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Abstract— To encourage SCTP adoption and facilitate
incremental deployment of the protocol, we develop a
shim layer which transparently translates application-level
system calls to TCP into corresponding calls to SCTP,
allowing legacy TCP applications to communicate using
SCTP for end-to-end transport without any modifications
to the applications themselves. Using our shim layer imple-
mentation in the FreeBSD 4.10 operating system kernel, we
experimentally demonstrate the technical feasibility of this
transparent TCP-to-SCTP translation scheme for several
popular network applications including HTTP, SSH, Telnet,
and streaming audio. Additionally, we show application
performance in terms of responsiveness and throughput
using the shim and SCTP is equivalent to or better
than performance when applications operate using TCP
as originally designed.

I. INTRODUCTION

This paper introduces a Transparent TCP-to-SCTP
Translation Shim Layer. The cornerstone of this concept
is translating application-layer system calls to TCP into
equivalent calls to Stream Control Transmission Protocol
(SCTP). This translation process occurs transparently,
meaning the application is unaware its calls to TCP are
being mapped to SCTP instead. Lastly, this functionality
is implemented as a shim layer, meaning the logic to
accomplish this protocol translation is inserted into the
socket layer between the application and transport layers,
leaving the structure of the existing network protocol
stack intact. The shim is designed to be backwards
compatible, automatically reverting to a normal TCP
connection for communications in situations where an
SCTP association between the two endpoints or services
cannot be established.

A. SCTP & Multihoming Preliminaries

SCTP is a connection-oriented, reliable, messaged-
based, general purpose transport protocol with conges-
tion control similar to that used by TCP, supporting
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advanced features unavailable in TCP or UDP [18].
SCTP was originally developed to carry telephony sig-
naling information over IP networks because neither
TCP nor UDP could meet specific reliability require-
ments mandated for telephone carriers by government
regulations. However, over time SCTP’s features have
been recognized to be generally useful in more than just
the limited scope of the telephony signaling world. Con-
sequently, SCTP morphed into an IETF standards-track,
general purpose transport protocol [17]. Arguably one of
the most important and distinctive features of SCTP is
integrated support for transport layer multihoming.

A host which has more than one interface is said to be
multihomed [2]. Historically, hosts on the Internet have
been single-homed due to the relatively high expense
of network interfaces, compared to any serious need
to be connected to more than a single network at a
time. Multihoming is rapidly becoming commonplace on
today’s Internet as interfaces have become inexpensive
commodity items and multiple competing options often
exist for Internet connectivity.

Despite the fact that today multihoming is frequently
economical and practical, support for multihoming is
lacking in TCP and UDP. These protocols are limited by
the fact that they originated in an era where multihoming
was never considered as a design issue. For example,
a TCP connection is defined as a four-tuple of two
addresses and two port numbers, so even when endpoints
have multiple addresses, TCP may use only one address
at each endpoint per connection.

SCTP natively supports multihoming at the transport
layer. Consequently, an SCTP association between two
hosts consists of the entire set of addresses available
at each endpoint. SCTP can use any feasible (i.e., not
restricted by routing configurations, firewalls, etc.) com-
bination of these available addresses for communication
during the lifetime of a single association, unlike a
TCP connection which can only select a single pair of
addresses.

B. Motivations for TCP-to-SCTP Translation

The integrated support for multihoming in SCTP is the
basis of two important motivations for the TCP-to-SCTP
translation shim layer. The first motivation is the ability
to provide fault tolerance to legacy applications by using



SCTP’s multihoming support. SCTP defines the concept
of a primary destination address. New data is actively
sent to this address while any remaining destination
addresses of a multihomed endpoint, termed alternate
destinations, and are held in reserve for retransmission of
data in the case of loss or path failure. By using the shim,
TCP applications running on multihomed hosts will be
able to exploit the fault tolerant communications ability
that is inherently present in SCTP. This fault tolerance
is essentially available to legacy TCP applications using
the shim “for free,” as fault tolerance is a default ability
of SCTP.

A second motivation is the possibility of taking further
advantage of SCTP’s multihoming capabilities to enable
concurrent multipath transfer (CMT), an area of ongoing
research which involves using multiple network paths
for concurrent transfer of new data [7], [8]. The current
SCTP standard specifies that new data can only be sent
to a peer’s primary destination; any alternate destinations
are used only for retransmissions for the purposes of
fault tolerance [18]. Extending SCTP to allow new data
to be sent to multiple peer destinations simultaneously
has the potential to allow for higher association through-
put if the bandwidth to do so is available in the network.
Using the shim layer, legacy TCP applications with
multiple addresses will be able to take advantage of
the fault tolerance provided by SCTP multihoming, and
potentially the increased throughput provided by CMT.

Even in situations where endpoints using the TCP-to-
SCTP translation shim are not multihomed and cannot
make use of the fault tolerance and CMT features
available with SCTP multihoming, the shim still serves
an important purpose by facilitating SCTP’s incremen-
tal deployment. Although SCTP provides basic TCP-
like services in addition to advanced features such as
increased fault tolerance with multihoming, SCTP is not
directly interoperable with TCP (i.e., an SCTP endpoint
cannot connect to a TCP endpoint). Being relatively new,
SCTP has not yet been widely deployed in the Internet
and is limited by the “chicken and egg” problem of
incremental deployment. Little motivation exists among
application developers to design applications that take
advantage of SCTP’s advanced features at the transport
layer because few operating systems support SCTP.
Likewise, users do not demand SCTP support for their
applications because few related applications use SCTP.
The shim solves this incremental deployment problem
for SCTP and TCP by enabling interoperation between
legacy TCP endpoints using the shim, and endpoints that
natively support SCTP.

