastLength Records the ratio of the length of the last segment with the
length of the whole line graph, measured on the horizontal
axis. It can take values: ≥ 20%, < 20%.

TouchEnd Record whether this candidate message covers the right
end of the line graph. It can take values: yes, no.

LastSegmentMatchWord Records whether the direction of the last segment matches
the word category in caption/description. For example, if
a verb in the caption is classified into class 1 in Table 7.5
and the last segment is also a rising segment, then this
feature takes the value “Match”. It can take values: Match,
NoMatch.
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Table 7.3: The evidence nodes and their corresponding values - continued

Name of Node Description and values
YScale Big-Jump/Big-Fall only. Measures the ratio of the height

of a segment with respect to the height of the whole line
graph. It can take values: ≥ 80%, < 80%.

XDuration Big-Jump/Big-Fall only. Measures the ratio of the width
of a segment with respect to the width of the whole line
graph. It can take values: ≥ 25%, < 25%.

BigSlope Big-Jump/Big-Fall only. Measures the absolute value of
the slope.. It can take values: ≥ 60°, < 60°.

SmallLargeRatio Big-Jump/Big-Fall only. Measurses the ratio between the
length of the smallest segment and the length of the largest
segment. The lengths are measured along the horizontal
axis. It can take values: ≥ 0.2, < 0.2.

Table 7.4: The evidence nodes for the words in caption/description and their correspond-
ing values

Name of Node Description and values
CaptionVerb Record the category of the verbs in caption. It takes seven

values for the seven classes in Table 7.5.
CaptionNoun The category of the nouns in caption.
CaptionAdjective The category of the adjectives in caption.
DescriptionVerb The category of the verbs in description.
DescriptionNoun The category of the nouns in description.
DescriptionAdjective The category of the adjectives in description.
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Figure 7.5: Bayesian Network with some evidence nodes

As we have discussed, the nouns, verbs and adjectives in the caption and descrip-

tion of a line graph serve as communicative signals that suggest an intended message

category. Extending work by Seniz Demir and ideas espoused by Elzer[28], we employ a

Caption Tagging Module which utilizes a part-of-speech tagger to process the caption and

description of a line graph and extract potentially helpful nouns, verbs and adjectives. For

example, the caption “ocean levels rising” contains the verb “rise”, which might suggest

a Rising-Trend or a Change-Trend message where the second segment is rising. Using

WordNet, we identified potentially helpful verbs and organized them into classes of sim-

ilar verbs. For example, the verbs “jump” and “boom” reside in one verb class, whereas

the verbs “resume” and “recover” reside in a different verb class. Similar classes were

constructed for nouns and adjectives/adverbs. In our research, we categorized the helpful
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words into six categories, plus a category indicating that there is no helpful word. Ta-

ble 7.5 shows the categories and several example words in each category. The presence

or absence of words in the word categories is used as evidence for or against an intended

message category. This evidence appears as children of the top level node in the Bayesian

network.

class 1 rise increase ascend grow boom
class 2 fall descend decline plunge
class 3 remain stay
class 4 change rebound recover
class 5 fluctuate swing
class 6 words from class 1 and class 2 both appear in the same cap-

tion or description
class 7 The caption or description doesn’t contain a helpful word

Table 7.5: The word categories and several example words in each category.

Having a candidate suggestion for a particular category strengthens the posterior

probability of that intended message category. Thus we add an evidence node named

“HasSuggestion” as a child node of the category node. Whenever there are no suggestions

generated for an intended message category, the “HasSuggestion” node will have finding

“No” instantiated, which is evidence against that intended message category.

7.2.2 Constructing the conditional probability tables

Associated with each node in a Bayesian network is a conditional probability table

that reflects the probability of each of the values of that node given the value of the parent

node. (The probability table for the top-level node captures the prior probabilities of each

of the intention categories.) The conditional probability tables for our Bayesian network

are computed from an analysis of our corpus of 240 line graphs.

Three coders had previously identified the intended message of each line graph in

our corpus. If there was disagreement among the coders on either the message category or

the instantiation of the parameters, we used consensus-based annotation[1] in which the
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coders discussed the graphic and made a consensus decision about the graphic’s intended

message. As noted in [1], this allows us to include the hard graphics whose intentions are

less clear and about which the coders might initially have different opinions.

We constructed a spreadsheet capturing all of the information needed to construct

the conditional probability tables from our corpus. For each graphic, all of the candidate

messages generated by the Suggestion Generation Module were entered into the spread-

sheet. If one of these messages matched the intended message of the graphic as identified

by the coders, it was marked as Intended-Message. Otherwise, the segmentation was

done manually and the suggestions generated from this segmentation were inserted into

the spreadsheet, with the correct suggestion marked as Intended-Message for the graphic.2

For each of these messages, the values for the evidence listed in Table 7.2, 7.3 and 7.4

plus the “HasSuggestion” evidence were recorded.

Formulas were constructed for computing all of the required conditional probabil-

ity tables from the information in the spreadsheet. To overcome the impact of probability

values that are 0 according to the corpus, we applied smoothing and replaced them with a

value of 0.01% and then normalized each probability table to make the sum still be 1.

One such conditional probability table is shown in Table 7.6. It gives the condi-

tional probability that the endpoints <param1 > and <param2 > of a Rising-Trend(<param1 >,

<param2 >) message are annotated in the graphic, given that the intended message is (or

is not) a Rising-Trend. For example, the InPlan column of the conditional probability

table shows that the probability that both endpoints are annotated is 55.4% if a Rising-

Trend is the intended message, and the NotInPlan column shows that the probability is

3.6% if it is not the intended message.

2Note that when the intended message is not one of the messages produced by the Suggestion Gen-

eration Module, our system cannot succeed on that graphic since the correct message will not be one of

the messages considered by the Bayesian network. The purpose of manually segmenting the graphic and

entering the correct message into the spreadsheet is solely to facilitate training the Bayesian network.
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Endpoints Annotated Table
Rising-Trend InPlan NotInPlan
Only one endpoint is annotated 12.3% 26.2%
Both endpoints are annotated 55.4% 3.6%
No endpoint is annotated 32.3% 70.2%

Table 7.6: A sample conditional probability table

The conditional probability tables for the evidence in Table 7.4 were calculated

more straightforwardly because these evidence nodes are attached to the Root Node.

Given an intended message category, the conditional probability table for the possible

values of this evidence, as shown in Table 7.5, is calculated as the smoothed distribution

of the values in the training instances which belong to this intended message category.

For example, within the training instances which have a Rising-Trend intended message,

32.1% of them have a helpful verb in the caption which belongs to the class 1 word cate-

gory, and 67.8% of them have no helpful verb in the caption.

7.2.3 Processing a new graphic

After a line graph is processed by the Visual Extraction Module, the Graph Seg-

mentation Module, and the Suggestion Generation Module as in Figure 5.1, the Bayesian

network is then dynamically built for this graphic using Netica[69].3 Netica then com-

putes the posterior probability of each of the higher-level nodes based on the findings

recorded in the leaf evidence nodes. The entry in the top-level node with the highest

posterior probability represents the system’s hypothesis about the category of intended

message. The candidate message node that is a child of this intention category node with

the highest probability is then selected as the system’s hypothesis about the graphic’s

intended message.

3Notice that the structure of the Bayesian inference network for each line graph might not be the same.
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7.3 Examples

In hypothesizing the graphic’s intended message, our message recognition system

takes into account the presence or absence of communicative signals that might appear

in the line graph. The following examples illustrate the impact that these signals have on

our system’s hypothesis about the graphic’s intended message.

The first example is shown in Figure 7.6. In this line graph, the caption has the

verb “rise” as a communicative signal which is in class 1 in Table 7.5. In the graphic part,

the two endpoints of this line graph are annotated. The Change-Trend candidate message

suggested by Suggestion Generation Module covers the full length of the line graph. Af-

ter the evidence nodes are instantiated and the belief is updated, the Bayesian network

assigns the Change-Trend(1900,stable,1928,rise,2003) suggestion 99.9% confidence and

it correctly matches the intended message identified by the three human annotators.

Another of our examples is based on the line graph shown in Figure 7.7 which

appeared in an article in a local newspaper. It was a difficult graph for our coders who

were unsure whether it was intended to convey a Change-Trend in Durango sales over

the period from 1997 to 2006 or whether it was intended to convey a Falling-Trend in
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Figure 7.7: A line graph which appeared in an article in a local newspaper uses com-
municative signals from both caption and annotations which causes ambiguity for human
annotators

Durango sales from 1999 to 2006. The coders eventually decided on the Change-Trend

message.

Now let us examine the system’s processing of the graphic. As discussed in Sec-

tion 7.4, we use leave-one-out cross validation; thus the conditional probability tables in

the Bayesian network used to process the graphic in Figure 7.7 are constructed from the

data in the other 239 graphs in our corpus and do not include any information from the

graphic in Figure 7.7.

The Graph Segmentation Module produces a sequence of two segments: a rising

segment from 1997 to 1999 and a falling segment from 1999 to 2006. The Sugges-

tion Generation Module generates several messages for consideration; the two of inter-

est to us in this example are a Change-Trend(1997,rise,1999,fall,2006) and a Falling-

Trend(1999,2006). There are a number of communicative signals in the graphic that were

deliberately entered by the graph designer: 1) the annotation giving the value for the year

1999, 2) the annotation giving the value for the year 2006, and 3) the verb “declining”4

in the caption “Declining Durango sales”. Other evidence entered into the Bayesian

4Although one might think “declining” as an adjective, the Part-of-Speech tagger used by our Caption

Tagging Module tags it as a verb.

79



network includes (among others) the portion of the graphic covered by each candidate

message, and the relative width of the last segment of each candidate message. For the

Change-Trend message, the message covers the whole graphic and the last segment covers

more than half of the graphic; for the Falling-Trend message, the last (and only) segment

covers much, but not all, of the graphic.

The system considers all of the candidate messages and the evidence entered into

the Bayesian network; it hypothesizes that the graphic’s intended message is that there is a

Change-Trend (rising from 1997 to 1999 and then falling from 1999 to 2006) in Durango

sales and assigns this hypothesis a probability of 78.3%. The hypothesis that the graphic

is intended to convey a Falling-Trend is assigned a probability of 20.4%. All the other

candidate messages share the remaining 1.3% probability. The probabilities assigned to

the Change-Trend and Falling-Trend messages reflect the ambiguity about the intended

message that is inherent in the graphic. The presence of the verb “declining” and the

annotations on both points that are parameters of the Falling-Trend message all seem to

support the Falling-Trend intended message. However the graphic designer has a reason

for including all of the data points in the graphic, and the fact that the Change-Trend

message covers the whole line graph is evidence for it being the intended message of the

graphic. Besides covering the whole line graph, two of the three points that are parameters

of the Change-Trend message are annotated. These pieces of evidence caused the system

to prefer the Change-Trend message over the Falling-Trend message, although with a

large amount of uncertainty as reflected by the probability assigned to the Falling-Trend

message.

