Protocol Specification, Testing and Verification, XII
RJ. Linn, Jr. and M.U. Uyar

Elsevier Science Publishers B.V. (North-Holland) 245
© 1992 IFIP. All rights reserved.

Improvements on UIO Sequence Generation
and Partial UIO Sequences®

Woojik Chun
Protocol Engineering Center
Electronics and Telecommunications Research Institute (ETRI)
P.O. Box 8, Daedug Danji Daejeon, 305-306, Korea

Paul D. Amer
Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716

Abstract

Two necessary conditions are derived for determining a shortest Unique Input Output
(U10) sequence. Using these conditions, Sabnani and Dahbura’s original algorithm [SD88] for
UIO sequence generation in test case generation is made more efficient. For states having no
UIO sequence, an algorithm for generating Partially Unique Input Output (PUIO) sequences
is introduced and analyzed. While a UIO sequence distinguishes a state from all other
states, a PUIO sequence distinguishes a state from only a subset of other states. A test case
generation technique combining UIO and PUIO sequences is explained.

Keyword Codes: C.2.0,C.2.2, B.7.3
Keywords: Computer-Communication Networks: General, Network Protocols; Integrated
Circuits: Reliability and Testing

1 Introduction

One important technique to generate test cases from a protocol formally specified as a finite state
machine (FSM) is the Unique Input Output (UIO) sequence technique introduced in [SD88]. A
UIO sequence consists of one or more input/output pairs that only can be generated starting
from one state of an FSM. Using UIO sequences, one test case is generated for each transition
defined in a given protocol specification. Combining all of the tests produces a test sequence
that can be used for verifying implementations of the specified FSM.

Fault coverage of the UIO technique is improved by the UIOv approach which also tests that the
UIO sequences generated from the specification are also UIO sequences in the implementation
under test [CVI89]. Given the UIO sequences for an FSM, various efforts have been made to

produce the overall shortest test sequence for a specified FSM in the shortest amount of time
[ADLUS8S, SLD90, YU90].

*This work supported, in part, by the US Army Communication Electronics Command (CECOM), Ft. Mon-
mouth, NJ, and the Army Research Office (EL-28506)

e

246

This paper proposes a more efficient algorithm for generating a UIQ sequence for any given
state. Two theorems are presented: one is a necessary condition for a sequence to be a UIQ
sequence; the other is a necessary condition for a sequence to be a shortest UIO sequence. The
algorithm in [SD88] is then made more efficient using these two conditions.

The second purpose of this paper is to further discuss the use of Partially Unique Input Output
(PUIO) sequences. A known limitation of the UIO sequence technique is that some states of an
FSM may not have a UIQ sequence. When this is the case, PUIO sequences can be used in test
cases [CVI89]. A PUIO sequence distinguishes a state from a proper subset of other states in
contrast to a UIO sequence that distinguishes a state from all other states. This is in contrast
to using state signatures consisting of distinguishing sequences as suggested in [SD8s].

This paper is organized as follows. Settion 2 briefly defines the Deterministic Finite State
Machine (DFSM) model and notations used throughout this paper. Using a DFSM model,
Section 3 summarizes the UIO method of test case generation and an algorithm for generating
a UIO sequence as originally published in [SD88|. In Section 4, two theorems for determining
a shortest UIO sequence are presented, and a more efficient version of the [SD88] algorithm is
proposed. PUIO sequences are formally defined in Section § along with an algorithm to generate
them. This algorithm also generates UIO sequences when they exist since a UIO sequence is

simply special case of a PUIO sequence. A test case generation technique that uses UIO and
PUIO sequences is presented in Section 6.

2 The Finite State Machine Model

The existing UIO sequence technique for test case generation is based on a deterministic FSM
(DFSM) defined as follows:

Definition 1 (DFSM model) The DFSM model is defined as a transition system represented
by a tuple <G, g0,1,0,T>
where G is a finite set of states
9o 18 the initial state, go € G
I is a finite set of inputs
O is a finite set of outputs
T is a finite set of transitions mapping: G x I '— G x 0

A DFSM has the restriction that there exists at most one enabled transition in an

y state for any
given input.

The state transition function T for a particular DFSM, written as T(g,1) = (¢/,0) or g e, g,
denotes that upon accepting input i, a state g transits to a state ¢’ and responds with output o.

For shortening formulas, the following conventions often used in FS§Ms [DDQ78] and transition
systems [Nic87, Abr87] are borrowed.