This legacy-native architecture of the shim is illus-
trated in Figure 1. Enabling legacy TCP applications
to interact with their native SCTP peers provides an
incentive to begin using SCTP in new projects because
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developers can be sure that the existing deployed base
of legacy TCP applications will be compatible with new,
native SCTP applications through the shim translation
layer.

The remainder of this paper is organized as follows:
Sections II-VIII focus on the design and implementation
of the shim layer, including the general approach taken,
the functionality of the major components, and the
implementation details. Sections IX and X describe the
experimental evaluation performed on the shim and the
results of both proof-of-concept and performance testing.
Finally, Section XI concludes with final remarks about
our TCP-to-SCTP shim implementation.

II. DESIGN OVERVIEW

Currently, the most mature and stable kernel imple-
mentation of SCTP is found in the BSD family of operat-
ing systems, and distributed as part of the KAME project
[9]. The KAME group is a consortium of companies
primarily concerned with developing a fully-functional
IPv6 and IPSec protocol stack. The KAME distributions
also include support for other up-and-coming or exper-
imental network protocols such as SCTP and DCCP
[10]. Since a functional TCP-to-SCTP translation shim is
absolutely dependent on a stable kernel implementation
of SCTP, we selected FreeBSD as the operating system
for our shim implementation. Consequently, the specific
design details presented in this paper may not be exactly
applicable to all operating systems, though we believe
the general concepts should apply to any operating
environment supporting the standard sockets API.

At the time shim implementation began, the stable
KAME distribution was for FreeBSD 4.10. Although
KAME (and thus SCTP) has since transitioned to the
FreeBSD 5 series, we completed the shim in the 4.10
kernel in the interest of having a fully functional im-
plementation on a stable release before attempting to
port the shim to later versions of FreeBSD or other
operating systems entirely. (Shim migration to FreeBSD
5 is currently in planning).

One of the first major design decisions was whether
to implement the shim layer entirely within the kernel



or as a library in user space. There are pros and cons to
each approach, which we now discuss.

The primary advantage of a library implementation
is not requiring users to modify their operating system
kernel to make use of the shim functionality. Modifying
the kernel can be difficult for nontechnical users, as well
as potentially problematic if the kernel is improperly
configured and compiled to operate with the underlying
hardware. The shim implemented as a user library using
the standard sockets API would be more portable be-
tween different operating systems or operating system
versions than a kernel-based shim, since socket APIs
are more uniform across systems than kernel implemen-
tations. Control over which applications use the shim
is also simplified since only applications specifically
recompiled with the shim library would actually use the
shim.

However, the safety and simplicity a user-space library
implementation of the shim comes with many disad-
vantages. Most notably, a user library implementation
requires the user to recompile or relink each and every
application for which they wish to enable the shim.
This effort will be a nuisance when a user has a large
number of applications to be shim-enabled. In other
situations, recompiling all the necessary applications will
be impossible; consider the case where a user has some
proprietary applications which are distributed only in
binary form for which no source code or object files
are available to allow rebuilding.

The benefits and drawbacks of implementing the shim
in the operating system kernel are essentially the inverses
of implementing the shim as a user-space library. While
arguably more complicated than implementation as a
user library, implementing the shim layer directly in the
kernel also comes with some important advantages. The
main advantage is that all applications on the system
can make use of the shim’s functionality without re-
quiring rebuilding or any other modifications whatsoever.
Additionally, because the shim is inside the kernel, the
designer has more flexibility and discretion about exactly
how the shim will work than is possible with a user-
space implementation. The penalties of a kernel imple-
mentation include a less portable design (a separate shim
implementation is needed for each operating system)
and the requirement for control mechanisms to decide
which applications should use the shim (use cannot be
controlled by linking or not linking with a shim library
user-space library).

Because one of our core goals is the transparent
translation from TCP to SCTP without any modifications
to legacy applications, a kernel implementation of the
shim layer was the logical (and only) choice. Moreover,
despite the danger of less portability between operating
systems, we felt the design advantages of having full-

scale kernel control over the shim would enable a more
robust, feature-rich, and production-quality implementa-
tion than is possible with a user library.

A. Sockets Model

The sockets API allows applications to interact with
the network in a uniform, protocol-independent and
system-independent way. A socket is a data structure that
encapsulates all of the state information required for a
communications endpoint. While the actual number of
fields contained inside a socket in a true implementation
is large, the contents of the socket data structure can be
generally summarized as state and configuration infor-
mation, and I/O buffers. One additional field of primary
importance to our shim work is the protocol field. The
protocol field is the single aspect that distinguishes what
would otherwise be a generic socket as specifically a
TCP, UDP, or SCTP socket.