Now let us examine how the system’s hypothesis changes as we vary the commu-

nicative signals in the graphic. First, let’s change the caption to just “ Durango sales”.

The system now hypothesizes that the graphic is intended to convey the Change-Trend

message and assigns this hypothesis a probability of 92.4%; the Falling-Trend hypothesis

is assigned a probability of only 7.0%. Note that there is still some confusion about the
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intended message due to the two points that are annotated in the graph. Now suppose

that we change the caption to “Durango sales change”. Whereas the verb “declining”

might be used in the caption of a Change-Trend message, it is less likely that the verb

“change” would be used with a Falling-Trend message. The system’s hypothesis doesn’t

change, but the probability assigned to the changing trend message increases from 92.4%

to 97.5%. Here we see that the verbs/adjective evidence overcomes the confusion caused

by annotating only two points in the graphic.

Now let’s return to the original graphic in Figure 7.7 and analyse how the intended

message changes according to annotation communicative signals. We still use Figure 7.7

with the caption as “Declining Durango Sales”, but suppose that we add an additional an-

notation giving the value of Durango sales in 1997. The three annotations match exactly

the three parameters of a Change-Trend message. Now the system’s hypothesis changes

dramatically — it identifies the Change-Trend candidate as the intended message of the

graphic and assigns it a probability of 99.8%, with the Falling-Trend message assigned a

probability of 0.2%. Note that although the verb “declining” is most associated with a

Falling-Trend message, it can also be used with a Change-Trend message to draw atten-

tion to the falling portion of the changing trend.

These examples show the advantage of using a probabilistic inference model. In-

stead of classifying a line graph into a hard category, the Bayesian network can assign

a probability to each candidate intended message, which gives us the capability of mea-

suring the ambiguity of the line graph’s intended message and providing a secondary

candidate which might also be reasonable.

The third example illustrates more about recognizing the Big-Jump and Big-Fall

intended messages. Consider Figure 7.8a; the annotators assigned this line graph a Big-

Jump intended message, indicating that this line graph conveys a message that there was

a big jump in the number of lay-off from the second quarter of 2000 to the third quarter of

2001. The Graph Segmentation Module generates a series of three segments as shown by
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Figure 7.8: An example line graph that was assigned a Big-Jump intended message by
annotators

the dashed line in Figure 7.8b, and the Suggestion Generation Module generates 10 sug-

gestions from the three segments. Among the 10 intended message candidates, there are

two candidates that receive higher probabilities than the others. They are Big-Jump(2000

Quarter 2, 2001 Quarter 3) and Falling-Trend(2001 Quarter 3, 2006 Quarter 1). Let’s take

a look at the communicative signals for each of them. The caption of the line graph has a

helpful adjective “fewer” and a supposedly helpful verb “slip”5; both belong to the class

2 word category in Table 7.5. In the Big-Jump candidate message, the second segment

which is a sharp rising trend takes more than 80% of the height of the line graph and less

than 25% of the width of the line graph. The Falling-Trend candidate message takes less

than 80% of the width of the line graph and touches the end of it.

Our system assigns the Big-Jump candidate message a probability of 81.4%. Al-

though our system correctly identifies the intended message of this line graph, it still

5Although “slips” should have been tagged as a noun, the part-of-speech tagger identified it as a verb.
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assigns 12.1% probability to the Falling-Trend candidate message because the helpful ad-

jective and verb in the caption both implicitly refer to a falling segment and are against

a Big-Jump intended message. If we remove both words from the caption, the system’s

confidence changes. The Big-Jump(2000 Quarter 2, 2001 Quarter 3) candidate message

now has 91.3% probability.

7.4 Evaluation of the system

We evaluated the performance of our system for recognizing a line graph’s in-

tended message on our corpus of 240 simple line graphs that were collected from vari-

ous magazines such as USA Today, Businessweek, the Wall Street Journal, the New York

Times, and from local national newspapers. Table 7.7 shows the distribution of different

intended message categories in different sources. Because USA Today, Businessweek,

Newsweek and the Wall Street Journal are the four major sources, we put all other sources

into “Other Sources” category; they include the New York Times, the Wilmington News

Journal, etc. Please notice that in Table 7.7 the sum within a column is equal to 100%.

Messages USA Today Businessweek Newsweek WSJ “Other Source”
RT 38.0% 21.7% 29.4% 0 23.8%
FT 12.0% 9.6% 5.9% 0 4.8%
ST 1.0% 0 0 0 0
CT 23.0% 32.5% 23.5% 0 19.0%
CTR 7.0% 14.5% 5.9% 0 9.5%
CTLS 7.0% 8.4% 17.6% 0 0
CSCT 4.0% 1.2% 0 0 9.5%
BJ 1.0% 4.8% 0 21.1% 9.5%
BF 4.0% 6.0% 11.8% 78.9% 23.8%
PC 3% 1.2% 5.9% 0 0

Table 7.7: Distribution of different intended message categories in different sources. The
Wall Street Journal is shown as WSJ.

Input to the Intention Recognition Module is the augmented XML representation

of a graphic produced by the Graph Segmentation Module. We used leave-one-out cross
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validation in which each of the graphics is used once as the test graphic, with the condi-

tional probability tables computed from the other 239 graphics. Our system recognized

the correct intended message with the correct parameters for 173 line graphs, which gave

us a 72.08% overall success rate. The accuracy rate for each intended message category is

listed in Table 7.8. Failure of the Suggestion Generation Module to generate a candidate

message matching the correct intended message prevents our Bayesian network from rec-

ognizing the correct intended message. If we compute the success rate on just the 215 line

graphs for which the candidates produced by the Suggestion Generation Module included

the intended message, the system achieves an 80.4% success rate.

Intended message # of training cases Percentage Accuracy
RT 66 27.5% 93.94%
FT 22 9.17% 86.36%
ST 1 0.42% 0%
CT 58 24.17% 79.31%
CTR 22 9.17% 40.91%
CTLS 17 7.08% 52.94%
CSCT 7 2.92% 28.57%
BJ 11 4.58% 36.36%
BF 31 12.92% 61.29%
PC 5 2.08% 60%
Total line graphs 240 100% 72.08%

Table 7.8: Distribution of intended message in training data and the corresponding accu-
racy

If we use the message category that occurs most often as a baseline, namely

Rising-Trend at 27.5%, then our system’s success rate represents an improvement of

162.1% over merely selecting the most prevalent message category. However, it should

be noted that our system not only must identify the correct message category but also

must accurately identify the parameters of the intended message.

The system’s errors are partially due to sparseness of data. For example the worst

result is produced for the Stable-Trend and Contrast-Segment-Change-Trend intended

message categories; we only have 1 and 7 instances of these two categories respectively.
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When we do a leave-one-out cross validation for the Contrast-Segment-Change-Trend

intended message category, we only have the remaining 6 training cases to contribute to

the conditional probability tables. If some feature occurs in 2 of the 7 instances, and we

use one of them as a test case, the conditional probability in the evidence node reflecting

the occurrence of that feature drops significantly from 28.57% to 16.67%. Similarly if

we have only one graphic where a particular verb class is used to indicate an intention

category, then leave-one-out cross validation has no means to connect the verb class with

that intention category and we are likely to get an incorrect result when hypothesizing the

intended message of that graphic.

In addition, if the Graph Segmentation Module does not produce the correct seg-

mentation of a graphic, the Suggestion Generation Module is unlikely to produce a set of

suggested messages that includes the graphic’s intended message, and thus the Bayesian

network will not correctly hypothesize it. From this perspective, the Graph Segmentation

Module places an upper bound of 89.58% on the system performance.

However, it should be noted that for some cases even when our system does not

produce the ideal result, the message hypothesized by our system still reflects the infor-

mation in the graphic if the trend segments provided by our Graph Segmentation Module

are correct.

7.5 Identifying sub-intended message category for Big-Jump and Big-Fall intended

messages

In our corpus we have noticed that the graph designer usually follows a sudden

sharp rising or falling segment with a series of data following these sudden changes. We

hypothesize that this series of data are used by the graph designer to show what happens

following the sudden big jump or big fall. For example, Figure 7.8a conveys a message

that there was a big jump in the number of lay-offs from the second quarter of 2000 to the

third quarter of 2001; it also conveys a message that after the big jump in the number of

lay-offs ended in the third quarter of 2001, the number of workers laid off didn’t stay at the
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Name of Evidence Description and values
SustainSlope Measures the slope of the regression line of the data

points following the sudden rising or falling segment.
It is a continuous number.

SustainThreshold Measures the ratio between two heights: the height
between the lowest and the highest points in the data
series following the Big-Jump/Big-Fall segment, and
the height of the Big-Jump/Big-Fall segment. This
ratio is a continuous value between 0 and 1.

Table 7.9: The evidence nodes and their corresponding values for sub-intended messages
Big-Jump-Sustain/Big-Jump-NotSustain and Big-Fall-Sustain/Big-Fall-NotSustain

high level but dropped until the first quarter of 2006. We refer to this failure to sustain the

big jump as a sub-intended message. In our training data, we observe that only Big-Jump

and Big-Fall intended messages have apparent sub-intended messages which are either

“Sustain” or “Not Sustain”, reflecting whether or not the values remain at the high/low

level until the end of the graphic. So the four sub-intended message categories are Big-

Jump-Sustain/Big-Jump-NotSustain and Big-Fall-Sustain/Big-Fall-NotSustain. The pa-

rameters of these sub-intended messages are the same as the parameters for the Big-Jump

or Big-Fall intended message, which are the start point and end point of the sudden rising

or falling segment.

For each training line graph with Big-Jump or Big-Fall intended message, the hu-

man annotators discussed and reached a consensus on its sub-intended message. To build

a model to identify the sub-intended message, we use the C4.5 decision tree algorithm[76]

provided by Weka[94]. The evidence passed to the decision tree includes the two listed

in Table 7.9 and the “XDuration”, “YScale”, “LastLength”, “TouchEnd”, “BigSlope”,

“SmallLargeRatio” and “LastSegmentMatchWord” shown in Table 7.2 and 7.3. The train-

ing set contains 42 training instances with Big-Jump and Big-Fall intended messages, 24

of them have “Sustain” sub-intended messages and 17 of them have “Not Sustain” sub-

intended messages. Using leave-one-out cross validation on this training set, the decision

tree achieves a 97.6% (41 out of 42) success rate at identifying whether or not the sudden
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change is sustained, which has a 70.9% improvement over the baseline method which

achieves a 57.1% success rate by always choosing the most frequent sub-intended mes-

sage which is “Sustain” in our training set.

7.6 Summary

This chapter presented our methodology for recognizing the intended message

of a line graph. It constructed a probabilistic graphical model that arbitrates among the

message candidates suggested by the Suggestion Generation Module. The communica-

tive signals are used as evidence nodes in the Bayesian network. Our system achieves

a success rate of 72.08% on 240 training instances using leave-one-out cross validation.