®9,9',61,92,-+- are states of a DFSM

e i,i,4),i3,--- are inputs to a DFSM ranging over [

©0,0,01,0y, - are outputs from a DFSM ranging over O

® 0,0',0y,0,, - are sequences of input/output pairs ranging over (1/0)*
00| o denotes the concatenation of sequences oy and o,

Figure 1: An Example DFSM

. ||f=] a; denotes the concatenation of sequences o || oy || - - - || ok
[P denotes a null sequence

i ; io1/0)
og Ly denotes Jg1(1<k<|of) € G such that g 4/ 0 /o2 92 Glo]—1 i 'g’

where || represents the length of sequence o
. i/o - .
og—'/—"),gi;.,gﬁ,andgﬁdenote(ﬂg’eG:g'—/ig’),(Elg’EG:g—"—)g’),

-(3¢'eG:yg e, g'), and =(3¢' € G : g - g), respectively

A DFSM can be represented as a directed graph (V, E), where V is a finite set of vertices and E
is a finite set of edges. Fach vertex in V corresponds to a state in G Each edge in E corresponds

to a state transition in T and has a label of i/o pair where i is an input defined in and o is an
output defined in O.

The existing UIO sequence technique is based on several assumptions. First, a DFSM is min-
imal and strongly connected. That is, there are no equivalent states, and there exists a path
from a state to every other state. Second, a DFSM las an initial state and can move directly
from any state back to the initial state by a reset input (ri) with a null output (¢). Third,
a protocol’s behavior may not be completely specified; that is, its specification may include
behaviors only for inputs which a protocol expects to receive in each state. Protocol behaviors
explicitly specified are referred to as core behaviors. Remaining state-input combinations that
are not explicitly specified comprise non-core behaviors. A completeness assumption is made
for non-core behaviors. There are two possibilities: a self-loop or an error-state assumption. A
self-loop assumption means that a protocol entity produces a null output and remains in the
current state in response to an unspecified input. An error-state assumption means that the
reception of an unspecified input results in the generation of a special output denoting error
and a transition to an implicit error state, where all inputs are ignored until the protocol entity
transits to the initial state by a reset input ri.

An example FSM used throughout this paper is shown in Figure 1. go is the initial state;
I'={a,b,c};and O = {=,y,z2}. It is assumed that an input ri brings the DFSM from any state
to the initial state go. Also, non-core transitions (i.e., unspecified input-state combinations

such as input ¢ in state g3) are assumed to be handled by either a self-loop or an error-state
assumption.

248

3 Conformance Testing and UIO sequence

The behavior of an implementation under test (IUT) is checked via sequences of input/output
pairs which are applied to the IUT in the following steps: (1) move the IUT into a desired source
state g; by applying a sequence called a Path(g,), (2) apply one of the possible inputs i to the
IUT, and verify the response(s) from the [UT (possibly null or error output).

For complete or exhaustive testing, the above three steps must be performed for every possible
sequence of transitions in a specification. However, if an FSM has even one loop, the number
of possible sequences is infinite. Even if a static bound is placed on the number of loop itera-
tions, the number of possible sequences of transitions still may easily exceed practical testing
constraints. Thus, testers frequently compromise and perform partial testing by checking every
transition defined in a specification at least once. Therefore, not all sequences or combinations
of transitions will be tested [SM91].

In partial testing, a 37¢ step is required: (3) verify if the resultant state gg is correct. A
state signature is required for verifying that an implementation is in the state expected. A
state signature is a sequence of input/output pairs that can identify the state of a machine.
Some known state signatures are UIO sequences [SD88], distinguishing sequences [Koh78], and
characterization sets [Cho78]. In this research, a UIO sequence is used as a state signature.

Definition 2 (UIO sequence) A UIO sequence for a state g, denoted by UIO(g), is a se-

Uﬂg) Ui0(g)

quence of input/output pairs such that g andVg' € (G - {g}), ¢’ #

A UIO sequence for a state is a sequence of input/output pairs that cannot be exhibited by
starting fromi any other state; therefore, it can be used in test cases for distinguishing the

. . e e ifo
destination state of a transition from other states. A test case for each core transition g, — gq
is generated as

Test-Case(gs e, gd) = Path(g,) || ifo || UIO(ga) || i

where Path(g,) brings an implementation into the state g,; i/o is the input/output pair of the
transition being tested; UIO(gq) is a state signature for verifying the destination state gq; and
ri resets an implementation to the initial state to start the next test case. A test suite then is
a set of test cases, one for each transition defined in a specification §:

Test-Suite(S) = {Test-Case(g,s e, g4) | @ transition g, e, gd is defined in S}

Since a state of an FSM may have multiple UTO sequences, a shortest one is used for efficiency.
Hereafter, a UIO sequence of a state implicitly assumes a shortest sequence. Algorithm 1 in
Figure 2 describes how to generate a shortest UIO sequence for a given state g. The original
procedure from [SD88] has been rewritten using our terminology.