The operating system kernel maintains a set of data
structures that completely define each supported proto-
col. These data structures, called the protocol switch
structures, contain fields that specify the domain (ad-
dress family) and type (communication semantics) of the
protocol, the assigned protocol number, a series of flags
describing protocol characteristics, and lists of the inter-
faces/entry points into the protocol. The protocol field
of each socket points to the appropriate protocol switch
structure. This link to a specific protocol definition in the
kernel specifies the exact functionality for what would
otherwise be a generic socket data structure. In the case
of a TCP socket, the link to the TCP protocol switch
structure makes the socket specifically a TCP socket,
and not a socket bound to some other protocol.

The binding between a generic socket object and a
specific protocol switch structure occurs when a socket
is created. An application creates a new socket using the
socket() system call, as in this example:

sockdesc = socket(AF_INET, SOCK_STREAM,
IPPROTO_TCP);

When socket() is called, the kernel uses the spec-
ified domain (AF INET), type (SOCK STREAM), and
protocol (IPPROTO TCP) parameters to find the appro-
priate switch structure for the requested protocol. Then,
the kernel calls the attach() function found in that
protocol’s interface table. The attach() call imple-
ments the binding between the socket and the specific
protocol, notifies the protocol that it must support a
new socket, and reserves any resources necessary to
accomplish that task. The counterpart to a protocol’s
attach() function is called detach(). As expected,
detach() deallocates any resources previously allo-
cated by attach() when the socket was created, and
removes the binding between the socket data structure
and the protocol.



The most obvious approach to support a TCP-to-
SCTP translation shim is to take an existing TCP socket,
detach TCP from the socket, and then attach SCTP in-
stead, effectively transforming a TCP socket to an SCTP
socket. Unfortunately, this approach is not possible given
the specific operation of the detach() function. In
addition to deallocating resources and removing the
binding between a socket and protocol, detach()
goes one step further, actually deallocating the entire
socket data structure. The underlying assumption is that
attach() and detach() should be called exactly
once each during the lifetime of a socket, since changing
the protocol a socket during active use is not an expected
behavior.

B. Hidden SCTP Socket

Due to the behavior of attach() and detach(),
as well as the need to revert to TCP when shim
connections using SCTP are not possible, the TCP-to-
SCTP translation shim requires two separate socket data
structures, one bound to TCP and the other bound to
SCTP. On a system incorporating the shim, we modify
the traditional socket() system call so in addition to
creating the normal TCP socket as usual, a second hidden
SCTP socket is created. It is termed hidden because it is
created by the kernel but not exposed to the application.
The existence of a traditional socket is known to the
application because a socket descriptor is returned and
used by the application to access networking function-
ality. The shim’s SCTP socket is created but remains
hidden from the application in accordance with the goal
of transparent translation from TCP to SCTP.

Because the hidden SCTP socket is inaccessible via
a normal socket descriptor, the kernel needs to keep
track of each pair of normal TCP and hidden SCTP
sockets that are created. This tracking is accomplished
by adding a new field to the system’s standard socket
data structure, which allows the hidden SCTP socket
to be linked from its corresponding parent TCP socket.
Figure 2 illustrates the relationship between a normal
TCP socket and its hidden SCTP socket, as well as
the corresponding protocol switch structures. The new
shim state and shim parent fields visible in the figure
are discussed in Sections IV and VI-C, respectively.

C. Socket Layer in Detail

Networking specialists define a five-layer TCP/IP In-
ternet model consisting of the application, transport,
network, link, and physical layers. However, from an
implementation point of view, the five-layer model ne-
glects the important socket layer. The focus of the shim
implementation is the socket layer, which acts as an
intermediary between an application and the transport
protocols. The socket layer itself is organized as several
sublayers as shown in Figure 3.
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The top sublayer of the socket layer is made up
of the socket system call stubs. These functions form
the API that applications use to make requests on the
lower layers. The stub functions do not perform any
actual networking actions themselves; they only package
application layer arguments into a format expected by
the kernel, and then make the system call to enter into
kernel execution mode. The socket system call stubs are
typically included in a library that is linked with any
application wishing to make use of networking services.

The sublayer immediately below the socket system
call stub functions is the layer where the socket system
call implementations lie. These are the functions inside
the kernel which actually implement the functionality of
the sockets API.

The system call implementations also make extensive
use of a set of lower level functions called the socket
layer functions. Each of these functions performs a
specific networking task on a specific socket passed as
an argument. In turn, the socket layer functions then
make calls directly into the transport protocol modules,
requesting specific functionality from TCP, or SCTP in
the case of the shim.

An important distinction among the application layer,
the various sublayers of the socket layer, and the trans-
port layer is how sockets are treated at each level. Appli-
cations and the socket system call stub functions operate
on socket descriptors: integer indexes into a lookup table
maintained inside the kernel used to find the socket data
structure the application is using (similar to how UNIX
file descriptors work). Once the socket data structure
has been located, the socket layer functions, transport
protocol modules, and all lower layers use this socket
data structure directly. The system call implementation
sublayer is the transition point where a socket descriptor
is mapped to a specific underlying socket object. Map-
ping the socket descriptor to the hidden SCTP socket
rather than the normal TCP socket at this point is the
basis of our TCP-to-SCTP translation scheme.
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D. Socket Substitution in System Calls

Section II-A describes how every socket object points
to the protocol switch structure for the transport protocol
associated with that socket. Generic network requests
from the application made through the sockets API are
mapped to the specific protocol implementations that
satisfy those requests using the interface function table
found in the protocol switch structure. For example, the
functionality of the connect() system call depends
on the underlying protocol in use. TCP’s connect()
function must perform a 3-way SYN, SYN-ACK, ACK
handshake, while SCTP requires a 4-way INIT, INIT-
ACK, COOKIE-ECHO, COOKIE-ACK handshake. The
actual code that is executed to fulfill the connect()
request is selected via the mapping established by the
protocol pointer in each socket data structure.