Chapter 9 presents a demonstration of the intended message recognition system used as

part of an assistive technology project for individuals with sight impairments.
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Chapter 8

MOST RELEVANT PARAGRAPH IDENTIFICATION

Our work on recognizing the intended message of a line graph has been discussed

in the preceding chapters. The system for recognizing the intended messages can con-

tribute to several areas such as assistive technology, multimodal document summariza-

tion and retrieval of information graphics. However, we hypothesize that for each of

these applications, identifying the paragraphs in a multimodal document that are most

relevant to the information graphic will be necessary. The identification of the most rele-

vant paragraph relates the intended message of an information graphic to a sub-part of its

enclosing article. The rest of this chapter is outlined as follows. Section 8.1 discusses the

necessity and potential contribution of identifying the most relevant paragraph for several

research areas. Section 8.2.1 discusses our basic method for identifying the most rele-

vant paragraph – KL divergence. It is not only a text similarity measurement but also has

background from generative probability. Section 8.2.2 and 8.2.3 discuss our two meth-

ods for learning an expansion word list to improve the result. Section 8.3 evaluates our

method and compares it with another method. Section 8.4 presents two examples illus-

trating the effectiveness of our method. Section 8.5 discusses related work from research

areas such as passage retrieval and question answering. The conclusion summarizing this

whole chapter and the future work are in Section 8.6.

8.1 Importance of relevant paragraph identification

Unlike scientific articles, the texts of multimodal documents from popular media

rarely refer explicitly to their information graphics and the graphics often do not appear
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Figure 8.1: A line graph from an article about consumer spending where the most geo-
graphically adjacent paragraph is not relevant to the line graph

adjacent to a relevant paragraph (or even on the same page).

For example, the graph in Figure 8.1 is included in an article published in USA

Today with the headline “Paper or plastic? Answer might save at the pump”. The most

relevant paragraph within the article is the following:

• “More than three-quarters of the gas pumped in the USA is sold at convenience

stores. In 2005, 58% of gas was bought using credit and debit cards. Retailers say

that number has been climbing in 2006, Lenard says.”

But the paragraph closest to the line graph is the following, which is not relevant to the

line graph:

• “But on a recent Monday morning, the restaurant owner from Edgemoor, S.C., took

out his wallet, went into the gas station convenience store and paid with cash to

take advantage of a 4-cent discount for cash customers.”

Section 8.1.1, 8.1.2 and 8.1.3 discuss three projects where we hypothesize that it

would be beneficial to identify the paragraphs most relevant to an information graphic.
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8.1.1 Assistive technology

The intended message recognition system can be used in an assistive technology

project to provide blind users with access to the high-level content of an information

graphic. Once the intended message of an information graphic has been recognized,

it can be realized as English text and the screen-reading software JAWS can read the

brief textual summary to the user. This is the approach taken by the SIGHT system

which is described in the next chapter. One option is for the SIGHT system to prompt

the user at the location where the information graphic appears in the webpage. But as

Section 8.3 will show, paragraphs that are geographically closest to where the information

graphic is displayed are often not relevant to the information graphic. Practically, if the

screen-reading software is reading some content and then suddenly mentions that there

is a line graph, blind users have no clue about whether it is worth the time to listen to

the summarization of the information graphic since it might be totally irrelevant to what

has been read in the text. Moreover, summarizing the graphic at the wrong location

will likely interrupt the user’s understanding of the whole article rather than assisting

it. On the other hand, when the screen-reading software is reading some content which

is relevant to a line graph in the document, if the software doesn’t mention there is an

information graphic relevant to the current content, the blind user will miss it and thus

have an incomplete understanding of this portion of the multimodal document. Therefore,

ideally the user should be prompted about the existence of an information graphic at the

location in the text that is most relevant to the graphic’s content, so that the overall reading

of the document(both the content of the information graphic and the text of the article) is

coherent.

8.1.2 Summarization of multimodal documents

Although abstractive summarization is the Holy Grail of summarization research,

the state-of-the-art is extractive summarization in which important clauses or sentences

are extracted from a document’s text. The extracted text is then knitted together into a
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summary, with the pieces of text generally appearing in the same order as in the original

article.

Extractive summarization research has focused on text, and little attention has

been given to multimodal documents. For the most part, this has been due to the difficulty

of identifying the content of non-textual components of a document and how this content

relates to the document’s text. As shown by [11], the message conveyed by an information

graphic in popular media (such as newspapers and magazines, as opposed to scientific

articles) is often not repeated in the article’s text; furthermore, the graphic’s caption often

contains little or none of the graphic’s primary intended message. Thus, information

graphics in multimodal documents cannot be ignored.

We hypothesize that our work on intended message recognition might be applied

to the summarization of multimodal documents by inserting the graph’s summary into

the document’s text and then applying traditional extractive summarization techniques to

construct a summary of the entire document. However, the graph’s summary must be

inserted at a relevant point in the document if extractive summarization techniques are

to succeed. Thus extractive summarization of a multimodal document requires that the

appropriate placement of content from its information graphics be identified.

8.1.3 Retrieval of information graphics

Information graphics contain knowledge that is often not repeated in the article’s

text. Thus a system that could retrieve information graphics from a digital library would

be very useful. Current retrieval systems do not try to understand, and take into account,

the graphic’s high-level content. We hypothesize that a good approach to graph retrieval

is a mixture model. This mixture model should take into account the graphic’s intended

message (recognized by our system) and the textual component of the graphic which is its

caption/description/text-in-graphic1, and the article containing the information graphic.

1introduced in Chapter 5.
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Figure 8.2: A line graph which appears in an article with multiple topics

However, the article may contain multiple topics, many of which are not relevant to the

information graphic. For example, an article in popular media discussing global warm-

ing contains Figure 8.2 showing a changing trend in ocean levels. But it also discusses

other topics such as how an animal’s living habits have changed and how the weather has

changed. Those topics are not relevant to Figure 8.2, and thus we hypothesize that these

portions of the text should not be considered in the mixture model for deciding whether

to retrieve this graphic in response to a user query. Therefore, the mixture model using

the whole article may not be appropriate. If we can identify several paragraphs relevant

to an information graphic and use only them in the mixture model, we hypothesize that

the results are likely to be better than if the whole article was used.

8.2 Identifying the most relevant paragraph

To identify the paragraphs that are most relevant to an information graphic, we will

take advantage of the textual component in an information graphic and the instantiated

parameters of the graphics intended message. The methods discussed in this chapter have

been applied to line graphs. The textual component of a line graph consists of caption,
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description and text-in-graphic2.

Section 8.2.1 proposes a KL divergence based calculation which measures the sim-

ilarity between the textual component of the line graph and the paragraphs. Section 8.2.2

then proposes a second method that augments the textual component with words selected

from a word list consisting of verbs and adjectives that commonly appear in multimodal

documents, and with the parameters of the intended message of a line graph. The first

part of the expansion word list reflects domain-independent graphic content and thus

captures words that might appear in a paragraph relevant to any information graphic;

the parameters of the intended message reflect the line graph’s specific content and thus

might appear in a paragraph that is specific to this information graphic. Section 8.2.2.1

introduces our method to learn the expansion word list. Section 8.2.3 further extends the

method discussed in Section 8.2.2 by applying the KL divergence with expansion word

list to measure the relevance of both a paragraph and each sentence in this paragraph. The

linear combination of the scores from a paragraph and the most relevant sentence in this

paragraph is used to rank the paragraph.

In our current work, we assume that a document contains a single information

graphic; future work will extend our methodology to documents with multiple informa-

tion graphics or composite information graphics.

8.2.1 Method P-KL: KL divergence

Our basic algorithm uses Kullback-Leibler divergence to measure the similarity

of two language models, one model for a paragraph in a document and the other model

for the information graphic’s textual component. KL divergence has been widely used

in natural language processing and text mining. It measures the difference between two

distributions, either continuous or discrete, and can be written as

DKL(p||q) =
∑
i∈V

p(i)log
p(i)

q(i)
(8.1)

2introduced in Chapter 5
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where i is the index of a word in vocabulary V, and p and q are two distributions of words.

If p and q represent the same word distribution, DKL(p||q) will be 0. For our problem

of identifying the relevant paragraphs, p is a smoothed word distribution built from the

line graph’s textual component, and q is another smoothed word distribution built from a

paragraph in the corresponding document. Smoothing addresses the problem of instances

with zero occurrences of a word in the word distribution, which will cause problems in

computing the KL divergence. We assign the observed word its true word frequency and

assign each unobserved word a low frequency (such as 0.01) and then normalize the word

distribution. We rank the paragraphs by their KL divergence score from lowest to highest,

since lower KL divergence scores indicate a higher similarity.

Although KL divergence and cosine similarity both seem to be distance measure-

ments, KL divergence has more meaning for our purposes than cosine similarity. We can

rewrite Equation 8.1 as follows:

DKL(p||q) =
∑
i∈V

p(i)log
p(i)

q(i)
(8.2)

=
∑
i∈V

p(i)log(p(i))−
∑
i∈V

p(i)log(q(i)) (8.3)

=
∑
i∈V

p(i)log(p(i))−
∑
i∈V

cp,i∑
i∈V cp,i

log(q(i)) (8.4)

=
∑
i∈V

p(i)log(p(i))− 1∑
i∈V cp,i

∑
i∈V

cp,ilog(q(i)) (8.5)

=
∑
i∈V

p(i)log(p(i))− 1∑
i∈V cp,i

log
∏
i∈V

q(i)cp,i (8.6)

(8.7)

where we assume that the word probability in distribution p is obtained by word

counting as cp,i∑
i∈V cp,i

where cp,i is the count of word i in the textual component of a line

graph to obtain word distribution p, and the q(i) is the probability of generating word i

from a paragraph. The rank of a paragraph whose word distribution is represented by q is
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determined by
∏

i∈V q(i)cp,i which is the probability of generating the textual component

of the graphic from a paragraph. This model matches our intuition well since usually the

words in an information graphic are much fewer than in paragraphs.

8.2.2 Method P-KLE: KL divergence with augmented textual component

In our KL divergence calculation, measuring the distribution distance from the

textual component of a graphic to a paragraph is essentially measuring the generative

probability of the textual component from a paragraph. But the number of words in the

textual component of an information graphic is small. This will increase the sparsity

problem since some words in the paragraph may be relevant to the information graphic

but are not contained in the textual component of the graphic. Moreover, the textual

component can vary depending on the domain, whereas much of the actual graphic has

domain-independent information. For example, most line graphs present trends, rises or

falls, results(higher or lower), and some bar charts represent ranks or comparisons. This

sparsity problem and loss of domain-independent information in the textual component

suggests a potential improvement for the identification of the most relevant paragraphs.

Thus we decided to explore whether we could automatically extract a set of expansion

words that are commonly used in paragraphs that are relevant to information graphics. In

the following discussion, we refer to it as the “expansion word list”.