4 An Improved UIO Sequence Generation Algorithm

In Algorithm 1 (Figure 2), the queue “OPEN” never becomes empty if the FSM being considered
has loops of transitions. Without the added condition “(cnt < 21%)" in line (3), lines (3)-(13)
would execute infinitely when no UlO sequence for a state exists. owever, the number of

Algorithm 1 (UIO sequence generation for state g [SD88])
let a vertex v, be a tuple <g,, P,> where
go is the state that results from state g after firing sequence o, and
Py is the set of states that are reachable by o from any state other than g.
(1) put a vertez vy =<g,G — {g}> into a queve OPEN;

(2) ent—0;

(3) while (OPEN is not empty) and (cnt < 2n?) do

(4) ent — cnt + 1;

(5) remove a vertex v, =<gs, P> from the head of OPEN;
(6) for each transition of the form g, le, gq do

(7) Onew — 0 || i/o;

(8) Poyow — {9" 139" € Py such that g' e, a"};

(9) Vonew < <Gds Ponew™>7

(10) if (Ps,.,, = ¢) then return oy as UTO(g);

(11) else append v,,,,, onto the tail of OPEN;
(12) done for

(13} done while
(14) return “no UIO sequence for the state g”

Figure 2: Minimum Length UIO Sequence Generation Algorithm

iterations can be limited by an upper bound on the length of a shortest UIQ sequence, thereby
avoiding an infinite loop.

This upper bound is meaningless in practical applications. [SD88] demonstrates that if a state g
has no UlO sequence of length less than 2n? for an n state FSM, rather than use a UIO sequence,
a state signature consisting of a concatenation of distinguishing sequences (DS) between g and
all states other than g can be used for testing purposes. A distinguishing sequence between two
states g and g; is an input sequence such that the responses of the states g; and g, to the
sequence differ by at least one output [Koh78].

Let DS(g4,gi) be a shortest distinguishing sequence which begins in state gy and is capable of
distinguishing gq from g;, where g; # g4. Let T5(g/,94) be a transfer sequence which brings
the FSM from the resultant state of DS(gq,9:), denoted here by g!, back to the state g4. A
concatenation of sequences “DS(gq, g:) || T'5(g!, ga)” for all states g; # g4 can be used as a state
signature of gg. Let G — {g4} = {91,92,-**,9n-1}. Assume a Path(g,) brings a system into the
state g, from the initial state. Then, if the state g4 has no UIO sequence, [SD88] defines a test

case for a transition g, e, g4 as follows:

Path(gs) || ifo "_|=’|f [DS(94,9) | TS(g},02)] | DS(gugnc) |l 7 (1)

The upper bound on the length of the sequence “||*=% [DS(ga, ;) || TS(g!, g)] || D5(ga, gn-1)"
in method (1) is 2n? for an n-state FSM [SD88].

The existing UIO sequence generation Algorithm 1 (Figure 2) never finds a UIO sequence of
length longer than 2n?, even if one should exist. (Note that existence of UlO sequences longer
than 202 is still unproven.) The following discussion investigates conditions of UIO sequences

250

KL N

N So]

a. an example for theorem 1 b. an example for theorem 2

Figure 3: Examples for UIO sequences

: | that can be used to improve the efficiency of Algorithm 1 (Figure 2).

Theorem 1 (A necessary condition for a UIO sequence).Given a sequence o such that
g = g, and P, = {¢" | 3¢’ € G — {g} such that ¢’ = ¢"}, if g» € P,, then any subsequent
sequence o || o' cannot be a UIO(g).

Proof: Assume that ¢ %5 g,, and P, = {¢" | 3¢’ € G — {g} such that ¢’ = ¢"}. If g, € P,,

then any o’ such that g, — cannot distinguish between g, and every state in P, because the
state g, itself is included in the set P,. Thus, any sequence o || ¢’ subsequent to o cannot be a

UIO(g). End Proof

Theorem 1 states that if there exist two (or more) different states that transit to the same state
when the inputs of ¢ are applied, then o cannot be the beginning of a UIO sequence. (See
Figure 3.a)

Theorem 2 (A necessary condition for a shortest UIO sequence) Given sequenceso; and
| a; such that g 2 g; and g R gj, respectively, let P; = {g" | 3¢’ € G—{g} such that ¢’ 256",

_ P, = {¢" | 3¢’ € G — {g} such that ¢’ RZNPUY If gj = gi, P; = P, and |o;] > |oi|, then any
1] subsequent sequence o, || o of o; cannot be a shortest UIO(g).

Proof: By contradiction. Define o; and o; such that g =~ g;, P; = {g" | 3¢’ € G — {g} such
i g

VLA

that ¢’ 2+ ¢"} and g == g;, P; = {g" | 3¢’ € G — {g} such that ¢’ =% ¢"}.

Given g, = g,, P; = P,, and |oj| > |oi]. Assume o, || o is a shortest UIO sequence of state
g. Then, by definition, o, distinguishes between g, and every state in P;. Since g; = g; and
P, = P,, gy also distinguishes between g; and every state in P;. Therefore, o; || oy is also UIO
sequence of g. But |0, || o%| < |oj || x| since |oi| < |oj|. Therefore, oi'|| ok is a shorter UIO
sequence than o, || ox. ® bf End Proof

Theorem 2 states that if two sequences both take you from a given state to the same destination
state, then a shortest UIO sequence can only possibly have the shorter of the two sequences as
its beginning. (See Figure 3.b.)