The existence of this socket-protocol mapping means
the behavior at the transport layer depends entirely upon
the protocol of the socket passed down through the ker-
nel. The shim manipulates whether TCP or SCTP is used
at the transport layer by intelligently deciding which of
the two sockets to pass to the kernel’s lower layers. This
technique of deciding which socket to substitute into calls
to the lower layers of the kernel is the basis of our
approach to implement transparent translation from TCP
to SCTP. While some system calls will clearly require
more extensive modifications to support the desired shim
functionality, many of the sockets-related system calls
require only simple logic that decides to pass either the
TCP socket or the SCTP socket to the lower layers,
depending on the shim’s current operating state. In the
following sections, we describe exactly what the desired
behavior of the shim will be for both client and server
applications, and detail the changes made to the major
sockets system calls.

III. CONTROLLING SHIM USE

To be practical, an operating system implementing the
transparent TCP-to-SCTP translation shim needs to have

an effective means for controlling the shim functionality.
Whether in an experimental or production environment,
the shim may be desirable for some applications but not
for others. To encourage users to experiment with and
make use of the shim when practical, we have designed
and implemented a system to control the operation of the
shim on both a system-wide and per-application basis.

In FreeBSD, most tunable operating system param-
eters are implemented as sysctls. The sysctl interface
allows an administrator to configure the system’s ker-
nel variables dynamically [6]. Since network protocols
typically have a large number of tunable parameters,
the sysctl interface facilitates adjusting system properties
without requiring editing of source code and kernel
recompilation. We use sysctls for many of the shim’s
configuration variables.

The basic means of controlling the shim is through
a global on/off switch for the entire system. Since this
approach offers only a crude level of control, we en-
hance flexibility by dividing shim control into two broad
classes: control over applications with local listening
sockets (typically servers), and control over applications
connecting to remote systems (typically clients). We
define two new sysctls to specify the default policy for
each of these two classes. The sysctls, shown below,
are boolean variables where zero specifies the shim is
disabled, and any nonzero value indicates the shim is
enabled for that class of applications.

net.inet.sctp.shim.default_local_enable
net.inet.sctp.shim.default_remote_enable

A. Shim Use Rules

Dividing all applications into two control classes to
manage shim functionality is not nearly fine-grained
enough for serious use. However, the global default poli-
cies do form the basis for a more precise rule-based shim
control system that allows an administrator to selectively
enable or disable the shim on a per-application basis.
The basic building block of the shim control system is a
rule object, consisting of an IP address, a subnet mask,
and two port numbers, illustrated in the following code
listing:

struct shim_rule {
int chain;
int policy;
int type;
uint16_t port1;
uint16_t port2;
struct in_addr address;
struct in_addr netmask;

};

In our design, a rule has only one address and one
netmask, so a rule can represent a single address or all
addresses on a certain network, but not both. Similarly,



a rule has a maximum of two port numbers, so a rule
can specify a single port or a range of ports, but not both
simultaneously. However, because the storage for the
address and mask is independent of the storage for ports,
a rule can combine addressing and port information.

The combination of address, network, or port num-
ber(s) in use by a particular rule object is specified
by the flags set in the type field. A rule also has two
additional fields: chain and policy. The chain is either
local or remote, specifying whether the rule applies to
local listeners or applications connecting to remote peers.
The policy is either enable or disable, reflecting whether
or not the shim will be used for applications whose
network parameters match the other fields of the rule
(i.e., address, network, and port(s)). If any field of a rule
is unspecified (i.e., only the address information is used
and ports are unspecified), then the unspecified field is
considered to be a wildcard and does not restrict the
matching process.

B. Shim Rules Organization & Operation

All shim rules currently in effect on a system are
grouped based on their chain and policy fields, resulting
in four separate chains or classes of rules: local-enable,
local-disable, remote-enable, and remote-disable. Sub-
dividing the rules into these four chains enables quick
location of relevant rules when the kernel initiates a
lookup to determine whether to enable or disable the
shim for a particular application. These four chains of
rules comprise the shim rules table.

The shim rules table is maintained inside the kernel,
and is consulted by the kernel whenever it needs to
decide whether to enable or disable the shim for a
particular application. Two system calls trigger a lookup
using the shim rules table: connect() and bind().
These calls represent the two points where the kernel can
easily examine the socket addresses (objects containing
an address and port number) being passed in from the
application. Specifically, the address and port number of
the remote endpoint a client application wishes to contact
are passed to connect(). Likewise, a local address
and port to bind to are passed by a server application to
bind(). Both connect() and bind() occur early
in a socket’s lifetime before any connection exists or
data transfer occurs, so they are logical decision points
to enable or disable the shim.