The expansion word list is identified using a relevance feedback technique. It is an

iterative process where pseudo-relevant paragraphs are first selected using KL divergence

on each graphic’s textual component, and a set of words relevant to the textual component

are identified. In each subsequent iteration, for every information graphic, we extract k

pseudo-relevant paragraphs using KL divergence with the textual component augmented

with the expansion word list produced on the previous iteration. Therefore at the end of

an iteration, there will be at most k · N pseudo-relevant paragraphs selected where the

total number of articles is N .
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The word list resulting from each iteration is a ranked list of words. We assume

that the ideal words are verbs and adjectives because they have minimal binding with the

domain-specific knowledge of each information graphic. For example, in our data set col-

lected from popular media, there might be many information graphics conveying finan-

cial information where the relevant paragraphs contain words such as “share”, “price”,

etc. But we shouldn’t arbitrarily extend an information graphic’s textual component with

these words since they are not relevant to information graphics in other domains. Those

words are too domain-specific compared with words like “rise”, “drop”, “up”, etc. There-

fore we filter the resulting word list by using WordNet to remove the words whose domi-

nant sense is neither verb nor adjective. To determine the dominant sense from WordNet,

we calculate the number of senses belonging to different categories such as noun, verb,

adjective, etc. For example, the word “rise” has 10 noun senses and 17 verb senses, so

the word “rise” is regarded as a verb and won’t be filtered. Since the filtered word list is

also a ranked list of all observed verbs and adjectives, we choose the top l words from the

word list. In our experiments, we chose l = 25.

In addition, the parameters of an intended message capture domain-specific con-

tent of the graphic’s communicative goal. For example, the intended message of the line

graph in Figure 8.2 is ChangeTrend(1900, stable, 1930, rise, 2003) conveying a changing

trend in ocean levels over the period from 1900 to 2003 with the change from relatively

stable to rising occurring in 1930. The parameters 1900, 1930 and 2003 may not appear

in the graphic’s textual component yet may appear in a relevant paragraph. Thus we also

added the parameters of the intended message to the expansion word list.

We assume in each iteration that the expansion word list will be improved, (only

the machine learned part of the expansion word list will be improved, whereas the param-

eters of the intended messages of the information graphics will stay the same between

iterations), and thus the pseudo-relevant paragraphs will be closer to the actual relevant

paragraphs, which facilitates obtaining a better expansion word list on the next iteration.
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These iterations continue until the learned expansion word list stays the same or changes

minimally.3

To select the most relevant paragraph in a new test document containing an infor-

mation graphic, we apply KL divergence to relate the textual component of the graphic

augmented with the expansion word list to each paragraph of the document. Because the

textual component may be even shorter than the expansion word list, we don’t add a word

from the expansion word list to the textual component unless the compared paragraph

also contains this word.

8.2.2.1 Learning the expansion word list from word frequency

To learn the expansion word list, we regard the articles and pseudo-relevant para-

graphs as two sets of words, i.e. we disregard from which document a pseudo-relevant

paragraph was selected. We assume that the collection of pseudo relevant paragraphs was

generated by two independent models, one producing words relevant to the information

graphics and one producing words relevant to the topics of the documents. Let Wg repre-

sent the word frequency vector that generates words relevant to the information graphics,

Wa represent the word frequency vector that generates words relevant to the set of articles,

and Wp represent the word frequency vector of the set of pseudo-relevant paragraphs.

We can compute Wp from the whole set of pseudo-relevant paragraphs, and we

can estimate Wa as the word frequency vector for the entire set of articles. We want to

compute Wg by filtering the components of Wa from Wp. This is similar to the work done

by Widdows[93] on orthogonal negation of vector spaces. The problem can be formulated

as follows:

1. Wp = αWa + βWg where α > 0 and β > 0, which means the word frequency

vector for the pseudo-relevant paragraphs is a linear combination of the background

(topics) word frequency vector and the graphic word vector.

3There is no proof that the pseudo-relevant paragraphs and the expansion word list will converge.
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2. < Wa,Wg >= 0 which means the background word vector is orthogonal to the

graph description word vector. We assume that when the author writes paragraphs

that are unrelated to the graphic, he/she will not have the graphic words in mind.

Therefore the graphic word vector is independent of the background word vector

and these two share minimal information. Since we use a vector space model to

represent Wa and Wg, orthogonality is obtained by assuming that these two word

vectors have minimum similarity.

3. Wg is assumed to be a unit vector. Whether or not Wg is a unit vector is immaterial

for our method, since we are interested only in the relative rank of the word fre-

quencies, not their actual values. However, assuming that Wg is a unit vector gives

us three equations in three unknowns (Wg, α, and β) which can be solved for Wg.

With these three assumptions, we obtain

α =
< Wp,Wa >

< Wa,Wa >
(8.8)

Wg = normalized
(
Wp −

< Wp,Wa >

< Wa,Wa >
·Wa

)
(8.9)

The calculated Wg is used in our methods P-KLE and P-KLEM. The top k words

which have the highest word frequency are selected as the expansion word list.

8.2.3 Method P-KLEM: using sentence in addition to paragraph to improve the

result

Sometimes we consider a paragraph relevant only because there is a relevant sen-

tence in the paragraph, without contribution from other sentences. We hypothesize that

taking into consideration both the best sentence in a paragraph and the paragraph itself

may further improve the result. We implement another method named P-KLEM, which

computes the final score for a paragraph as a weighted sum of the original score for the
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paragraph and the score for the best sentence in the paragraph (the sentence with the

lowest KL divergence from the augmented textual component).

Scorefinalp = λScorebest sentence∈p + (1− λ)Scorep

In our experiment, we arbitrarily choose λ = 0.5.

8.3 Evaluation

In the following evaluations and examples, we will denote the KL divergence

method without the expansion word list as P-KL where “P” represents the paragraph

selection and “KL” means that we are using KL divergence to select the most relevant

paragraphs. We will denote the method using the expansion word list as P-KLE, where

“P-KL” means we are using KL divergence to select paragraphs, and “E” means the tex-

tual component of a line graph is augmented by the expansion word list. The further

improvement (which combines the scores from a paragraph and the most relevant sen-

tence in the paragraph as discussed in Section 8.2.3) is represented as “P-KLEM”, where

the “E” means that it uses the expansion word list and “M” means that it uses a mixture

of scores from both paragraph and sentence.

8.3.1 The dataset

We have compiled a dataset of 367 information graphics with full articles from

multiple national sources such as USA Today, Businessweek, Newsweek, The New York

Times, The Wall Street Journal and some local sources such as The Wilmington News

Journal. 100 graphs and articles out of the 367 information graphics had been analyzed

by two human evaluators. For these articles, the two human evaluators identified para-

graphs in each document that were relevant to its constituent information graphic and

ranked them in terms of relevance. On average, Evaluator-1 selected 1.99 paragraphs and

Evaluator-2 selected 1.67 paragraphs. For 66% of the graphs the two evaluators agreed on
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the top ranked paragraph, with a kappa statistic of 0.6244; the other 34% of the graphics

show that in many cases, the most relevant paragraph is not obvious and several possibili-

ties exist. We held out the 100 line graphs as a test set and used the remaining line graphs

to learn the expansion word list.

8.3.2 Evaluation criteria

After the expansion word list was learned from the set of 267 information graph-

ics with accompanying articles, all three of our methods (P-KL, P-KLE and P-KLEM)

processed the 100 test graphics with accompanying articles, and each method produced

a ranked list of the paragraphs in terms of relevance. We evaluated the results in several

ways. For summarization, we want to insert the summary of the graphic at a coherent

point in the article’s text and then apply extractive summarization on the text. For the

assistive technology project for blind users, we want to prompt the blind users about the

existence of an information graphic at the most relevant paragraph. These require us to

use only the top result of our ranked list of relevant paragraphs for each document and

thus lead to two evaluation criteria:

1. TOP: the method’s success rate in selecting the most relevant paragraph, measured

as how often the most relevant paragraph identified by the method matches one of

the two evaluator’s top-ranked paragraph.

2. COVERED: the method’s success rate in selecting a relevant paragraph, measured

as how often the most relevant paragraph identified by the method matches one of

the paragraphs identified as relevant by the evaluators.

For our work on retrieving information graphics from a digital library, we want

to use several paragraphs in the accompanying article to replace the article component

4Since the selection of paragraphs is different for each subject, the probability of chance agreement

in kappa statistic is computed assuming that the probability of selection is 1/n where n is the number of

paragraphs in the document.
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in our mixture model[104, 42, 3, 65] to rank graphics for retrieval. Therefore we want

to select several top ranked paragraphs. Thus an appropriate evaluation criteria is nor-

malized discounted cumulative gain (nDCG)[44, 19]. The nDCG is between 0 and 1,

and measures how well the rank-order of the paragraphs retrieved by our method agree

with the rank-order of the paragraphs identified as relevant by our evaluators. nDCG is

defined by the following formulas:

nDCGp =
DCGp

IDCGp

(8.10)

where DCGp = rel1 +

p∑
i=2

reli
log2(i)

(8.11)

and IDCGp is the highest possible DCGp (8.12)

The reli is the gain of retrieving a paragraph and the 1
log2(i)

is the discount accord-

ing to its position i. The DCG calculation used in Information Retrieval as shown in

Equation 8.11 doesn’t assign a discount to the document at rank 2 (because log2(2) = 1).

Thus following Burges[6, 7, 8], we have changed the calculation of nDCG by assigning

discount log2(i + 1) to rank i > 1 in Equation 8.11 instead of using log2(i). Our nDCG

is measured as follows:

nDCGp =
DCGp

IDCGp

(8.13)

where DCGp =

p∑
i=1

reli
log2(i+ 1)

(8.14)

and IDCGp is the highest possible DCGp (8.15)

We set the cut off position at p = 3. The value of reli depends on p and the number

of relevant paragraphs identified by the human evaluator. If the human evaluator identifies

k paragraphs as relevant (where k ≤ p), then reli = k if the i-th ranked paragraph by the

system matches the top-ranked paragraph by the human evaluator and is equal to k − 1

or k − 2 if it matches the paragraph ranked second or third by the human evaluator,
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Table 8.1: Machine learned expansion word list

P-KLE up down rise according fall high expect low late grow de-
cline hit federal buy free drop worry dip long august jump
risky back average surge

respectively. Ranking a good paragraph higher gets less discount with the same gain, and

ranking a better paragraph at the same position gets higher gain with the same discount.

They both achieve a better nDCG score.

8.3.3 Experimental results

First let’s take a look at the expansion word list learned by P-KLE. The top 25

words in the ranked word lists provided by P-KLE is shown in Table 8.1. Although there

is still noise in the word list after the pseudo relevance feedback with filtering and iter-

ations, most words, such as “up”,“rise”,“down”,“fall”, are relevant to line graphs. We

observe that the word “according” is ranked high. We suggest that authors who want to

include data professionally add in the data source as “according to XXX” and then add

an information graphic to convey their message about the data. Thus the phrase “accord-

ing to” co-occurs often with line graphs. The word “average” is also ranked fairly high.

Although it doesn’t describe trends, it may be used to describe data shown in the infor-

mation graphics. The word “hit” is used interestingly in popular media when mentioning

outstanding data, as in “sales hit $106 million” or “The September unemployment rate

hit 25.9%, the highest rate since World War II”. Thus the expansion word list contains

words that are independent of the domain but are often used in paragraphs relevant to

information graphics.

