Vision Review: Image Processing

Course web page: <u>www.cis.udel.edu/~cer/arv</u>

September 17, 2002

Announcements

- Homework and paper presentation guidelines are up on web page
- Readings for next Tuesday: Chapters 6, 11.1, and 18
- For next Thursday: "Stochastic Road Shape Estimation"

Computer Vision Review Outline

- Image formation
- Image processing
- Motion & Estimation
- Classification

Outline

- Images
- Binary operators
- Filtering
 - Smoothing
 - Edge, corner detection
- Modeling, matching
- Scale space

Images

- An image is a matrix of pixels I(x, y)*Note:* Matlab uses I(r, c)
- Resolution
 - Digital cameras: 1600 X 1200 at a minimum
 - Video cameras: ~640 X 480
- Grayscale: generally 8 bits per pixel \rightarrow Intensities in range [0...255]
- RGB color: 3 8-bit color planes $\mathbf{I}_R, \mathbf{I}_G, \mathbf{I}_B$

Image Conversion

 RGB → Grayscale: Mean color value, or weight by perceptual importance (Matlab: rgb2gray)

 Grayscale → Binary: Choose threshold based on histogram of image intensities (Matlab: imhist)

Color Representation

- RGB, HSV (hue, saturation, value), YUV, etc.
- Luminance: Perceived intensity
- Chrominance: Perceived color
 - HS(V), (Y)UV, etc.
 - Normalized RGB removes some illumination dependence:

$$r = \frac{R}{R+G+B}, g = \frac{G}{R+G+B}$$

Binary Operations

- Dilation, erosion (Matlab: imdilate, imerode)
 - Dilation: All 0's next to a 1 ightarrow 1 (Enlarge foreground)
 - Erosion: All 1's next to a 0 \rightarrow 0 (Enlarge background)
- Connected components
 - Uniquely label each *n*-connected region in binary image
 - 4- and 8-connectedness
 - Matlab: bwfill, bwselect
- Moments: Region statistics
 - Zeroth-order: Size
 - First-order: Position (centroid)
 - Second-order: Orientation

Image Transformations

- Geometric: Compute new pixel locations
 - Rotate
 - Scale

$$T(x,y) \rightarrow (x',y')$$

- Undistort (e.g., radial distortion from lens)
- Photometric: How to compute new pixel values when $T^{-1}(x', y')$ non-integral
 - Nearest neighbor: Value of closest pixel
 - Bilinear interpolation (2 x 2 neighborhood)
 - Bicubic interpolation (4 x 4)

Bilinear Interpolation

 Idea: Blend four pixel values surrounding source, weighted by nearness

$$\mathbf{I}(x',y') = (1-b,b) \begin{bmatrix} \mathbf{I}(x,y) & \mathbf{I}(x+1,y) \\ \mathbf{I}(x,y+1) & \mathbf{I}(x+1,y+1) \end{bmatrix} \begin{pmatrix} 1-a \\ a \end{pmatrix}$$

Vertical blend

Horizontal blend

Image Comparison: SSD

- Given a template image I_T and an image I, how to quantify the similarity between them for a given alignment?
- Sum of squared differences (SSD)

$$\sum [\mathbf{I}_T(x,y) - \mathbf{I}(x,y)]^2$$

x,y

Cross-Correlation for Template Matching

• Note that SSD formula can be written: $\sum \mathbf{I}_T^2(x,y) + \mathbf{I}^2(x,y) - 2\mathbf{I}_T(x,y)\mathbf{I}(x,y)$

x,y

 First two terms fixed → last term measures mismatch—the *cross-correlation:*

$$\sum_{x,y} \mathbf{I}_T(x,y) \cdot \mathbf{I}(x,y)$$

• In practice, normalize by image \mathbf{I} magnitude when shifting template to search for matches

Filtering

- Idea: Analyze neighborhood around some point in image *f* with filter function *h*; put result in new image *g* at corresponding location
- System properties
 - Shift invariance: Same inputs give same outputs, regardless of location
 - Superposition: Output on sum of images =
 - Sum of outputs on separate images
 - Scaling: Output on scaled image = Scaled output on image
- Linear shift invariance \rightarrow **Convolution**

Convolution

• Definition:

$$g(x_0, y_0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_0 - x, y_0 - y)h(x, y)dxdy$$

- Shorter notation: g = f * h
- Properties
 - Commutative
 - Associative
- Fourier theorem: Convolution in spatial domain = Multiplication in frequency domain
 - More on Fourier transforms on Thursday

Discrete Filtering

 Linear filter: Weighted sum of pixels over rectangular neighborhood—*kernel* defines weights

- Think of kernel as template being matched by correlation (Matlab: imfilter, filter2)
- Convolution: Correlation with kernel rotated 180°
 - Matlab: conv2
- Dealing with image edges
 - Zero-padding
 - Border replication

Filtering Example 1: I' = K * IK

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	1	1		
-1	4	2	2	3
-1	-2	1	3	3
	2	2	1	2
	1	3	2	2

 $\mathbf{I'}$

Ι

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	1	1	
-2	4	2	3
-2	-1	3	3
2	2	1	2
1	3	2	2

Ι

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

I

 $\mathbf{I'}$

ELAWARE

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

		1	1	1	
2	2	-2	6	1	
2	1	-3	-3	1	
2	2	1	2		
1	3	2	2		

5	4	4	-2

 $\mathbf{I'}$

Ι

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

1	2	2	2	3
-1	4	1	3	3
-1	-2	2	1	2
	1	3	2	2

Ι

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

2	2	2	3
-2	2	3	3
-2	-2	1	2
1	3	2	2

Ι

Final Result

5	4	4	-2
9	6	14	5
11	7	6	5
9	12	8	5

Separability

- Definition: 2-D kernel can be written as convolution of two 1-D kernels
- Advantage: Efficiency—Convolving image with $n \times m$ kernel requires n + m multiplies vs. nm for non-separable kernel

Smoothing (Low-Pass) Filters

- Replace each pixel with average of neighbors
- Benefits: Suppress noise, aliasing
- Disadvantage: Sharp features blurred
- Types
 - Mean filter (box)
 - Median (nonlinear)
 - Gaussian

3 x 3 box filter

Box Filter: Smoothing

Original image

7 x 7 kernel

Gaussian Kernel

 Idea: Weight contributions of neighboring pixels by nearness

• Matlab: fspecial (`gaussian',...)