Algorithm 2 (Improved UIO sequence generation for state g)
let a verter v, be a tuple <g,, P;> where
go is the state that results from state g after firing sequence o, and
P, is the set of states that are reachable by o from any state other than g.
(1) put a vertez vy =<g,G — {g}> into a queue OPEN and a list VISITED;
(2) while (OPEN is not empty) do

(3) remove a vertex vy =<gq,Ps> from the head of OPEN;

(4) for each transition of the form g, e, gq do

(5) Onew — 0 || i/0;)

(6) Psoeo — {9"|3¢' € P, such that ¢’ iA a"};

(7) Yonew < <Gds Poneu™>;

(8) if (Ps,.., = ¢) then return .., as UI0(g);

(9) else if (v,,,, € VISITED) then continue;

(10) else if (g4 € P,,.,) then insert v, , into VISITED;

(11) else insert v,,,, onto the tail of OPEN and into VISITED;

(12) - done for
(13) done while
(14) return “no UIO sequence for the state g”

Figure 4: Improved UIO Sequence Generation Algorithm

Using Theorems 1 and 2, Algorithm 1 (Figure 2) is improved into Algorithm 2 in Figure 4. The
differences between Algorithms 1 and 2 are summarized below: (Line numbers below refer to
Figure 2.)

e line (1) : put a vertex vy =<g,G — {g}> into a queue OPEN and VISITED;

e line (2) and (4) are eliminated

e line (3) : while (OPEN is not empty) do

e line (11) : else if (v,,,, € VISITED) then continue; /* by Theorem 2 */
else if (g4 € P,,.,) then put v, , into VISITED; /* by Theorem 1 */
else insert v,,,,, onto the tail of OPEN and into VISITED;

In Algorithm 2 (Figure 4), an OPEN queue stores active vertices. A tuple v =< gy, P, >
is appended into the OPEN queue only when the set P, does not involve the state g, (by
Theorem 1) and there exists no vertex v’ =<gy, P,y> already expanded whose state g, = g,
and set Py = P, (by Theorem 2).

The worst case complexity of Algorithm 1 (Figure 2) is O(nz(d,,.,,,,.)hz"‘z) where n is the number
of states and dp.; is the largest number of outgoing transitions from any state [SD88]. The
worst case complexity of the improved Algorithm 2 (Figure 4) is reduced to O(n%dpq,2"1).

Theorem 3 (Termination and Complexity of Algorithm 2) Algorithm 2 (Figure 4) for
generating a UIO sequence must terminate and its time complezity is O(n?dmaz2""") for an
FSM with n states.

Proof: Line (1) is done only once. The loop in lines (2)-(13) will remove one vertex in each
iteration until OPEN is empty. Since only new vertices are appended into OPEN (i.e., those

252

I g4, {90, 91,92, 93

07 afz
50 levels @ 92, {90, 92}
aly c/z ¢

Figure 5: Search Trees for UIO sequence generation

G4, {901!]1,92193

- g2, {90, g2}

pruned by line (10) pruned by line (10)

2 levels

. /
S—
8
|

are not already visited) and the maximum number of possible vertices is 22" 1, the loop in
lines (2)-(13) will terminate in at most n2"~! iterations. (n2"~! is the number of states x the
number of subsets of (n — 1) states.)

For each vertex, the for loop in lines (4)-(12) will execute at most dpqz times. In line (6), the
generation of P, ., takes n steps, and, in line (9), checking if a vertex is new or already has
been visited can be done with a binary search in at most log(n2"1) steps. Line (10) requires
at most n steps to check if g4 € Py,,,. Line (10) or (11) requires at most log(n2"~') steps to
put v,,,, in list VISITED maintained as a binary tree.

Thus, the overall complexity of Algorithm 2 is O(n2" ! (dmaz(n+logn+n—1+n+logn+n—1))
= O(n%dp0;2""1). End Proof

It also is noted that in general, when a state has no UIO sequence, if an FSM has even one loop,
Algorithm 1 will always take its worst case time complexity while Algorithm 2 may terminate
sooner than its worst case. Thus, Algorithm 2's average behavior also is expected to be better
than Algorithm 1.

Example: Figure 5 shows two search trees for generating a UIO sequence of state g4 of the
DFSM in Figure 1. The search tree of Algorithm 1 is on the left, and the tree of Algorithm 2
is on the right of Figure 5. In this example, since state g4 has no UIO sequence, Algorithm 1
considers all sequences of length less than 50 (= 2n?) or more than 2°! sequences!!! Algorithm 2
considers merely 2 sequences before it terminates.