Figures 8.3 and 8.4 and Table 8.2 present the success rate for all of our methods

for criteria TOP and COVERED, along with the success rates for two baseline methods:

1) selection of a random paragraph as most relevant (labelled “random”), and 2) selection

of the paragraph that is closest to the information graphic (labelled “nearby”). The results

displayed in Figures 8.3 and 8.4 show that all of our methods based on the KL divergence
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Figure 8.3: Success rate in selecting the paragraph identified as most relevant by one of
the two human evaluators

(or generative probability) outperform the baseline methods. P-KLE with expansion word

list is a further improvement on P-KL. The P-KLEM has the best result. P-KLE and P-

KLEM select the best paragraph in 57% and 64% of the test cases respectively, and select

a relevant paragraph in 67% and 78% of the cases, respectively. Techniques based on

P-KL with expansion word list doubles or almost doubles the success rate of the base-

line methods. The improvement of P-KLE and P-KLEM over P-KL indicates that our

expansion word list successfully expands the textual component with words pertinent to

the graphic itself.

Criteria random nearby P-KL P-KLE P-KLEM
TOP 19.28% 25% 45% 57% 64%
COVERED 23.14% 37% 62% 67% 78%

Table 8.2: Success rate of each method for criteria “TOP” and “COVERED”

A binomial test assumes each test case generates a binary result, either “correct”

or “incorrect” where “correct” means that the returned top result by the corresponding
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Figure 8.4: Success rate in selecting a paragraph identified as relevant by one of the two
human evaluators

method matches the paragraph selected as best by one of the human evaluators under

the “TOP” criteria, or matches one of the paragraphs identified as relevant by a human

evaluator under the ”COVERED” criteria. The null hypothesis is that the two compared

success rates are the same. The binomial distribution can be approximated by a normal

distribution because we have 100 test cases and the success probability used in binomial

test is not near 0 or 1. The approximation using the normal distribution for the binomial

test can be represented as

z =
p− p̂√
p̂(1−p̂)

n
)

where p is the success rate of the improved method and p̂ is the success rate of the method

it is being compared to.

The statistics presented in Table 8.3 show that our P-KL model has a significant

improvement over just selecting the closest paragraph and P-KLE also has significant im-

provement over P-KL on the “TOP” criteria. P-KLEM provides significant improvements

on both P-KL and P-KLE for both “TOP” and “COVERED” criteria.
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Comparison TOP COVERED
Z value significance level Z value significance level

P-KL over nearby 4.6188 0.001 5.1781 0.001
P-KLE over P-KL 2.4121 0.01 1.0301 not significant
P-KLEM over P-KL 3.8191 0.001 3.2963 0.001
P-KLEM over P-KLE 1.4139 0.1 2.3394 0.01

Table 8.3: The Z value and one tail significance level when comparing the improvement
between two methods
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Figure 8.5: The nDCG scores provided by each algorithm, using random algorithm as
baseline

For the criteria nDCG, Figure 8.5 presents the results of evaluating the methods

in terms of the ranked order of their top three results. We measure nDCG using each

of the two evaluators as the ideal, and then average the results. (When comparing the

two human evaluators against one another, their average nDCG is 0.707.) The baseline

method in this evaluation is a random selection of three paragraphs from each document.

We use the student t test for two related samples to evaluate the results[37], which is

calculated as

t =
D̄ − 0

s/
√
n

where D̄ is the mean of the differences between two nDCG scores generated by two
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t score one tail significance level
P-KL over random 7.95 0.001
P-KLE over P-KL 4.08 0.001
P-KLEM over P-KL 3.91 0.001

Table 8.4: The t score and one tail significance level while comparing the different meth-
ods on nDCG

methods. (The null hypothesis is that the two sets of nDCG scores do not differ, which

is reflected by the 0 in the numerator). Let s be the sample standard deviation of the

differences between the two sets of nDCG scores calculated as s =
√

SS
n−1

where SS is

the sum of the squared differences. Let n be the number of cases used; in our experiment,

n = 100. The degree of freedom of this t test is n− 1. Table 8.4 presents the t score and

the one-tail significance level using 99 as degree of freedom. The results in Figure 8.5

and Table 8.4 show that all of our methods outperformed the baseline. Methods P-KL,

P-KLE and P-KLEM all more than quadrupled the nDCG of the baseline method. The

improvements of P-KLE and P-KLEM over P-KL are both statistically significant at the

0.001 significance level.

8.3.4 KL divergence versus cosine similarity

The cosine similarity has been widely used in early information retrieval research.

It regards two bags of words as two word vectors and calculates the angle between these

two vectors to measure their similarity. If the two vectors are represented as A and B, the

cosine similarity is calculated as ∑|V |
i=1 (Ai ·Bi)√∑|V |

i=1A
2
i ·

√∑|V |
i=1B

2
i

where |V | is the total number of words in the dictionary, and Ai and Bi are the count

of word i in word vector A and B respectively. Although cosine similarity measures the

similarity between two word vectors, it doesn’t have as solid a statistical explanation as

KL divergence. We performed an experiment comparing the results provided by cosine
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similarity and KL divergence measurements for relevant paragraph identification. These

are shown in Table 8.5 where “P-CS” means cosine similarity and “P-CSE” means cosine

similarity with the expansion word list. Without the expansion word list, cosine similarity

produces better results than KL divergence; however it doesn’t improve much with the

expansion word list. The improvement of P-KLE over P-KL is much greater than the

improvement of P-CSE over P-CS, and P-KLE performs better than P-CSE on the “TOP”

criteria and equally as well as P-CSE on the “COVERED” criteria. We hypothesize that

because of the essence of the generative probability, KL divergence with the expansion

word list can better address the sparsity problem and thus provide a bigger improvement.

Criteria P-CS P-CSE P-KL P-KLE
TOP 0.49 0.54 0.45 0.57
COVERED 0.65 0.67 0.62 0.67

Table 8.5: Comparing cosine similarity with KL divergence over two criteria

We have also analyzed the performance of KL divergence and cosine similarity

on different document sizes defined according to the number of paragraphs. We sepa-

rated the testing set into three groups: the first group (referred to as small size document

group) contains 31 multimodal documents with between 2 and 10 paragraphs; the second

group (referred to as middle size document group) contains 35 multimodal documents

with between 11 and 15 paragraphs; the third group (referred to as large size document

group) contains 34 multimodal documents with more than 15 paragraphs each. The aver-

age number of paragraphs are 6.65, 13.67, and 25.09 for the small, middle, and large size

document groups respectively. The results for the criteria “TOP” and “COVERED” for

both KL divergence and cosine similarity are shown in Table 8.6. We can see that for all

groups and both similarity measurements, the expansion word list brings improvement.

For small size documents, KL divergence performs better than cosine similarity but for

large size documents the cosine similarity performs better than KL divergence. In our
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corpus, although large size documents contain more paragraphs, they have fewer words

in each paragraph. In our test set, the documents in the small, middle, and large size

document groups have on average 50.3, 40.0 and 32.1 words in each paragraph, respec-

tively. Because KL divergence is based on generative probability, the smaller paragraphs

will bring more sparsity to the KL divergence calculation. Although we have used the

expansion word list to address the sparsity problem within the textual component of a

line graph, the sparsity problem brought by the paragraph wasn’t solved by our method.

Therefore, for the shorter paragraph in a large size document, the cosine similarity is hurt

less than the KL divergence and thus cosine similarity produces better results. A further

improvement on our method may be achieved by choosing between KL divergence and

cosine similarity according to the size of the paragraph.

Document Group Criteria P-CS P-CSE P-KL P-KLE

Small
TOP 0.548 0.548 0.613 0.677
COVERED 0.613 0.645 0.645 0.677

Middle
TOP 0.514 0.543 0.487 0.571
COVERED 0.714 0.714 0.743 0.743

Large
TOP 0.412 0.529 0.265 0.471
COVERED 0.618 0.706 0.471 0.559

Table 8.6: Comparison between cosine similarity and KL divergence on the three docu-
ment groups and two criteria

8.4 Examples

Consider first the graphic in Figure 8.1. It appeared in an article containing 38

paragraphs. The closest paragraph, which has little relevance to the graphic, is

“But on a recent Monday morning, the restaurant owner from Edgemoor,
S.C., took out his wallet, went into the gas station convenience store and paid
with cash to take advantage of a 4-cent discount for cash customers.”

The most relevant paragraph is repeated below:

“More than three-quarters of the gas pumped in the USA is sold at conve-
nience stores. In 2005, 58% of gas was bought using credit and debit cards.
Retailers say that number has been climbing in 2006, Lenard says.”
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Both of our human evaluators selected this paragraph as most relevant to the graphic, and

our best performing methods P-KLE and P-KLEM did the same.

Now consider the graphic in Figure 8.2. This graphic appeared in an article on

global warming containing 23 paragraphs. Not only does the paragraph closest to the

graphic have little relevance to it, but also no paragraph in the article stands out as over-

whelmingly most relevant to the graphic. In fact, the two evaluators selected three and

four paragraphs respectively as most relevant, and not only did they differ on their top-

ranked paragraph but they also had only one paragraph in common. The top-ranked para-

graph identified by all of our methods, P-KL, P-KLE and P-KLEM, are the same, which

is

“Rising sea levels are eroding beaches in the South Pacific.”

Although it does not match the paragraph identified as best by either of the human eval-

uators, the top four paragraphs selected by P-KLE and the top three paragraphs selected

by P-KLEM include the four and three distinct paragraphs identified as relevant by one

of the human evaluators respectively. In addition, the top three paragraphs selected by the

P-KL method (which doesn’t use an expansion word list) are also all relevant as annotated

by the human evaluators. This performance on such a difficult article indicates that our

method can handle articles where the most relevant paragraph is not obvious.

8.5 Related work

Our research on identifying the most relevant paragraphs is similar to existing

work on passage retrieval[62, 60, 84, 107], and especially passage retrieval for question

answering[16, 91, 61, 21, 9, 47]. Their work returns a window of text(can be a fixed

length window or a paragraph) as the result of a query by either measuring the similarity

between this textual window and the query or by using some heuristics such as using a

passage containing “because” for a “why” query. To measure the similarity between the

passage and the query, their work uses either dependency relation[21, 84] or other metrics
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such as language models. In Khalid et al.’s work[47], they show that to answer a “why”

question, KL (Kullback-Leibler) divergence provides better results than the tfidf metric

which is usually used together with cosine similarity measurement.

Our research on identifying the most relevant paragraph differs from their work in

two respects:

1. Different methods have been investigated and they usually use a fixed size window.

However, because one application of our research is to provide a coherent location

for the blind user to be prompted about the presence of an information graphic, the

natural boundary of topic is more important than a fixed size window. Therefore,

we chose to use natural paragraphs as the result of our method.

2. Our passage retrieval is limited to a single document. Therefore, the large scale

relevance feedback techniques[58] used in the typical passage retrieval task which

can retrieve thousands of passages from hundreds of documents for a single query

are not applicable.

