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Abstract

We present the design and implementation of a real-
time, vision-based landing algorithm for an autonomous
helicopter. The helicopter is required to navigate from an
initial position to a final position in a partially known en-
vironment based on GPS and vision, locate a landing tar-
get (a helipad of a known shape) and land on it. We use
vision for precise target detection and recognition. The
helicopter updates its landing target parameters based on
vision and uses an on board behavior-based controller to
follow a path to the landing site. We present results from
flight trials in the field which demonstrate that our detec-
tion, recognition and control algorithms are accurate and
repeatable.

1 Introduction

Unmanned Aerial Vehicles are indispensable for vari-
ous applications where human intervention is impossible,
risky or expensive e.g. hazardous material recovery, traf-
fic monitoring, disaster relief support etc. A helicopter is
highly maneuverable versatile platform. It can take off and
land vertically, hover in place, perform longitudinal and
lateral flight as well as drop and retrieve objects from oth-
erwise inaccessible places. But the high maneuverability
of helicopters comes at a significant cost; they are unstable
and dangerous to fly. This shortcoming can be remedied
by an unmanned autonomous helicopter, since eliminat-
ing the pilot from the control loop decreases the chances
of endangering human life. Also the size of the helicopter
can be reduced which effectively reduces the cost of the
helicopter, while increasing its maneuverability.

For an unmanned helicopter to successfully function,
autonomous landing is a crucial capability. The struc-
tured nature of landing makes it suitable for vision-based
state estimation and control. The vision problem that we
consider here is a special case of the ego-motion problem
where all the feature points lie on a planar surface (in this
case the landing pad) [1]. We present an algorithm for
vision-based autonomous landing of a model helicopter
in an unstructured 3D environment. The helicopter is re-

quired to autonomously locate and recognize a helipad of
dimensions 4$5�5 cm x 4$5.5 cm, align with it and land on it.
We present results based on flight data from field tests
which show that the algorithm is able to land the heli-
copter on the helipad repeatably and accurately. On an
average the algorithm landed the helicopter to within 40
cm position accuracy and to within 687 in orientation as
measured from the center of helipad and its principal axis
respectively.

(a) AVATAR (b) AVATAR landing on a he-
lipad

Figure 1: AVATAR ( Autonomous Vehicle Aerial Tracking
And Reconnaissance)

Vision-based robot control has been an active topic of
research in the past few years [2, 3, 4]. In [5] a real time
computer vision system is presented for tracking a landing
target but no autonomous landing was reported. In [6, 7]
the autonomous landing problem was decoupled from the
problem of vision-based tracking. [8] discusses a vision-
based solution to safe landing in unstructured terrain. Sev-
eral vision-based servoing techniques have been imple-
mented for autonomous control of helicopters [9], but
none of them have focused on the landing problem [10].
The problem of autonomous landing is particularly diffi-
cult because the inherent instability of the helicopter near
the ground [11]. Also since the dynamics of a helicopter
are non-linear only an approximate model of the helicopter
can be constructed [12].

2 The Test-bed and Experimental Task
Our experimental test-bed AVATAR (Autonomous Ve-

hicle Aerial Tracking And Reconnaissance) [13] is a gas-
powered radio-controlled model helicopter fitted with a



PC-104 stack augmented with several sensors (Figure 1).
A Novatel RT-20 DGPS system provides positional accu-
racy of 20cm CEP(Circular Error Probable, i.e. the ra-
dius of a circle, centered at the true location of a receiver
antenna, that contains ����� of the individual position mea-
surements made using a particular navigational system). A
Boeing CMIGTS-II INS unit with three axis accelerome-
ters and three-axis gyroscopes provides the state informa-
tion to the on-board computer. The helicopter is equipped
with a color CCD camera and an ultrasonic sonar. The
ground station is a laptop that is used to send high-level
control commands and differential GPS corrections to the
helicopter. Communication with the ground station is car-
ried via 2.4 Ghz wireless Ethernet and 1.8Ghz wireless
video. Autonomous flight is achieved using a behavior-
based control architecture [14]. This is discussed further
in Section 4.