5 Partially Unique I/O Sequence

A limitation of using UIO sequences for test case generation is that some states may not have
a UIO sequence [SD88]. By Theorem 1, a state g has no UIO sequence if for every sequence o
from state g, there exists another state g’ that transits into the same state as g in response to
the same sequence o. In [CVI89] (Section IIL.C), the authors discuss sequences that distinguish
a state g not necessarily from all other states, but from a nonempty subset of states. Such a
sequence was simultaneously discusssed in [DUY89] and termed a Partial UIO (PUIO) sequence.
This section presents and analyzes an algorithm for finding all of the PUIO sequences of a given
state,

253

Definition 3 (Partial UIO sequence) A sequence o such that ¢ -=+ is partially unique
(PUIO) when no state in (G —{g} — E) ezhibits the sequence o. The states in the set E, where
E is a subset of (G — {g}), do ezhibit the sequence o and together are called an exclusion set.

If a state has no UIO sequence, rather than defaulting to using distinguishing sequences as
discussed in Section 4, one can try to generate a set of PUIO sequences for each state of a
DFSM. A PUIO sequence for a state g is similar to a UIO sequence except that it has an
exclusion set. A PUIO sequence of a state g, denoted PUIO(g), can distinguish the state g
from all states not included in the exclusion set, but cannot distinguish g from states in the
exclusion set. If the exclusion set E is empty, then the PUIO(g) sequence is 2 UIO sequence.
A PUIO sequence can be used as a state signature by combining it with other sequences that
can distinguish the state from those states in the exclusion set.

Based on Theorem 1, Theorem 2, and the PUIO sequence concept, the UIO sequence generation
Algorithm 2 (Figure 4) is modified into Algorithm 3 (Figure 6). Given a single state, this new
algorithm generates either a single UIO sequence or all of the state’s PUIO sequences (with
respective exclusion sets) when no UIO sequence exists.

Example: Figure 7 is a search tree for generating UIO or PUIO sequences for state g4 in
Figure 1 using Algorithm 3. 7 PUIO sequences as follows are generated:

PUIO sequence | Exclusion set PUIO sequence | Exclusion set
1. | ¢/2 {01,92} 2. | afz;e/z {90, 93}
3. | afz;afzic/z go, g3} 4. | a/z;b/yia/z {90, 93}
5. | a/z;blyic/z {90,92,95) || 6- | a/=ia/z:b/yialy | {9093}
7. | e/z;afz; by ¢/z | {go, 92,93}

The above table indicates that sequence 5: “a/z;b/y; ¢/2z” would only distinguish state g4 from
state g;. It cannot distinguish state g4 from any of the other states.

For testing purposes, one might think that there is no need to generate all PUIO sequences,
since a shortest PUIO sequence for each distinct exclusion set appears to suffice. However, as
indicated in [CVI89], each of the sets of PUIO sequences for a state must be unique to its state in
order to also test for errors in the destination state of transitions as done in the UIOv approach.

When there are multiple PUIO sequences with an identical minimal exclusion set, the shortest
sequence is obviously preferable as long as the overall set is unique to its state. For example,
sequence 2 is preferable over sequence 6. Similarly, when one sequence’s exclusion set is a subset
of another, the sequence with smaller exclusion set is preferable (e.g., sequence 4 is preferable
over sequence 5).

Among the 7 PUIO sequences shown in Figure 7, the two sequences 1: “c/z” and 2: “a/z;¢/2"
with exclusion sets {g1, g2} and {go, g3}, respectively, are optimal as they are shortest and unique
to state g4 (i.e., no other state accepts both of theses sequences).

Theorem 4 (Termination and Complexity of Algorithm 3) Algorithm 3 (Figure 6) must
terminate, and its time complexzity is O(nzd,,.ui}"_l) for a given FSM with n states.

Proof: Basically the same as the proof of Theorem 3. The only difference is that a vertex has
three elements: state, set P, and sef E; thus, the number of possible vertices is n3"~!. (Choose

254

a state from n states, choose ¢ states from (n — 1) states as set P, and choose j states as set E,
where j < (n—1—1);

that is, n(T7) w-1Ci (27207 n-1-iC)) = (D051 noaCi on-1-i) =n3""1) End Proof

6 Test Case Generation

Recall that a UIO sequence can be viewed as a PUIO sequence with an empty exclusion set.
When a test case for a transition is generated using only one PUIO sequence with a non-empty
exclusion set, additional sequences must be appended to distinguish the destination state of
the transition from those states in the exclusion set. Consider a technique that uses transfer
sequences and distinguishing sequences for these excluded states. Assume that the destination

state g4 of a transition g, e, g4 has no UIO(gy), but has a PUIO(g4) with an exclusion set
E = {g1,---,gx}. Since the PUIO(ga) cannot distinguish state gy from states in E, the test
case “Path(g,) || i/o || PUTO(g4)” must be concatenated as follows:

) k-1
Path(g,) || i/o || PUIO(ga) || TS (g%, 94) ~”1 (D5(ga,90) | TS(ghr9a)) || DS(gargi) | 7 (2)
i=
where PUIO(gy) is a PUIO sequence of state g4 ending at state g; T5(g4, ga) is a transfer
sequence to bring a system from state gy back to g4; and D§(ga,g:) is a distinguishing sequence
between g4 and g; ending at state g!- These additional sequences distinguish state gy from the
states in E. This is the same as method (1) except that transfer and distinguishing sequences

only for the states in the exclusion set are appended to the end of a PUJO sequence instead of
for all states in (G - {g}).