Pseudo relevance feedback techniques[101, 96, 97, 86, 10, 56, 17, 53] are also

widely used in query expansion for text or image retrieval. Our research isn’t trying

to retrieve a large number of documents for a single query; instead we identify several

paragraphs pseudo relevant with the textual component of an information graphic and use

them to identify a set of words that are typically used in paragraphs relevant to information

graphics.

Yu et al. [98] used a hierarchical clustering algorithm based on tf-idf to associate

sentences from an abstract with images in biomedical articles. This is similar to our

work since it is also trying to identify a segment of text which is most relevant to a

figure. However in scientific documents, such as biomedical articles, figures are usually

explicitly referred to by a sentence or paragraph. For example, a sentence may explicitly

say “Figure 1 shows XXX” or “as shown in Figure 1, XXX”. With scientific articles one
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can locate the referring sentence first and this sentence will contain words relevant to

the figure. These words can then be used to identify relevant sentences in the abstract.

Information graphics in popular media generally have no number/labels such as “Figure

1” and no explicit reference from the text in the article. This makes our task more difficult.

A basic technique used in our work is Kullback-Leibler divergence. This has been

investigated extensively in the work of Zhai[103, 51] and Lavrenko[54]. As shown in

Section 8.2.1, our application of KL divergence can be reduced to a generative model

which assumes the textual component of an information graphic is generated from a para-

graph; this is similar to the generative model[51, 54] used in the information retrieval area

which assumes that the queries are generated from documents. In the calculation of KL

divergence, to avoid assigning zero probability to an unseen word, multiple smoothing

methods[105, 106, 20] have been proposed and analyzed including Laplace smoothing,

Jelinek-Mercer method and Bayesian smoothing using Dirichlet Priors. The smoothing

used in our work is similar to the Laplace smoothing by assigning a fixed small count

to all unseen words but keeping the count of seen words the same. This smoothing is

very simple; replacing it by the more sophisticated smoothing techniques investigated by

Zhai[105, 106] may improve performance.

8.6 Conclusion and future work

Identifying the most relevant paragraphs can address many problems that arise

in using the intended message of an information graphic in several applications: an as-

sistive technology project for blind users, the extractive summarization of multimodal

documents, and the retrieval of information graphics from a digital library. This chap-

ter has shown that the method based on KL divergence, which essentially measures the

generative probability of the textual component of an information graphic from a para-

graph, can produce good results either when we want to identify only the most relevant

paragraph or multiple top paragraphs ranked by their relevance. The expansion word

list, automatically learned from the dataset without any human intervention, can produce
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further improvement on the basic KL divergence measurement. The addition of the ex-

pansion word list into the KL divergence measurement results in statistically significant

improvements for all three evaluation criteria. Although these methods have been applied

only to line graphs, they don’t use specific features of line graphs, and so can be readily

applied to other kinds of information graphics such as bar charts.
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Chapter 9

THE SIGHT SYSTEM

Our methodology for recognizing the intended messages of line graphs has been

integrated into the SIGHT system which provides blind users with access to the full con-

tent of multimodal documents. SIGHT[31, 32] is designed to work within Internet Ex-

plorer and uses JAWS screen-reading software. The text of the document is read to the

user via JAWS. To provide access to the high-level content of an information graphic,

SIGHT calls the Visual Extraction Module to provide an XML representation of the

graphic, an inference module to identify the graphic’s intended message which forms

the basis for a brief summary of the graphic, and then FUF/SURGE to realize the logi-

cal representation of the intended message as English text which is then read to the user

by the screen-reading software. SIGHT was originally implemented only for simple bar

charts. To extend SIGHT to work for line graphs, several problems had to be addressed.

1. If the image is a line graph, the Visual Extraction Module produces an XML repre-

sentation including all information about this line graph. This XML representation

includes the elements of a line graph such as the caption, the description, the text-

in-graphic and the tick-marks on the x axis and y axis. It also contains a sampling of

the line graph. The Visual Extraction Module samples the line graph by capturing

the coordinate of the pixels of two ends of each straight line. It might provide a set

of sample points clustered at some location such as in Figure 9.1 because the VEM

captures all straight segments even if the two end-points of a straight segment are
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Figure 9.1: A plot of the sample points generated by VEM. The circled areas contain
clusters of sample points because the VEM doesn’t necessarily sample line graphs with
uniform intervals.

very close (by one or two pixels). Therefore, the sample points don’t have a rel-

atively uniform distribution across the x axis as is required by the statistical tests

used in the Graph Segmentation Module. Thus it was necessary to design a resam-

pling module that provides a new set of sample points that balances the need for a

uniform distribution against the need to include all of the outstanding points (the

outstanding points are the local minimum or maximum points). The resampling

procedure is described in Appendix A.

2. An inference mechanism had to be developed for recognizing the intended message

of a line graph. This work was described in Chapter 5, 6, and 7.

3. In order to provide a more coherent presentation for the user, a methodology was

needed for identifying the paragraph in a multimodal document that is most relevant

to an information graphic. Chapter 8 presented our method for achieving this goal.

4. The above new modules had to be integrated into the SIGHT system and the overall

processing had to be modified so that users are provided with access to line graphs
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Figure 9.2: The brief summary of a line graph in SIGHT system

at the most relevant point in a document instead of where the information graphics

appear in the document.

Note that the logical representation of the intended message produced by the in-

ference module does not contain a referent to what is being measured – what we refer to

as the measurement axis descriptor. For example, the measurement axis descriptors for

Figure 9.2a and Figure 9.3a are “Durango sales” and “annual difference from Seattle’s

1899 sea level, in inches” respectively. Seniz Demir[23] designed a module to extract the

measurement axis descriptor by applying a set of heuristics to the various textual compo-

nents of a line graph, such as the caption, description, text-in-graphic, etc. The logical

representation of the intended message of a line graph along with the measurement axis

descriptor are sent to a realization module that uses FUF/SURGE to produce an English

summary.

9.1 Examples

The following two examples illustrate how the extended SIGHT system processes

a multimodal document containing a line graph. Our first example is an article from

the Wilmington News Journal containing the line graph in Figure 9.2a. Input to the im-

plemented version of SIGHT is a webpage containing the xfig redrawn graphic and the
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associated article. In the earlier version of the SIGHT system for bar charts, the screen-

reading software prompted the user about the presence of a bar chart at the location where

it appeared in the document. But as we saw in Chapter 8, the geographically closest para-

graph might not be a coherent place to mention the presence of an information graphic.

Based on our research on identifying the most relevant paragraph, the enhanced SIGHT

system prompts the user at the paragraph most relevant to the graphic in Figure 9.2a,

namely:

Doing so likely would require the company to bring in a new model. Sales of the

Durango and other gas-guzzling SUVs have slumped in recent years as prices at the pump

spiked.

If the user requests access to the graphic by typing Ctrl-Z, the Visual Extrac-

tion Module produces an XML representation of the line graph and the Caption Tagging

Module identifies helpful words in the caption and description. The Resampling Module

described in Appendix A is invoked to produce a relatively uniform distribution of sam-

ple points while still capturing change points in the data. Then the Message Recognition

Module hypothesizes the graphic’s intended message. The intended message of the line

graph shown in Figure 9.2a is correctly identified and the textual summary “This graphic

conveys a changing trend in durango sales, rising from 1997 to 1999 and then falling to

2006.” is produced by FUF/SURGE and read to the user by JAWS.

Another example illustrating the SIGHT system’s performance is an article from

USA Today containing the graphic shown in Figure 9.3a. In this document, the most

relevant paragraph is not clear. Two human evaluators returned six paragraphs in total as

relevant and they only agreed on one paragraph(not the top one of either of their ranked

paragraphs). The SIGHT system prompts the user about the presence of this line graph at

the paragraph:

Rising sea levels are eroding beaches in the South Pacific.

The paragraph selected by our SIGHT system was regarded as relevant to the line
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Figure 9.3: The brief summary of a line graph in SIGHT system

graph by one of our two human evaluators. If the user then types Ctrl-Z, the intended mes-

sage displayed in Figure 9.3a is recognized and conveyed to the user as spoken language

by JAWS.

9.2 Summary

Our research has extended SIGHT so that it can handle simple line graphs as well

as simple bar charts. Future work will address constructing a slightly longer summary that

expands on the graphic’s intended message by including salient features of the line graph

and extending SIGHT’s interaction facility to provide the user with further information

about the graphic, both of which SIGHT does for bar charts.

117



Chapter 10

FUTURE WORK

We have discussed our methods for recognizing the intended messages for line

graphs and how we can identify the paragraphs in a document that are most relevant to an

information graphic. The SIGHT system has been enhanced to include both results so that

a blind user can be prompted about the presence of a line graph at the most relevant place

in a document and can be provided with an English language realization of its intended

message. The following sections discuss our future work based on the intended message

recognition and most relevant paragraph identification.

10.1 Follow-up questions for line graphs

Seniz Demir has extended Elzer’s work[32, 31] on bar charts to produce longer

natural language summaries that included salient features of the graphic[25, 24, 26]. In

addition, she provided a mechanism for responding to requests for follow-up information[25,

24, 26].

However, extended summaries of line graphs will differ from summaries of bar

charts since the features of line graphs are different. Thus research is needed to identify

these features and generate summaries that take the most salient ones into account. Be-

yond the intended messages and an extended summary, the follow-up questions1 may be

1The follow up question requests extra information about an information graphic besides the brief

summary based on the intended messages. For example, the user might be interested in the volatility of a

line graph and want to see a natural language sentence conveying this type of information.
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different for line graphs and bar charts. A simple example is that a line graph might have

a Contrast-Trend-Last-Segment intended message showing a most recent small segment

change from the long trend segment preceding it. This intended message might moti-

vate the viewer to raise a prediction question such as “How long will it take to return

to the same previous level”, and thus requires us to measure the slopes and lengths of

the two segments, draw conclusions and produce a follow-up natural language response

accordingly.

Pinker’s work[71] discussed the four procedures for a reader to make predictions.

They are: MATCH process that recognizes individual graphs as belonging to a particular

type, a message assembly process that creates a conceptual message out of the instantiated

graph schema, an interrogation process that retrieves or encodes new information on the

basis of conceptual questions, and a set of inferential processes that apply mathematical

and logical inference rules to the entries of the conceptual message. Although in our

current research we are not doing prediction on line graphs, it would be possible to extend

our work to incorporate the last two steps of Pinker’s procedure and make predictions.

Since line graphs are primarily used to show trends, predictions that extend the time

series can be useful for either blind users or for question answering systems.