The overall landing strategy is as follows. Initially the
helicopter is in search mode. The vision algorithm (de-
scribed below) scans for the landing target. As soon as
it detects the landing target the state estimation algorithm
sends commands to the helicopter controller. This mode
is called object-track mode. When the helicopter is above
the landing target the vision-based controller commands
the helicopter to land. This is called the land mode. Fig-
ure 2 shows a flow-chart of the algorithm. Next, we de-
scribe the vision and state estimation algorithms.
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Figure 2: The state transition diagram for the landing task

3 Vision Algorithm

The vision algorithm is described below in three
parts; preprocessing, geometric invariant extraction, ob-
ject recognition and state estimation.

3.1 PREPROCESSING

The goal of this stage is to locate and extract the landing
target. Figure 3 (a) shows an aerial view of the helipad
used in our experiments.

(a) Thresholding and Filtering. Thresholding con-
verts the color image to a binary image. The image ob-
tained from the camera is noisy and the frame grabber is

(a) Image from on-board
camera

(b) Thresholded and Fil-
tered Image

(c) Segmented Image (d) Final Image

Figure 3: Image processing results. All images are taken
in-flight from a downward-pointing camera on the heli-
copter

of low quality, hence we work with binary images to re-
duce the computational cost and increase the effectiveness
of the algorithm. The image is first converted to gray-scale
by eliminating the hue and saturation information while
retaining the luminance. This is accomplished by the fol-
lowing equation [15]

��� �	� 5�
�

��������� ��
��
�������	� 534.4���� (1)

where R,G,B represent the red, green and blue values in
the image respectively. The thresholding algorithm must
produce a binary image which preserves the landing target
but effectively removes most of the other data from the
image. A robust implementation is to threshold the image
at a fixed percentage ( � ��� ) between the minimum and the
maximum gray levels. Figure 3(b) shows the image after
thresholding. A 7 � 7 Median-filter is applied to the subse-
quent image for removing noise and to preserve the edge
details effectively. Median-filters have low-pass charac-
teristics and they remove additive white noise [15]. They
preserve the edge sharpness [16] in an image and are par-
ticularly suitable for the recognition of geometric objects
such as the helipad.

(b) Segmentation and Connected Component La-
beling. The image obtained after thresholding and filter-
ing may consist of objects other than the helipad. In this
step the various regions of interest are identified and la-
beled. The image is scanned row wise until the first pixel
at a boundary is hit. All the pixels which belong to the 8-
neighborhood of the current pixel are marked as belonging
to the current object. This operation is continued recur-



sively until all pixels belonging to the object are counted.
A product of this process is the area of the particular ob-
ject in pixels. Objects whose area is less than a particular
threshold ( � � � pixels) are discarded. Similarly objects
whose area is � 6 � � pixels are discarded. The remaining
objects are our ROI(regions of interest) and are candidates
for the landing target (Figure 3 (c)).

3.2 INVARIANT MOMENTS

Geometric shapes possess features such as perimeter,
area, moments that carry sufficient information for the task
of object recognition. Such features can be used as ob-
ject descriptors, resulting in significant data compression,
because they can represent the geometric shape by a rel-
atively small feature vector and are ideally suited for the
present task. Based of the geometric features of an object
one can calculate a set of descriptors which are invariant to
rotation, translation and scaling. These shape descriptors
are widely used in optical character recognition and pose
estimation. One such class of descriptors [17] is based on
the moments of inertia of an object. The ��� �����
	�� order
moment of an image 
���������� is given by

���
� ���������! �#"$� 
��  � " � (2)

where the indices i, j correspond to the coordinate axes x,
y respectively.