The per-application decision process to enable or
disable the shim begins when a client application
calls connect(), or when a server application calls
bind(). The kernel first checks the value of the global
default shim policy for the class of the application, gov-
erned by either the default remote enable sysctl
for a client, or the default local enable sysctl for
a server. Next, one of the four chains in the shim rules

table is searched depending on the governing default
policy. The rules in the four chains represent exceptions
to the global default policies. For example, a default
policy disabling the shim for local listening servers
would require the kernel to search the local-enable
chain for any rule specifically overriding the default and
enabling the shim for matching server applications. If a
match is found, the policy from the matching rule/chain
is used instead of the global default policy. The other
three cases are analogous to this example.

The search process in the shim rules table returns
the policy of the first rule in the appropriate chain that
matches the address and port information passed in by
the application, even if that rule is not the most specific
match present in the list. For example, assume a chain
to be searched has one rule that matches any port in the
range 1− 1024, and any IP address. Also assume that a
rule later in the list has the specific port number 1000 and
the specific network 10.1.2.0/24. Even if an application
passes a socket address structure with port 1000 and
address 10.1.2.3, the first rule is selected despite a more
exact match appearing later in the list. Because of “first
match” rather than “best match” behavior, administrators
must consider rule ordering, placing the most specific
rules first and more general rules afterwards.

IV. SHIM STATES

To support the hidden socket first introduced in Sec-
tion II-B, three new fields were added to the system’s
normal socket data structure: a pointer to the hidden
socket, a shim state variable, and a pointer to the
hidden socket’s parent socket. Section III-B describes
the operation of the shim rules table, and how it is used
to enable or disable the shim for specific applications.
In this section, we explain how the shim state variable is
used in conjunction with the shim rules table to control
the state of the TCP-to-SCTP translation shim for each
application. The purpose and use of each state is defined
below:

• SHIM NOTINIT: The default shim state when a
new TCP socket is created. When a new TCP socket
is created using the socket() system call, initially
the hidden SCTP socket does not exist. A state
of NOTINIT in the normal socket declares to the
kernel that the hidden socket is not yet created and
should not be used. During the later stages of the
socket() call, the hidden socket is created and
the shim state of the normal parent socket changes
to READY.

• SHIM READY: After the hidden SCTP socket has
been successfully created during the execution of
the socket() system call, the normal parent TCP
socket that points to the hidden SCTP socket receives



the state READY to indicate to the kernel that the
hidden socket exists and is ready to be used if needed.

• SHIM ENABLE MANUAL: For debugging pur-
poses, a special socket option exists to allow an
application to directly enable the shim. While man-
ual enabling of the shim would never occur in the
case of a legacy TCP application, the option exists
to allow shim developers to write test suites that
work independently of the shim rules table. The
ENABLE MANUAL state indicates to the kernel that
shim use has been manually enabled and should be
used (when possible) for any interaction with peer
endpoints.

• SHIM ENABLE SRULES: When the shim has
been enabled for a particular application by the
rules table lookup process described in Section III-
B, the state of the normal parent TCP socket is
set to ENABLE SRULES. This state indicates to the
kernel that the shim has been enabled and should be
used (when possible) for any interaction with peer
endpoints.

• SHIM ACTIVE: During the connect() system
call, if the kernel finds the shim state is READY
and shim use has been allowed by either EN-
ABLE MANUAL or ENABLE SRULES, then the ker-
nel attempts to use an SCTP association to communi-
cate with the remote endpoint, falling back to TCP if
SCTP is unavailable. If the connection establishment
phase with SCTP is successful, the shim transitions
to the ACTIVE state, indicating to the kernel that the
application has successfully connected to a remote
peer using SCTP. Once the ACTIVE state is set in the
parent TCP socket, the kernel knows to instead use
the hidden SCTP socket for all network interaction
with the peer.

• SHIM LISTEN: Unlike a client application where
the shim is enabled and enters active use during the
span of a single system call, the process is divided
into two steps for a server application. When a server
application makes the call to bind(), the shim
rules table is consulted and the shim state changes
to ENABLE SRULES if the bind address and port
number match a rule in the appropriate chain of the
rules table. Although enabled, the shim does not enter
active use until the listen() system call is made.
During the listen() call, if the kernel finds the
shim state is READY and shim use has been allowed
by either ENABLE MANUAL or ENABLE SRULES,
the kernel then activates the shim by listening on the
hidden SCTP socket and enters the LISTEN state.

• SHIM HIDDEN: Unlike all of the previous shim
states which are set in the normal parent TCP socket,
the HIDDEN state is set on every hidden SCTP
socket. This state allows the kernel to easily identify

if a particular socket is a hidden SCTP socket rather
than a normal TCP socket. The HIDDEN state also
indicates that the parent pointer of the hidden socket
is valid, and points to the parent TCP socket as shown
in Figure 2.

• SHIM NATIVE: Each of the shim states introduced
so far applies to either a normal parent TCP socket
or a hidden SCTP socket. The commonality is that
parent and hidden sockets are created in direct re-
sponse to a socket() request by an application.
The NATIVE state instead applies to new sockets
created by the kernel to represent the local com-
munications endpoint for remote peers connecting
to a local listening server. The sockets created by
the kernel for each incoming connection to a shim-
enabled TCP server are native SCTP sockets — they
are independent sockets that do not have a parent
or child relationship with any other sockets. While
the functionality of the shim in a server scenario
is described in detail in Section VI, the importance
of the NATIVE state is that it allows the kernel to
distinguish a native SCTP socket from the hidden
SCTP socket paired with a normal TCP parent socket.