10.2 Multimodal document summarization

We showed in Chapter 8 that our research on identification of the most relevant

paragraphs can provide good results so the brief summary of a line graph built from its

intended message can be inserted at the most coherent place in an article. The multimodal

document summarization techniques considering the more complete article can be inves-

tigated. The summarization can even take advantage of the extra information conveyed in

the information graphics other than the intended message to augment the article, such as

the volatility of the time series, the salience of a data point and the forecast.
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10.3 Retrieval of line graphs with a mixture model

Our research on recognizing the intended message of a line graph and identify-

ing the most relevant paragraphs can also be extended to information graphic retrieval

task. Information graphics retrieval is a cross area between text retrieval and image re-

trieval. The goal of information graphics retrieval is to retrieve the appropriate informa-

tion graphic according to its relevance to the user query. The query can be put into two

categories as is the case for image retrieval: query by words and query by example. In

query by words, the query is represented as a bag of keywords, which requires that the

images be accompanied with metadata such as caption, keywords, or descriptions. Query

by example can be regarded as given an information graphic, find all the information

graphics containing the same subject or the same message. The future work discussed in

this section doesn’t facilitate query by example.

Information graphics are different from either pure text retrieval or pure image

retrieval in two ways:

1. Information graphics contain both image information such as a line graphic or a bar

chart and text information such as caption, descriptions or text-in-graphic. All parts

contribute to the whole information graphic. The retrieval system should incorpo-

rate both the image and text components in the information graphics and consider

them both in deciding whether to retrieve the graphic.

2. The intended message of a line graph captures the high-level communicative goal

of the graphic and thus impacts when the information graphic should be retrieved

in response to a user query.

3. Information graphics have a communicative goal that often supplements, and is

supported by, the article’s text. Thus the document is another component relevant

to, but outside, the information graphic and should be considered.
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Therefore there are three major components that we hypothesize potentially con-

tribute to retrieval of information graphics: the text of the graphic (caption/description/text-

in-graphic), the communicative goal of the graphic (intended message), and the article

in which the information graphic appears. Figure 10.1 shows the probabilistic mixture

model which can be potentially useful to combine the three major components together.

Textual Component

Intended Message

Line Graph

Word Instantiation

Word Extention

P(q|Ig)

P(q|Tg)The Surrounding

P(q|Td)

Document

Figure 10.1: The relationship of the three components

When a query is given, we assume that the above three components all contribute

to the relevance of an information graphic to the query. It could be that the intended mes-

sage of the information graphic is reflected in the query, or part of the caption/description

is covered in the query, or the article associated with the information graphic covers the

keywords in the query. So here we define a probability term p(G|q) representing the rel-

evance of the information graphic to the query. And p(G|q) is a combination of p(IG|q),

p(TG|q) and p(TD|q), which are the relevance of the intended message of an information

graphic, the relevance of the caption/description component of an information graphic,

and the relevance of the article containing the information graphic, respectively, to a given

query. We assume that p(IG|q),p(TG|q) and p(TD|q) have different weights α,β,γ respec-

tively, indicating their importance. And we hypothesize that p(G|q) should be close to all

of the three components by minimizing its distance from them:

α[p(G|q)− p(IG|q)]2 + β[p(G|q)− p(TG|q)]2 + γ[p(G|q)− p(TD|q)]2
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Taking the derivative w.r.t p(G|q) and setting it to 0, we obtain

p(G|q) = αp(IG|q) + βp(TG|q) + γp(TD|q)
α + β + γ

If we set α + β + γ = 1, the denominator becomes 1 and p(G|q) becomes

p(G|q) = αp(IG|q) + βp(TG|q) + γp(TD|q)

After applying Bayes rule, we extend it further into

p(G|q) = αp(IG|q) + βp(TG|q) + γp(TD|q)

= α
p(q|IG)p(IG)

p(q)
+ β

p(q|TG)p(TG)

p(q)
+ γ

p(q|TD)p(TD)

p(q)

∝ αp(q|IG)p(IG) + βp(q|TG)p(TG) + γp(q|TD)p(TD) (10.1)

where α + β + γ = 1.

The p(q|IG), p(q|TG) and p(q|TD) come from the different query likelihood mod-

els of the three components. They can be estimated by either a generative model or a

boolean retrieval model. Within the generative model, an expansion word list for each

component can be learned as we did in Chapter 8. The p(IG), p(TG) and p(TD) are the

prior probabilities of the three components. p(IG) can be estimated by the proportion of

graphics with messages in this message category in the corpus; p(TG) and p(TD) can be

estimated simply as a uniform distribution, or can be estimated by their prior preference

after some analysis. For example, p(TD) can be calculated according to the source of the

information graphic, which means that the more authoritative news source has a higher

prior preference[103].The α, β and γ can be estimated by introducing a loss function be-

tween the p(G|q) and the true rank assigned by human evaluators to graphics in response

to a user query. After minimizing the difference between the estimated rank and the true

rank, we could probably find a set of reasonable parameters.

This proposed mixture model can be further improved. Our research on Chapter 8

can help reduce the document component TD from the whole document into a set of rele-

vant paragraphs which can thus remove the noise from the other topics in the document.
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The generative probability p(q|IG) can be assigned by measuring which words have a

strong relationship with which intended message category.

10.4 Summary

This chapter discussed potential future work which uses the two main research

topics covered in this thesis: recognizing the intended message of a line graph and identi-

fying the paragraphs that are most relevant to an information graphic. The future research

can contribute to multiple areas including the SIGHT system, multimodal document sum-

marization, and the retrieval of information graphics from a digital library.
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Chapter 11

SUMMARY AND CONCLUSION

Information graphics are non-pictorial graphics such as bar charts and line graphs.

They appear in popular media such as New York Times, Businessweek, Wall Street Jour-

nal, etc. as well as in scientific articles. Usually they are one part of a multimodal

document which contains both the textual article and the information graphic. The ma-

jority of information graphics in popular media, such as newspapers and magazines, have

a message that they are intended to convey. This dissertation discussed our method of

recognizing the intended message of a line graph using Bayesian network, based on the

communicative signals that appear in the graphic. The different categories of intended

message are introduced in Chapter 3. The variety of communicative signals used by the

graphic designers are discussed in Chapter 4. Our system first segments the line graph

into visually distinguishable trends with a Graph Segmentation Module as discussed in

Chapter 6. Then a Suggestion Generation Module which generates intended message can-

didates and the Bayesian network which does the probabilistic inference are invoked as

discussed in Chapter 7. On a training set containing 240 line graphs collected from mul-

tiple sources and annotated by three human annotators, our system produced an overall

72.08% accuracy under leave-one-out cross validation. In the 173 correct instances, our

system not only recognizes the correct intended message as agreed by the three human

annotators but also identifies the correct parameters.

To apply our message recognition system to several application projects, we de-

veloped a method for identifying paragraphs that are relevant to an information graphic
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in a document. The method uses the KL divergence similarity measure and an expansion

word list learned from a set of training articles containing line graphs. This work was dis-

cussed in Chapter 8. On a test set containing 100 articles, our two methods P-KLE (KL

divergence with expansion word list to augment the textual component) and P-KLEM

(based on the P-KLE but using a linear combination of the scores from a paragraph and

the best sentence in the paragraph as the final score to rank a paragraph) chose the most

relevant paragraph as selected by either of the two human annotators with 57% and 64%

success rate; and they chose a relevant paragraph as annotated by the two human anno-

tators with 67% and 78% success rate. The nDCG criteria also indicates that our two

methods provide significant improvement over the baseline methods.

Our work on recognizing the intended message of a line graph and identifying the

most relevant paragraphs for a line graph in a multimodal document have been embedded

in the SIGHT system which provides a blind user with access to the information graph-

ics. It can prompt the blind user about the presence of a line graph at the most relevant

paragraph and can generate a brief textual summary of a line graph based on its recog-

nized intended message. Besides the SIGHT system, our work can be further applied to

a textual summarization system of multimodal documents, and retrieval of information

graphics from a digital library.
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Appendix A

RESAMPLING

The conversion of the line graph from a GIF file to an XML representation is

done by the Visual Extraction Module[14]. The Visual Extraction Module captures the

coordinates of the pixels at the two endpoints of any straight segment in the line graph

and may cluster a set of sample points around some location, as shown in the solid circles

in the top graph in Figure A.6 and the dashed circles in the top graph in Figure A.7.

It is because the VEM tries to capture all straight lines in the original image file; if at

some location there are multiple pixels with different slopes, the VEM will capture all

of them even if they are very close to one another (by one or two pixels). While this set

of sample points fully describes the line graph, it does not satisfy the needs of the Graph

Segmentation Module which applies a set of statistical tests on the series of sampling

points. Some of the statistical tests such as the F test, Q test and Runs test require us to

apply them on a data sampling that is close to a uniform distribution on the x axis. Thus

to implement our methodology for recognizing a line graph’s intended message in the

SIGHT system, we need to perform a resampling procedure on the result provided by the

VEM. The resampling procedure tries to achieve the following goals:

1. The distribution of the resampled points on the x axis should be close to a uniform

distribution. At a minimum, there shouldn’t be a large proportion of data points

clustered together, since such a distribution will influence the results of the statisti-

cal tests in the Graph Segmentation Module.

2. The resampled points should have little data loss from the original line graph.
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3. We will refer to a local peak or valley such as the circled points in Figure A.1 as

outstanding points. The resampling should keep the outstanding points as much as

possible, so that those data points can be used as potential splitting points by the

Graph Segmentation Module.
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Figure A.1: The circled points are regarded as outstanding points which may be used as
splitting points by Graph Segmentation Module

A.1 Sampling with the same interval

A straightforward sampling method to achieve the first goal is to specify the total

number of data points we need, and then do the sampling with the same interval. So if we

describe the line graph as f(t) where 0 ≤ t ≤ T , the sampling will provide a pre-specified

k + 1 sampling points (including the starting and ending points which are f(0) and f(T )

respectively) where ti+1− ti = T/k; although this sampling method provides a uniformly

spaced series of new sampled points, it tends to ignore the shape of the line graph so that

the outstanding points will often be missed. Thus a different method is needed.

A.2 ARIMA/GARCH sampling

To capture the outstanding points, we need to detect outstanding points when we

perform the resampling; to make the sampling be uniform, we need to try to do the sam-

pling at pre-specified intervals. These two goals may conflict with each other. Thus we
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designed a new sampling strategy based on the ARIMA/GARCH model that attempts to

balance these criteria.

The ARIMA (autoregressive integrated moving average) and GARCH (general-

ized autoregressive conditional heteroskedasticity)[90] are widely used in econometrics

for time series analysis. They are basically linear regression models that use the lag l

data to model the current data point, where “lag l” refers to the l data points immediately

preceding the one being modelled. ARIMA uses the old data points to model the mean of

the difference between the current data point and the preceding data point, and GARCH

uses them to model the variance.

ARIMA is based on the ARMA (autoregressive moving average) model. ARMA

and GARCH both assume that the data series is stationary, where stationarity is defined

as both the mean of data point dt at location t and the covariance between dt and dt−l are

time invariant, where l is an arbitrary integer. Normally this condition is not satisfied by a

given data series. However, the differences in the data series, defined as rt = dt−dt−1, can

satisfy the stationarity condition. The ARMA model applied on the data series represented

by the differences rt is then named ARIMA.