The center of gravity of the object is specified by

%� � �'&)(� (*( %� � �+(#&� (,( (3)

The central moments of an object are the moments de-
fined about the center of gravity and are given by

- �
� � � � � � �  /. %�0� � � " . %�$� � 
��  � " � (4)

where the indices i, j correspond to the coordinate axes x,
y respectively. The normalized central moments, denoted
by 1 �
� , are defined as

1 �2� � -0�
�-3(,(24 (5)

where
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Normalized central moments can be employed to pro-
duce a set of invariant moments. The three lower-order
invariants ? & � � � � �@?0A are given in terms of the second and
third order central moments [17] by

? & � 1CB ( �<1 ( B (7)
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?GA � ��1FA ( . =�1 & B � B �H��=C1 B & . 1 ( A:� B (9)? & � � � � ?0A are scale, rotation and translation invariant.
Object eccentricity is given by
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Definition: Object orientation is defined as the angle be-
tween the major axis of the object and the x-axis
It can be derived by minimizing the functionT � N � � � �U � V

�*WYXFZ J �  R. %�3� K#L[M N . � " . %��� M�OQP N S B (11)

where �  � " � belong to \ which is the space representing
the image. Minimizing

T � N � gives the object orientation N
as N � 4

5^]�_ Ka` ] P � 5 -�&,&- B ( . - ( B � (12)

3.3 OBJECT RECOGNITION AND STATE-ESTIMATION

Initial trials with test data showed that the first, sec-
ond and third moments of inertia were sufficient to distin-
guish between the landing target and other objects present
in the image (Equations (7),(8),(9)). The algorithm was
calibrated offline using a set of images collected in prior
flights. The calibration values stored were the mean val-
ues of the moments of inertia. During actual flight the
moments of inertia of each frame are calculated and com-
pared to the calibration values. If they lie within a toler-
ance of b 4 ��� of the stored values then the object (in this
case the helipad) is said to be recognized and the algorithm
proceeds to the next step of state estimation.

The state estimation algorithm calculates the x-y coor-
dinates and orientation of the landing target relative to the
helicopter. The heading is calculated using Equation 12,
while the x-y coordinates of the landing target are calcu-
lated using Equation 3. These state estimates are sent to
the helicopter controller.

4 Control Architecture

The AVATAR is controlled using a hierarchical
behavior-based control architecture. Briefly, a behavior-
based controller [18] partitions the control problem into a
set of loosely coupled behaviors. Each behavior is respon-
sible for a particular task. The behaviors act in parallel to
achieve the overall goal. Low-level behaviors are respon-
sible for robot functions requiring quick response while
higher-level behaviors meet less time critical needs. The
behavior-based control architecture used for the AVATAR
is shown in Figure 4.

At the lowest level the robot has a set of reflex behav-
iors that maintain stability by holding the craft in hover.
The heading control behavior attempts to hold the desired
heading by using data from the IMU to actuate the tail ro-
tor. The altitude control behavior uses the sonar to control
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Figure 4: AVATAR Behavior-Based Controller

the collective and the throttle. The pitch and roll control
behaviors maintain the desired roll and pitch angles re-
cieved from the lateral control behavior. The lateral mo-
tion behavior generates desired pitch and roll values that
are given to the pitch and roll control behaviors to move to
a desired position. At the top level the navigation control
behavior inputs a desired heading to the heading control, a
desired altitude to the altitude control and a desired lateral
velocity to the lateral control behavior. A key advantage
of such a control algorithm is to build complex behaviors
on top of the existing low level behaviors.

The low-level and short-term goal behaviors roll, pitch,
heading, altitude and lateral control behaviors are imple-
mented with proportional controllers.

The long-term goal behavior navigation control is re-
sponsible for overall task planning and execution. If the
heading error is small, the navigation control behavior
gives desired lateral velocities to the lateral velocity be-
havior. If the heading error is large, the heading control
behavior is commanded to align the helicopter with the
goal while maintaining zero lateral velocity.