Gaussian: Benefits

- Rotational symmetry treats features of all orientations equally (isotropy)
- Smooth roll-off reduces "ringing"
- Efficient: Rule of thumb is kernel width $\geq 5\sigma$
 - Separable
 - Cascadable: Approach to large σ comes from identity

$$G_{\sigma_1} * G_{\sigma_2} = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

Gaussian: Smoothing

Original image

 $\sigma = 3$

Gradient

Think of image intensities as a function I(x, y). Gradient of image is a vector field as for a normal 2-D height function:

$$abla \mathbf{I} = (\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y})^T = (\mathbf{I}_x, \mathbf{I}_y)^T$$

• **Edge**: Place where gradient magnitude is high; orthogonal to gradient direction

Edge Causes

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

Edge Detection

- Edge Types
 - Step edge (ramp)
 - Line edge (roof)

- Searching for Edges:
 - Filter: Smooth image
 - **Enhance**: Apply numerical derivative approximation
 - **Detect**: Threshold to find strong edges
 - Localize/analyze: Reject spurious edges, include weak but justified edges

Step edge detection

- First derivative edge detectors: Look for extrema
 - Sobel operator
 (Matlab: edge(I, `sobel'))
 - Prewitt, Roberts cross
 - Derivative of Gaussian

Sobel x

Sobel y

- Second derivative: *Look for zero-crossings*
 - Laplacian $\nabla^2 \mathbf{I}$: Isotropic
 - Second directional derivative
 - Laplacian of Gaussian/Difference of Gaussians

Derivative of Gaussian

$$rac{\partial}{\partial x}G_{\sigma}$$

 ${\partial\over\partial y}G_\sigma$

Laplacian of Gaussian

$$LoG_{\sigma} = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Matlab: fspecial(`log',...)

0	0	2	2
0	0	2	2
0	0	2	2
0	0	2	2

Ι

0	0	2	2
0	0	2	2
0	0	2	2
0	0	2	2

Ι

0	0	2	2
0	0	2	2
0	0	2	2
0	0	2	2

Ι

0	0	2	2
0	0	2	2
0	0	2	2
0	0	2	2

 $\mathbf{I'}$

		-1	0	1	
0	0	-4	0	2	
0	0	-2	0	1	
0	0	2	2		
0	0	2	2		

Ι

Sobel Edge Detection: Gradient Approximation

Vertical

Horizontal

Sobel vs. LoG Edge Detection: Matlab Automatic Thresholds

Sobel

LoG

Canny Edge Detection

- Derivative of Gaussian
- Non-maximum suppression
 - Thin multi-pixel wide "ridges" down to single pixel
- Thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold
- Matlab: edge(I, 'canny')

Canny Edge Detection: Example

(Matlab automatically set thresholds)

Corner Detection

- Basic idea: Find points where two edges meet—i.e., high gradient in orthogonal directions
- Examine gradient over window (Shi & Tomasi, 1994)

$$C = \begin{pmatrix} \sum \mathbf{I}_x^2 & \sum \mathbf{I}_x \mathbf{I}_y \\ \sum \mathbf{I}_x \mathbf{I}_y & \sum \mathbf{I}_y^2 \end{pmatrix}$$

- Edge strength encoded by eigenvalues λ_1, λ_2 ; corner is where $\min(\lambda_1, \lambda_2)$ over threshold
- Harris corners (Harris & Stephens, 1988), Susan corners (Smith & Brady, 1997)

Example: Corner Detection

courtesy of S. Smith

SUSAN corners

Edge-Based Image Comparison

- Chamfer, Hausdorff distance, etc.
 - Transform edge map based on distance to nearest edge before correlating as usual

Scale Space

- How thick an edge? How big a dot?
- Must consider what scale we are interested in when designing filters
- Efficiency a major consideration: Finegrained template matching is expensive over a full image

Image Pyramids

- Idea: Represent image at different scales, allowing efficient *coarse-to-fine* search
- Downsampling: $S^{\downarrow}(\mathbf{I})(x, y) = \mathbf{I}(2x, 2y)$
- Simplest scale change: Decimation—just downsample

from Forsyth & Ponce

Gaussian, Laplacian Pyramids

- Gaussian pyramid of image: $\mathbf{P}_0 = \mathbf{I}$ and $\mathbf{P}_i(\mathbf{I}) = S^{\downarrow}(G_{\sigma} * \mathbf{P}_{i-1}(\mathbf{I}))$
- Laplacian pyramid
 - Difference of image and Gaussian at each level of $\mathbf{P}_i(\mathbf{I})$

Gaussian pyramid

Laplacian pyramid

Color-based Image Comparison

- Color histograms (Swain & Ballard, 1991)
 - Steps
 - Histogram RGB/HSV triplets over two images to be compared
 - Normalize each histogram by respective total number of pixels to get frequencies
 - Similarity is Euclidean distance between color frequency vectors
 - Sensitive to lighting changes
 - Works for different-sized images
 - Matlab: imhist, hist