NOTINITNOTINIT

ENABLEENABLEENABLE

READYREADY

ACTIVEACTIVE LISTEN

socket()

connect() bind()

listen()

close() close()

shutdown() shutdown()

connect() or 
listen() failure

Client States Server States

Fig. 4. Shim states and typical transitions for client and server
applications (states grouped inside dotted boundaries occur in the span
of a single system call)

Figure 4 shows the typical transitions between shim
states for both client and server applications. Note the
HIDDEN and NATIVE states are not pictured because
they are immutable and any socket created with one
of those states remains in that state forever (i.e., no
transitions exist to or from these states).

V. CLIENT SOCKET FUNCTIONALITY: CONNECT

The connect() system call is one of the major func-
tions modified to support the TCP-to-SCTP translation
shim. At a high level, the behavior of the connect()
system call is as follows: first, the client application



makes the connect() call, passing a socket address
consisting of the address and port number of the re-
mote endpoint into the kernel. Using the process de-
scribed in Section III-B, the kernel decides if the shim
should be enabled for the application making the call
to connect(). If the shim is not enabled, the normal
TCP connection process continues without modification.
However, if the rules indicate the shim is to be enabled
and the socket is in the SHIM READY state, a different
sequence of events takes place. Instead of establishing a
TCP connection with the normal TCP socket, the kernel
initiates the establishment of an SCTP association to the
same remote address and port using the hidden SCTP
socket. If the server running at that remote address and
port supports SCTP (over the shim or natively), an SCTP
association will be set up and all communications will be
over SCTP. Once the peers are associated successfully
using SCTP, the shim state for the application transitions
to SHIM ACTIVE signifying the SCTP socket is in
active use for communications, and all future calls (i.e.,
send(), recv(), etc.) should be performed on the
hidden SCTP socket rather than the normal TCP socket.
If the SCTP association establishment fails the kernel
falls back to a regular TCP connection. In that case the
shim will remain in the SHIM READY state, indicating
the hidden SCTP socket is available for use but currently
inactive.

Before association establishment is attempted using
the shim, several socket and socket buffer configurations
from the normal TCP socket are cloned and applied to
the hidden SCTP socket. The reason for this cloning
operation is that an application could create a socket and
change several configuration parameters before the shim
is actually enabled by the rules table lookup during the
connect() call. If these parameters are set before en-
abling the shim, the hidden shim socket will not receive
the updated configuration — the normal TCP socket
will. The cloning step ensures the hidden SCTP socket
receives any configurations applications make before the
shim becomes active. Identical configurations guarantee
the SCTP association behaves as the application expects
in terms of the following:
• All socket options
• Socket linger settings
• Nonblocking and asynchronous I/O states
• Connection queue limit
• I/O signal handling function
• High/low water marks for socket I/O buffers
• Socket buffer asynchronous I/O flags
• Socket accept filter

To control the number of shim attempts to establish
the SCTP association before falling back to a normal
TCP connection, we have introduced a new sysctl to the
kernel:

net.inet.sctp.shim.init_rtx_max

This parameter specifies the number of times an SCTP
INIT PDU will be retransmitted before connect()
falls back to using a regular TCP connection, allowing an
administrator to balance the value of using SCTP versus
the potential delay in connection setup.

VI. SERVER SOCKET FUNCTIONALITY

While a client application using the shim first attempts
to establish an SCTP association and reverts back to TCP
as a failsafe option when SCTP is unavailable, the server
application functionality of the shim follows a hybrid
approach that allows a single instance of a server process
to serve both TCP and SCTP clients concurrently.

A. Bind

The bind() system call has two major roles when
modified to support the shim. First, bind() performs a
lookup into the shim rules table with the address and
port number to be bound to, determining whether to
enable or disable the shim for the application calling
bind() using the process described in Section III-B. If
the shim is to be enabled for the application, bind()
will initially bind the hidden SCTP socket to the address
and port number specified by the application. If this
binding fails, the error is silently discarded and the
application will only serve TCP clients. After binding the
hidden SCTP socket with the address and port specified
by the application, bind() then performs the normal
bind with the TCP socket. Any error with the TCP bind
is reported to the application, since the current design
of the shim mandates that TCP always be available as
a failsafe option, whereas it is expected that SCTP and
the shim may sometimes be unavailable.

Additionally, we have implemented a new boolean
sysctl to force bind() to override the application and
bind the SCTP socket to all possible addresses on a
multihomed system, rather than just the single address
passed to bind() by the application:

net.inet.sctp.shim.force_bindall

This parameter avoids unnecessarily restricting the
local addresses used by SCTP on a multihomed system
when legacy TCP server applications without knowledge
of multihoming blindly bind to a single address.

B. Listen

After calling bind(), an application next calls
listen() to put the server’s hidden SCTP socket (if
the shim is enabled) and normal TCP socket into the
listening state, allowing remote clients to begin connect-
ing. If the shim is enabled, listen() also changes
the shim state for the application to SHIM LISTEN as
described in Section IV, indicating that the application
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is in a hybrid mode supporting both SCTP clients and
normal TCP clients.