The altitude control behavior is further split into three
sub-behaviors, hover control, velocity control and sonar
control. The hover control sub-behavior is activated when
the helicopter is either flying to a goal or is hovering
over the target. This sub-behavior is used during the ob-
ject recognition and object tracking state when the heli-
copter should move laterally at a constant altitude. The
hover controller is implemented as a proportional con-
troller. It reads the desired GPS location and the cur-
rent location and calculates the collective command to
the helicopter. This is shown in Equation 13 where �
is the collective command sent to the helicopter servos,
�� N���� 	 � N�� 7 � � is a function of the current latitude and lon-
gitude 
�� N������ 	 � N	��� 7 � � is a function of the desired latitude
and the longitude,


 � is the proportional gain. The func-
tion 
 converts a given latitude and longitude to the corre-
sponding distance in meters from a surveyed point.

� ��
 � � 
�� N ����� 	 � N ��� 7 � � . 
�� N ��� 	 � N � 7 � �*�
Once the helipad has been located and the helicopter is

aligned with the helipad the velocity control sub-behavior
takes over from the hover control sub-behavior. It is im-
plemented as a PI controller. An integral term is added to
reduce the steady state error. The helicopter starts to de-
scend till reliable values are obtained from the sonar. The
sonar control sub-behavior takes over at this point until
touchdown. This is also implemented as a PI controller.
The velocity control sub-behavior is shown in Equation 14
where � is the collective command sent to the helicopter
servos, � is the current velocity � � is the desired velocity,
 � is the proportional gain and


 �
is the integral gain.
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The sonar control sub-behavior is shown in Equation 15,
where � is the collective command to the helicopter ser-
vos, � is the current position, � � is the desired position,
 � is the proportional gain and


 �
is the integral gain.
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5 Experimental Results and Discussion

The helicopter is initially commanded to autonomously
fly toward the helipad based on GPS [search mode]. Once
the helipad is in view , the controller switches to vision-
based control [helipad-track mode]. If for any reason
the helicopter loses sight of the landing pad, the con-
troller switches back to search mode. Once in helipad-
track mode the low-level control behaviors on the heli-
copter receive commands from the vision controller. The
vision system sends orientation, velocity forward and ve-
locity right commands with respect to the image coordi-
nate frame to the helicopter controller. The commands are
then converted into velocity-north and velocity-east com-
mands based on the current GPS and heading. The nav-
igational control behavior takes these lateral velocity and
heading commands and sends the appropriate commands
to the low-level behaviors for the control of the helicopter.

Trial Total flight time Landing time � N
4 =���� s 4 � � s ���
5 4 ��� s �C= s 4 �	�= =%4 � s 4�4$5 s ���D =�� � s 4 ��� s = �
� 4 6 � s �.5 s 4 ���
� 4 � � s � 6 s 4 ���
6 4 
�D s ��� s 5��

Table 1: Data from Flight Tests
When the helicopter is oriented with the helipad it starts

descending [land mode]. At this juncture the helicopter is



controlled by the velocity control sub-behavior. If it de-
scends to a height of = meters or less the sonar control is
activated. From this point onwards the helicopter’s alti-
tude is regulated by sonar, till it lands.

Image Processing CPU time
Image Acquisition � 5����

Thresholding and Filtering � 4 5 �
Segmentation � D ���

Component Labeling � 6��
Hu’s Moments of Inertia � 4 ���

GUI and displaying images � 4.4 �
Table 2: Computational Cost for Image Processing at 10
frames per second

A total of seven test flights were conducted. The data
obtained are shown in Table 1. The final average orien-
tation error ( � N ) is approximately 6 � . The computational
cost for image processing is shown in Table 2. The time
taken for computing the moments of inertia is only 4 ���
of the total time. Hence, if the landing target has a well
defined shape, the vision algorithm is computationally in-
expensive. In the future we plan to test whether the same
results could be obtained if we implemented our algorithm
on noisy data, without filtering. Because of the limited
bandwidth from the wireless video transmitter we were
able to process only 10 frames per second.