The subsequence “PUIO(gq) || TS5(g4,94) ||£°=_1 (DS(ga,9:) || TS(g!,92)] |l DS(g4,9%)” in
method (2) is not a U70(g4); thus, certain errors cannot be detected by this test case [CVI89).
For example, consider a simple specification and its implementation in Figure 8. The implemen-

tation in Figure 8.b has the error that transition qn ﬁ» g2 of the specification in Figure 8.2 is

mistakenly implemented as g, fe, g3. Assume further that state g, has no UIQ sequence, but
has a PUIO sequence PUIO(g,) with exclusion set {93} ending at state gs. This implementation
error cannot be detected by any test case generated by method (2); that is,

Path(gi) Vi/o || PUIO(g2) | TS(gs, 92) || DS(g2,3) || 7

However, instead of one test case using transfer sequences, a set of test cases for a transition
gs e, gd can be generated using PUIO sequences. If UI0(ga) does not exist, but PUIO(gy)

with an exclusion set E does exist, a set of test cases for the transition g, e, gq is:

{Path(g:) Il i/o || PUIO(ga) || i} | {Path(,) || i/o || DS(ga:) || 7i} (3)
gi€E

Here, a distinguishing sequence DS(g4, i) can be viewed as a PUIO sequence whose exclusion
set is (G — {g'}). Furthermore, if there are multiple PUIO sequences for a state ¢ whose
exclusion sets are disjoint (intersection of their exclusion sets is empty), those PUIO sequences
are guaranteed to be unique to state g and can be verified as shown in the UIOv approach.

For example, assume that a state gy has no UIO(g), but has PUIO sequences PUI0:(g4),
PUI02(gq), - -, PUIO(gq) with respective exclusion sets Ey, By, - -+, Eg such that Ey N E;N

255

---N E; = ¢. In a minimal DFSM, it is guaranteed that this set of PUIO sequences will exist.

Then, to test a transition g, ﬁ» gd, a set of test cases, one for each of the & PUIO sequences,
can be generated as follows:

k
(U{Path(g:) | i/o || PUIO:(ga) || i} 4)

1=1

Using the set of test cases constructed by method (4), a transition can be thoroughly tested so
that problems as depicted in Figure 8 cannot go undetected. Although the destination state g4 is
not distinguished from an exclusion set of one PUIQ sequence, it will be distinguished by other
PUIO sequences. In Figure 8, assume that state g, has another PUIO sequence PUIO;(g,)
with an exclusion set E; that does not include state g3. A set of two test cases generated

by method (4) can detect the erroneous implementation of transition g, e, g2 in Figure 8.a

(transition gy e, g3 in Figure 8.b); that is,
{ “Path(g,) || i/o || PUIO(g2) | 1", “Path(g:) || ifo | PUIOx(gs) || " }

Although the first test case “Path(g,) || i/o || PUIO(g,) || 7" cannot detect the error in
Figure 8.b, the second one “Path(g;) || ifo || PUIO2(g2) || 74" can detect that error because
PUIOy(g,) can distinguish state g, from g3.

In the worst case, the number of test cases generated by method (4) is the same as those
generated by method (3) because a PUIO sequence of a state is a distinguishing sequence that
distinguishes the state from at least one other state. In most practical situations, a PUIO
sequence can be expected to distinguish a state from more than one other state, so the number
of test cases generated by method (4) is expected to be less than those generated by method (3).

After generating all of the PUIO sequences with Algorithm 3, one problem in method (4) is
selecting a minimal number of PUIO sequences such that the intersection of their exclusion sets
is empty. The optimal solution for selecting this minimal number of subsets of PUIO sequences
can be shown equivalent to the set cover problem that is known to be NP-complete [AHU76].
For practical consideration, an approximation algorithm of polynomial time complexity may be
used at the expense of slightly longer tests.

6.1 Example

Table 1 compares test cases for transition g, My, g4 of the DFSM in Figure 1 generated by
methods (1), (2), (3), and (4), respectively. The first test case generated by method (1) is
the longest one where distinguishing and transfer sequences for all states go, g1, 92, and g3 are
appended.

The second test case generated by method (2) uses a PUIO sequence with exclusion set {g1, g2}
Since distinguishing and transfer sequences for only two states g, and gy are appended, the
second test case is shorter than the first one. However, both first and second test cases may not
detect errors as illustrated in Figure 8.