As well as enabling listening on the SCTP and TCP
sockets, listen() also clones several socket and
socket buffer configuration parameters from the normal
TCP parent socket, and copies them to the hidden SCTP
socket. This cloning operation allows an application to
create a socket and change configuration parameters
before the shim is actually enabled by the rules table
lookup in the bind() call. Additionally, the cloning
step ensures that servers operating in hybrid mode have
the same configurations for both their SCTP and TCP
sockets. (The cloned parameters are the same as those
cloned by connect().) Once the SCTP and TCP
sockets are bound and listening, relevant TCP socket
configuration parameters are cloned for the hidden SCTP
socket, and the shim state for the application is set to
SHIM LISTEN, the server application may begin serving
clients that connect via either TCP or SCTP.

C. Servicing Connecting Peers

Remote peer endpoints initiate communication with
a TCP or SCTP server application by sending SYN or
INIT PDUs, respectively. The transport protocol then
handles the connection (TCP) or association (SCTP)
handshaking process. During establishment, the transport
protocol creates a new socket to represent the local
communications endpoint for each connecting client.
Upon completion of the establishment phase, this socket
is then inserted into the listening socket’s queue of
established connections (or associations) awaiting ser-
vice by the server application. The mechanism used
to extract the newly created sockets from the waiting
queue is the accept() system call. An application
calls accept() to retrieve the first fully established,
waiting socket from the front of the queue. The returned
socket is then used according to the application protocol.

Recall that with the shim enabled, a server application

actually has two listening server sockets: the normal TCP
socket and the hidden SCTP socket. New sockets from
connecting TCP clients are queued in the listening TCP
socket’s list, while SCTP sockets from newly connected
SCTP clients would normally be queued in the listening
SCTP hidden socket’s list. To support a hybrid server ap-
proach, a server application needs some way of retrieving
sockets from both lists, and a policy for deciding which
list to choose from if both have waiting clients.

Rather than implementing the retrieval logic by mod-
ifying the accept() system call to retrieve sockets
from both queues, we designed the shim to handle the
problem at a lower level with a cleaner overall design.
Our approach modifies the kernel’s sonewconn()
function, which is responsible for queuing the sockets of
completed connections (associations) into the waiting list
in the corresponding listening socket. If a newly created
socket is slated for insertion into the hidden SCTP
socket’s waiting list, sonewconn() follows the hidden
SCTP socket’s parent pointer (introduced in Section II-
B) and queues the new socket into the normal TCP lis-
tening socket’s queue instead. Consequently, sockets for
newly established client connections from both the TCP
and SCTP listening sockets are queued and intermixed
in a single list in the normal TCP listening socket. When
the unmodified accept() call is made, both TCP and
SCTP sockets can be returned from the waiting list to the
server application, allowing for the desired dual-protocol
hybrid operation of the shim. Figure 5 illustrates the
architecture of the TCP and SCTP listening sockets and
how newly created sockets are maintained in a single
list.

VII. SOCKET I/O

Although the I/O system calls of the sockets API
have some of the most complicated implementations
compared to all of the other socket operations, the
modifications required to allow them to support the
shim are straightforward. The nature of a socket re-
quires two sets of I/O functions to operate seamlessly
with the operating system: dedicated network I/O calls
(i.e., send(), recv(), etc.), and the standard UNIX
I/O calls (i.e., read(), write(), ioctl(), etc.)
implemented especially for sockets. The second set of
functions is required because a socket descriptor can
be used by an application similarly to a normal file
descriptor, thus sockets need to support these standard
file I/O calls. We now describe the shim modifications
required for these two classes of I/O operations.

A. Network I/O Operations: Send & Receive Family

The six network I/O system calls of the sockets API
are send(), recv(), sendto(), recvfrom(),
sendmsg(), and recvmsg(). All of the sending



and receiving functions are similar, differing only in
the number of parameters that can be specified by an
application at the time the I/O call is made [3], [4].
Though the differences between the calls may be relevant
to application developers, they are treated identically by
the shim inside the kernel.

All six of the send and receive system calls are built
upon two fundamental kernel functions, sendit() and
recvit(), which implement the core sending and
receiving behavior, respectively. The six visible socket
I/O calls build on these two base functions by adding
additional processing to handle the various additional
supported parameters. Consequently, adding support to
the shim for network I/O only requires modification of
sendit() and recvit(). Unlike the system calls
that require significant additional code to support the
desired shim features (i.e., connect()’s ability to fall
back to TCP), the network I/O functions require only the
simple socket substitution described in Section II-D to
operate properly. The excerpt below illustrates the code
used to substitute the hidden SCTP socket in place of the
normal TCP socket to support the network I/O functions
of the shim.

if(SHIM_ACTIVE(so)) {
so = so->so_shimsock;

}

B. File Operations: Read, Write, Ioctl, Poll, & Stat

To support standard file I/O functionality, the file
structure for a socket descriptor has a table of implemen-
tations of read(), write(), ioctl(), poll(),
and stat() specific to a network socket rather than
the usual file-specific implementations that are asso-
ciated with a traditional file. The socket-specific ver-
sions of the standard file I/O calls are implemented
by the soo read(), soo write(), soo ioctl(),
soo poll(), and soo stat() functions in the ker-
nel. As with the network I/O system calls described
above, these calls can be modified to support the shim
simply by adding code to perform the substitution of the
hidden SCTP socket in place of the normal TCP socket
when the shim is in active use.