Total No of Frames 4$5�� ���
Landing Pad observed in � �C=CD

Actual landing Pad present � � =.5
Table 3: Errors in the Object Recognition Algorithm

Table 3 shows the accuracy of the algorithm used. The
data were obtained from approximately 12000 frames dur-
ing the seven flight trials. Each flight was of a duration of
approximately 3 minutes. Out a total number of 12060
frames processed, the landing pad was present in 6034
frames while it was detected in 5632 frames. The algo-
rithm showed a false positive in 202 out of 6034 frames
which gives an error rate of =	� =���� . The moments of in-
ertia are invariant to rotation, scaling and translation but
vary when the plane in which the image lies is continually
changing. The helicopter pitches and rolls in flight, which
changes the image plane; this distorts the image which re-
sults in false positives. In the future we plan to integrate
measurements from the IMU with the vision controller to
nullify the effects caused by the roll and pitch motion.

Table 4 shows the results averaged over the seven flight
trials. We were able to control the heading of the heli-
copter remarkably well. During the landing phase, the
downward velocity is always restricted to a maximum of
�	� 5 m/sec. This can be seen from Figure 5(a). This was
implemented for a smooth descent trajectory, as well as for
safety purposes. The trajectory of the craft during descent

for a representative trial is shown in Figure 5(c). Although
initially there are some variations in height, the helicopter
descends smoothly during the later part. For the helicopter
to finally land it has to overcome ground effect and turbu-
lence. This can be seen in Figure 5(a), when the down-
ward velocity reaches ��� � meters/second. The difference
between the orientation of the helipad and the helicopter
for a representative trial is shown in Figure 5(b). The con-
troller is able to maintain the orientation of the craft in-line
with the helipad.

The average position error after landing was D�� cm
from the center of the helipad. This value is calculated
as the distance from the center of the helipad to the center
of the helicopter after landing. This error is small when
compared to the size of the landing pad and the helicopter.
Presently the camera is statically mounted below the un-
dercarriage of the helicopter pointing down. Depending
on the height of the craft even a small inclination in the
craft causes a large change in the horizontal distance on
the ground, making it difficult to track the landing target
precisely. Mounting the camera on a gimbal would solve
the problem. Also precise control of the helicopter near
the ground is difficult because of the air-cushion devel-
oped by the downward thrust from the main rotor of the
helicopter.

Mean time to land 6�= s
Mean autonomous flight time 5�=CD s

Mean error in orientation � 7
Standard Deviation in orientation � 7

Mean error in position D � cm

Table 4: Average Results from Flight Tests

6 Conclusion and Future Work

We have presented the design and implementation of a
real-time vision-based system for detecting a landing tar-
get and a controller to autonomously land a helicopter on
the target. The vision algorithm is fast, robust and com-
putationally inexpensive. It relies on the assumptions that
a.) the landing target has a well-defined geometric shape
and b.) all the feature points of the landing target are copla-
nar. Since we chose a landing target composed of poly-
gons and the helicopter keeps the camera roughly perpen-
dicular to the ground, these two assumptions were justi-
fied.

Data from seven flight trials show that our algorithm
and landing strategy works accurately and repeatably. The
helicopter achieved autonomous landing to within D � cm
positional accuracy and 6 � orientation accuracy measured
relative to the helipad. In the future we plan to integrate
measurements from the IMU with the algorithm described
here to nullify the effects caused by the roll and pitch mo-
tion thereby improving the detection of the landing target.

In the future we plan to focus our attention on the prob-
lem of safe and precise landing of the helicopter in un-
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Figure 5: Performance of the Vision Algorithm in Con-
junction with the Landing Controller

structured harsh 3D environments. The applications of
such a system are enormous; from space exploration to
target tracking and acquisition.
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