The third test is a set of three test cases generated by method (3), where a test case is generated
using a PUIO sequence, and two additional test cases, one for each state in exclusion set {g1, g2},
are generated. The last test is a set of two test cases generated by method (4), where two PUIO
sequences have disjoint exclusion sets {g1,92} and {go, g3}

-

e e

256

method (1)

method (2)

method (3)

method (4)

7 Conclusions

.

afz bly c/z aly a/z bly afz
go— 92— g4 —— g1 —>Go— 92— G4
e S ———————— ——
Path(gz) tran DS(g4,90) T5(91.94) DS(g4.91)
by afc el aly efz bly [z ri
2— g4— G — 0 —go—9g2— Ga— J1 —
TS(g2.94) DS(94.92) T5(91.94) DS(g4.93)
afz bfy ¢fz aly a/z bly a/z
go—rg2— ga— 1 —Go——>92 — G4 —
N — —_— N
Path(g2) tran PUIO(g4) T5(91.94) DS(g4,91)

TS(g2,94) DS(g94:92)

a/z b/y c/z ri
go— g2 — g4 — g1 —
S— S —

Path(gz) tran PUIO(gs)

a/z b/y a/z i
go—>g2—* G4 — g2 —
Path(gz) tran DS(g4.91)

afz by afz cf= ri
go— 92 —94 — g2 —>G1 —
Path(g;) tran DS(g4,92)

a/z b/y' c/z 71
go— 92— g4 — 01—
Path(gz) tran PUIO:(g4)

a/z b/y afz

cfz Ti
go—>g2—g4 —* g2 — g1 —

Path(gz) tran PUI0:(g4)

b
Table 1: Test Cases Generated for Transition go My, g4 in Figure 4.1

Table 2 contains all test cases for the DFSM in Figure 1 generated by using method (4). These
i test cases test every transition at least once. In this hypothetical example, for all but one state
(state g4), a UIO sequence exists. To attain the greater fault coverage of the UIOv method
[CV189}, additional test sequences are required to first verify uniqueness of the UIO and PUIO
sequences in the implementation under test.

This paper (1) proposes a more efficient algorithm for UIO sequence generation, and (2) presents
and analyzes an algorithm for the generation of Partial UIO sequences. Based on the existing !

UIO sequence technique, a more efficient algorithm for generating UIO sequences by using two
theorems concerning necessary conditions for being a shortest UIO sequence is proposed. The

When states of an FSM do not have UIOQ sequences, PUIO sequences can be used. An al-
gorithm to generate UIO/PUIO sequences is given, and its time complexity is shown to be

O(n?dmaz3™"1).

:
3 ' proposed technique is more efficient (O(n?dmnaz2""1)) than the existing one (O(n*(dmaz)*™*2)).

[transition [path [tr UIO | exclusion set

o L2 g |- bly | a/y]l ri

go ofz g2 | - ajz | afz || c/z || ri

0 L g o/z | byl e/z] ri

o L g | by afy | c/z | ri

o Loy ¢/z | afylri

g2 = go | a/z afz | c¢fz || ri

g2 D& a1 | a/z c/z | afyl||ri

o L og|a/z bly | /=] ri {91, 92}
a/z by {a/zllc/z]lri | {go,g3}

g5 % go | c/z bly | c/z | ri

g3 el g | c/z alz | afz || c/z || i

0 5 g | a/sllbjy| afz|a/z]c/z]ri

0 L g afzl|b/y] c/z | o/yllri

Table 2: Test Cases for DFSM in Figure 4.1

All techniques in this paper consider only protocols modeled by a DFSM and do not allow any
model which has various extensions such as internal, external, nondeterminism and incomplete-
ness [AC92b]. Many realistic protocols, however, are modeled more accurately by extended
FSMs. Examples of extensions are: nondeterministic choices [AC92a], internal variables and en-
abling conditions [CA91), a protocol specified by a collection of FSMs interconnected with each
other, and an incomplete specification. In an extreme case, the full power of an ISO FDT such
as Estelle [IS09074] will be used to specify a protocol. Therefore, a methodology for generating
tests for a protocol based on an extended state transition system still needs to be developed.

References

[Abr87] S. Abramsky. Observation Equivalence as a Testing Equivalence. Theoretical Com-
puter Science, 53(2-3), 225-241, 1987.

[AC92a] P.D. Amer and W. Chun. Generating Tests for Nondeterministic FSMs Using
UIOTrees and PUIOTrees. Technical report 92-22, CIS Dept., Univ. of Delaware,
1992.

[AC92b] P.D. Amer and W. Chun. A Taxonomy of Specification Models in Protocol Testing.
Technical report, CIS Dept., Univ. of Delaware, 1992.

[ADLUSS] A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar. An Optimization Technique for
Protocol Conformance Test Generation Based on UIO Sequences and Rural Chinese
Postman Tours. In Aggarwal and Sabnani, eds, Protocol Specification, Testing, and
Verification VIII, 75-86, Amsterdam, 1988. North-Holland.