The general ARMA(p, q) model is of the form

rt = ϕ0 +

p∑
i=1

ϕirt−i + at −
q∑

j=1

θjat−j (A.1)

where rt is the difference between the true value of the previous data point and the true

value of the point at time t, rt−i are the differences in the true values of the previous

consecutive points, {at} is a white noise series, and p and q are nonnegative integers.

The ARMA(p, q) model is trying to model rt as a function of the preceding rt−i and

calculated noise at−j which is the difference between the true value of rt and its predicted

value.

The GARCH(m, s) model assumes that the actual value of rt is normally dis-

tributed around the predicted value of rt with standard deviation σt. To compute σt, the
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GARCH model uses the predicted standard deviation σt−j for the preceding points and

the difference bt−i between the actual and predicted values of rt−i.

σ2
t = α0 +

m∑
i=1

αib
2
t−i +

s∑
j=1

βjσ
2
t−j (A.2)

After choosing m, s, p and q, the coefficients ϕi, θj , αi and βj of ARMA(p, q)

and GARCH(m, s) can be calculated by maximum likelihood estimation. But the open

question is how to choose the p, q in ARMA and m, s in GARCH1. For this, we refer

to the ACF (autocorrelation function) and the PACF (partial autocorrelation function).

Given a data series n1, ..., nT , ACF is the correlation coefficient between the data series

nl+1, ..., nT and the lag l data series n1, ..., nT−l where nT is the last element of the series.

It is of the form

ACFl =
Cov(nt, nt−l)√

V ar(nt)V ar(nt−l)

where −1 ≤ ACFl ≤ 1 and ACF0 = 1. If ACFl is equal to 0, it means there is no

correlation between the two data series. A statistical test is applied to determine if the

ACFl is significantly different from 0.

The partial autocorrelation function PACF considers multiple AR (autoregressive)

models in consecutive order:

AR(1) : nt = ϕ0,1 + ϕ1,1nt−1 + ϵ1,t

AR(2) : nt = ϕ0,2 + ϕ1,2nt−1 + ϕ2,2nt−2 + ϵ2,t

AR(3) : nt = ϕ0,3 + ϕ1,3nt−1 + ϕ2,3nt−2 + ϕ3,3nt−3 + ϵ3,t

AR(4) : nt = ϕ0,4 + ϕ1,4nt−1 + ϕ2,4nt−2 + ϕ3,4nt−3 + ϕ4,4nt−4 + ϵ4,t

where nt is the value of an element in the data series, the nt−i are the values of earlier

elements in the series, the ϵi,t are the error terms, and the ϕi,j are the constants produced

1Note that m and s may be different, and p and q may be different, since they do not need to use the

same number of lag points.
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by the regression model. The models are of the form of a linear regression and can be

estimated by the least-squares method. The computed value of ϕp,p is called the lag-p

sample PACF of nt, denoted as PACFp. It shows the added contribution of nt−p to nt in

the AR(p) model over the AR(p− 1) model. Ideally we want an AR(p) model where the

lag-p sample PACF ϕp,p is not zero, but ϕj,j is close to zero for all j > p. A statistical test

can be applied to determine whether adding an extra term ϕp+1,p+1nt−(p+1) will produce

a significantly better model (i.e. whether ϕp+1,p+1 is significantly different from 0).

To select the parameters p and q respectively in ARMA(p, q) (see Equation A.1),

we compute the PACFl and ACFl series for rt; to select m and s respectively in GARCH(m, s),

we compute the PACFl and ACFl series for (rt − r̂t)
2 where r̂t is the predicted value

of rt from Equation A.1. Each of the four parameters are set to the lag number k whose

corresponding series are significant from 1 to k and insignificant for k + 1. For example,

if we compute ϕ1,1, ϕ2,2, ϕ3,3,...,ϕk,k for the rt data series and they are all significant but

ϕk+1,k+1 is not significant, then we choose k as the value for p.

By applying ARIMA and GARCH to the rt data series of differences, we can

model its estimated mean and standard deviation. Assuming a normal distribution, we

can compute the probability of the real data point given the predicted mean and stan-

dard deviation produced by ARIMA and GARCH. For example, Figure A.3 shows a

prediction window of size 6 for a piece of the line graph in Figure A.2. The three solid

lines shows the predicted mean of the data points and their one standard deviation up-

perbound/lowerbound. The dashed line shows the real location of the data points in the

window. This example assumes that we have already sampled a data point at location 0

and are trying to select the next sample point. In this example, the actual data point at

location 2 is higher than the others and could be an outstanding point, but location 3 is

where we want the sampled point to be because the ideal interval is 3.

Since we want to balance the criteria of having a uniformly distributed sample with

the criteria of having all of the outstanding points in the sample, we compute the product
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Figure A.3: Example showing the result
of the ARIMA/GARCH for a piece of
the line graph in Figure A.2

of two terms. The first term measures the preference for a location close to the center of

the sampling window. It is measured as f(x) where x is normally distributed, centered

at the middle of the window and with a standard deviation that is the ideal sampling

interval.2

x ∼ N(s, s2) where p(t) = · 1√
2πs2

e
−(x−s)2

2s2 (A.3)

The second term measures the preference for an outstanding data point and is

measured as the cumulative probability of generating a data point between the predicted

data point and the true value at that point according to the predicted mean and standard

deviation, as shown in Figure A.4. This can be represented as a Gaussian error function

erf(rt).

erf(zx) = 2

∫ |zx−ẑx|

0

1√
2πσ̂2

x

e
−(zx−ẑx)2

2σ̂2
z (A.4)

Given that the length of the line graph is T and the pre-specified number of desired

data points is n, the ideal interval of sampling is T/n, which is used as half of the window

size, denoted as s. The reason that we use T/n as half of the window size is because the

2We arbitrarily chose the standard deviation to be the same as the ideal sampling interval.
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(a) The normal distribution for a data point given its pre-
dicted mean and standard deviation calculated from the
ARIMA/GARCH model

(b) The calculation of Gaus-
sian error function is double the
cumulative density between a
point and the mean of its normal
distribution

Figure A.4: This example illustrates the Gaussian error function which is used as our
measurement of whether a point is outstanding

ideal sampling location with interval T/n is in the middle of the window, so that we

can sample around this point within our window. The score of each potential sampling

location x on the x axis is calculated as

score(x) = p(x) · erf(zx) (A.5)

This method covers the sampling strategy using the uniform interval which was

discussed in Section A.1 as an extreme case. In our experiment, if we assign the standard

deviation in Equation A.3 to a very small value, then p(x) will have values close to 0 at all

locations except at x = s. Therefore according to Equation A.5, the first term dominates

and the ARIMA/GARCH sampling strategy will always sample the data point at the ideal

interval and thus reduces to the uniform sampling strategy.
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Location 1 2 3 4 5 6
erf(zx) 0.6415 0.9590 0.9470 0.8977 0.8515 0.7959
p(x) 0.106 0.125 0.132 0.125 0.106 0.081
score(x) 0.0680 0.1199 0.1250 0.1122 0.0903 0.0645

Table A.1: The score of each location in Figure A.3

The scores for the data shown in Figure A.3 are shown in Table A.1. The top

row records erf(rt) which measures whether the data point at each potential sampling

location is outstanding. It is calculated according to the predicted mean and variance.

The second row shows p(x) which is the preference for that sampling location; it is a

normal distribution centered at s = 3 and with standard deviation of s = 3. score(x) is

shown as the third row in this table. It indicates that even though the data point at location

2 is more outstanding, our sampling scheme prefers the data point at 3 because it is a

balance between selecting outstanding points and the uniform sampling interval.

A.3 Procedure of resampling in SIGHT

To resample the data provided by the VEM, the resampling system first interpo-

lates between the consecutive sampling points given by the VEM to recover all of the

pixel points in the whole line graph without regards to any original sampling points. The

interpolation is applied on each pixel on the x axis of the original line graph and then

generates a length T interpolated time series where T depends on the horizontal length

of the original line graph in pixels. ARIMA and GARCH are implemented in MATLAB.

The recovered data points are given to MATLAB which computes the parameters needed

for ARIMA and GARCH as discussed in the previous section. Once the coefficients have

been identified, MATLAB provides a prediction routine which gives us rt (the predicted

difference from the previous data point) and from which the next data point can be pre-

dicted. Given the pre-specified desired number of data points n, the resampling process

first calculates the window size which is double the size of the ideal interval T/n. Then

the process moves from the left to right to sample points. It puts a window to the right of
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Figure A.5: A line graph which is sampled by the ARIMA/GARCH model

the most recent sampled data point, calculates the score of each potential sample location

in the window, and scores them based on the preference for each location in the window

and the measurement of whether the actual data point at this location is outstanding. The

location in the window with the maximum score is chosen as the next sampling location

and then the window moves to the right of the new location and the sampling run starts

again with the new data points in the window. It continues until reaching the end of the

line graph. The last point of the whole line graph must be chosen as well as the first point

of the line graph. This sampling strategy gives us a result which balances capturing all

the outstanding data points against the desire for a uniform sampling interval.

This sampling strategy may not generate exactly the same number of sampling

points as pre-specified because it might not always sample with the same interval. If the

line graph is jagged and has many outstanding points, it may sample more points than

pre-specified to try to reduce the loss of data. In our system, we used the number of

sample points provided by VEM as the number of desired sample points.

A.4 Demonstration and analysis

We can see the advantage of the ARIMA/GRACH sampling strategy over the uni-

form sampling strategy from two examples. First, Figure A.6 shows the sampling results

for the line graph in Figure A.5. The top one is the original sampling generated by the
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Figure A.6: The result provided by the VEM and the two resampling methods on Fig-
ure A.5
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VEM. There are multiple sampling points around the circled locations. It is because the

VEM tries to capture all straight lines in the original image file; if at some location, there

are multiple pixels with different slopes, the VEM will capture all of them even if they

are very close to one another (by one or two pixels). The second line graph shows the

sampling from our ARIMA/GARCH resampling strategy. We can see that there is no

location with multiple sample points clustered around it and the maximum point in the

original line graph has been captured, which is eventually used as the splitting point in the

Graph Segmentation Module. The third sampling is achieved by sampling with a uniform

interval; we can see that the maximum point is not captured.

Figure A.7 shows the sampling results for a portion of the graph in Figure A.2.

The top figure is the sampling generated by the VEM. We can see that there are many

clustered data points as in the dashed circle. The bottom figure is the sampling result

generated by a uniform sampling interval; although it managed to capture the maximum

data point, it failed to capture other outstanding points that occur in the circled area. The

plot in the middle is the sampling generated by the ARIMA/GARCH sampling strategy. It

keeps the high points and the low points which are not captured by the uniform sampling

strategies, and there is no clustering of data points.
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Figure A.7: The result provided by the VEM and the two resampling methods on a portion
of Figure A.2
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International Research - SBR 06/12/09 3/3 (100%)

For this Completion Report to be valid, the learner listed above must be

affiliated with a CITI participating institution. Falsified information and

unauthorized use of the CITI course site is unethical, and may be considered

scientific misconduct by your institution.

Paul Braunschweiger Ph.D.



Professor, University of Miami
Director Office of Research Education
CITI Course Coordinator
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