258

[AHU76]

[CA9])

[Cho78]

[CVIs9]

[DDQ78]

[DUYS8Y]

(1509074]

[Koh78)

[Nic87]

[SD88g]

[SLD90] .

(SMo1]
[YU90]

A. V. Aho, J. E. Hopcropt, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1976.

W. Chun and P.D. Amer. Test Case Generation for Protocols Specified in Estelle. In
Quemada, Manas, and Vazquez, eds, Formal Description Techniques III, 191-206,
Amsterdam, 1991. North Holland.

T.S. Chow. Testing Software Design Modeled by Finite State Machine. JEEE Tran.
on Software Engineering, 4(3), 178-187, May 1978.

W.Y.L. Chan, S.T. Vuong, and M.R. Ito. An Improved Protocol Test Generation
Procedure Based on UIO’s. SIGCOMM 89 in Computer Comm. Review, 19(4),
283-294, Sept. 1989.

P. J. Denning, J. B. Dennis, and J. E. Qualitz. Machines, Languages, and Compu-
tation. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

A.T. Dahbura, M.U. Uyar, and C.W. Yau. An Optimal Test Sequence for the
JTAG/IEEE P1149.1 Test Access Port Controller. In IEEE International Test Con-
ference, 55-62, August 1989.

Information Processing Systems - Open System Interconnection. ISO Standard 9074:
Estelle - A Formal Description Technique Based on an Eztended State Transition
Model.

Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.

R. De Nicola. Extensional Equivalences for Transition Systems. Acta Informatica,
24(2), 211-237, April 1987.

K. Sabnani and A. Dahbura. A Protocol Test Generation Procedure. Computer
Networks and ISDN Systems, 15(4), 285-297, Sept. 1988.

Y.N. Shen, F. Lombardo, and A.T. Dahbura. Protocol Conformance Testing Using
Multiple UIO Sequences. In Brinksma, Scollo, and Vissers, eds, Protocol Specifica-
tion, Testing, and Verification IX, 131-143, Amsterdam, 1990. North-Holland.

D.P. Sidhu and H. Mottler. Testing Hierarchies for Protocols. (submitted), 1991.

B. Yanf and H. Ural. Protocol Conformance Test Generation Using Multiple UIO
Sequences with Overlapping. SIGCOMM ’90 in Computer Comm. Review, 20(4),
118-125, Sept. 1990.

Algorithm 3 (UIO/PUIO sequence generation for state g)
let a vertez v, be a tuple <g,, P;, E,> where
9o is the state that results from state g after firing sequence o,

Py is the set of states that are reachable by o from any state in (G — {g} — E,), and
E; is the current set of states which prevent o from being a UIO sequence.

let PUIOset be a set of tuples < PUIO sequence, exclusion set>;

(1) put a vertez vy =<g,G — {g},¢> into a queue OPEN and a list VISITED;

(2) PUIOset «— ¢;
(3) while (OPEN is not empty) do

(4) remove a verter v, =<g,, Fy, E;> from the head of OPEN;

(5) for each transition of the form g, e, gq do

(6) Onew — 0 || i/o0;

(7) . Ponew = {9"13¢' € P, such that ¢' L2 g};

(8) if (ga € P.,,,) then E.., — E;U{¢'| 3¢’ € G — {g} such that g
Fonew < Ponew — {94};

(9) else E,., — E,;

(10) Vonew < <Gdy Ponews Enew>;

(11) else if (P,,., = ¢) and (Ey., = ¢) then return oy, as UIO(g);

(12) else if (P,,., = ¢) then PUIOset — PUIOset U <Onew, Enew>;

(13) else if (v,,,, € VISITED) then continue;

(14) else append v, onto the tail of OPEN and VISITED;

(15) done for

(16) done while
(17) return PUIOset as a set of tuples <PUIO sequence, ezclusion set>;

Figure 6: UIO/PUIO Sequence Generation Algorithm

260

94, {90)91992193}7 ¢

g1, ¢: {gh 92
1. PUIO

\ 2. PUIO

91, ¢, {90192133

92,190}, {90, 93} 92, 9, {90, 93}

pruned by line (14) 3. PUIO 4. PUIO 5. PUIO
aly ‘
11¢7{go,92793}
6. PUIO 7. PUIO

Figure 7: Search Tree of PUIO Sequence Generation

¢

Path(g;) | Path(g,)
® 0
ifo
ifo
DS(ga, APUIO (g2) @ @
P(uo,(g,)’%l\ PUI0(g:) : fs(yz,gs) PUIO() ¢ iwo;(yz)
pum(gg) PUIOy(g2)" % "PUIO(g2)
@/ T?(gs,ﬁr\b/ ® TS(gs,*r\‘yz (o)
a. Specification b. Implementation with an error

Figure 8: A Non-detectable Error by Method (2)