VIII. SOCKET OPTIONS

The client socket behavior with connect(), the
server socket functionality of bind(), listen(), and
sonewconn(), and the operation of normal socket
I/O are the most critical aspects of the TCP-to-SCTP
translation shim. However, the proper handling of socket
options is essential to ensure all legacy TCP applications
running over the shim work without unexpected side ef-
fects or problems. In the following sections, we describe
the implementation of socket options and how the shim
is designed to handle them correctly.

A. Socket Options Overview

Socket options are application-configurable protocol
parameters maintained at different levels in the Internet
protocol stack, manipulated using two system calls,
getsockopt() and setsockopt(). All socket op-
tions are divided into levels based on the protocol that
actually implements the option in question. Socket op-
tions that apply directly to the socket itself are included
in the level SOL SOCKET. All other levels are specified
by the standard protocol number that is assigned to the
protocol implementing the option. For example, options
directed to TCP have the level IPPROTO TCP, options
to IP have the level IPPROTO IP, and so on.

When an application gets or sets a socket option, each
level of the protocol stack examines the level parameter
of the specified option, checking for a match. If the
protocol finds its own level matches the level of the
option, the protocol module then checks the name of
the option and handles the option as appropriate. If the
current protocol is not the responsible level, the option
is passed down the protocol stack to be handled by the
correct lower layer.

B. Translating Socket Options

When the shim is introduced into the existing socket
option system, some modifications are required for cor-
rect operation. While any options for the network layer
and below will work normally even with the shim, socket
options that affect the socket layer itself or the transport
layer need to take special care to function correctly in
the presence of the shim.

In the case of socket layer options, when the shim
is enabled the options need to be applied to the hidden
SCTP socket rather than the normal TCP socket. This
functionality only requires a simple check: if the shim
is in the enabled state, the kernel follows the link from
the normal TCP socket to the hidden SCTP socket and
passes the hidden socket to the lower layers instead. The
lower layers then apply the specified option to the hidden
socket rather than the normal socket.

In the case of socket options destined for the trans-
port layer, an additional translation step is necessary to
support the shim. Most TCP implementations have only
two standard socket options: TCP MAXSEG for getting
and setting the maximum size of a TCP segment, and
TCP NODELAY for enabling and disabling the Nagle
algorithm. If the shim is in the ACTIVE state and special
precautions are not taken, these options might be invoked
on the hidden SCTP socket by a legacy TCP application.
However, with the shim enabled, TCP is not in the
protocol stack as the socket option is passed down
through the layers. The option would travel from the
socket layer, to SCTP, to IP, and then down through
the link layer. At no point along this path would TCP



be able to intercept the option and handle it properly.
Eventually the option would pass unclaimed through
every layer, at which point an error would be returned
to the application.

To avoid this situation when the shim is enabled, the
kernel needs to translate TCP socket options to their
SCTP equivalents. Since both the maximum segment
size and Nagle algorithm are standard transport pro-
tocol attributes, SCTP also implements these options
(SCTP MAXSEG and SCTP NODELAY). The code be-
low is used in the kernel to translate both the socket
option level from IPPROTO TCP to IPPROTO SCTP
and the socket option names from their TCP versions
to the corresponding SCTP versions when necessary:

switch(sopt.sopt_level) {
case IPPROTO_TCP:

sopt.sopt_level = IPPROTO_SCTP;
break;

}

switch(sopt.sopt_name) {
case TCP_NODELAY:

sopt.sopt_name = SCTP_NODELAY;
break;

case TCP_MAXSEG:
sopt.sopt_name = SCTP_MAXSEG;
break;

}

IX. EXPERIMENTAL EVALUATION

Using our TCP-to-SCTP shim implementation, we
evaluated several popular applications running over the
shim in terms of usability and performance. From a
usability standpoint, we are interested in determining
whether applications operate correctly if calls to TCP
are transparently translated to SCTP, and SCTP replaces
TCP at the transport layer without the application’s
knowledge. Additionally, we are interested in whether
the user perceives any difference due to this change. Our
experiments serve as a proof-of-concept that the shim
idea is not only theoretically feasible, but also technically
feasible.

Sections IX-A and IX-B describe the applications
we verified to work correctly running over the shim
in legacy-legacy mode and legacy-native mode, respec-
tively. Besides showing applications can run over the
shim without any visible changes in behavior or func-
tionality, we quantify that applications running over
the shim achieve performance equivalent to or greater
than when running over a normal TCP connection. We
describe these performance experiments in more detail
in Section X.

A. Legacy-legacy Configuration

The shim’s legacy-legacy mode is used to allow two
legacy TCP peer applications to communicate using

SCTP at the transport layer rather than TCP. This mode
of shim operation allows the applications to take ad-
vantage of some of SCTP’s advanced features without
requiring any modifications to the applications them-
selves. We selected four test applications that represent
the network usage of a typical Internet user: Telnet,
SSH, HTTP, and Icecast [19] streaming audio. Each
application was compiled and installed in the standard
fashion without any modification to the source code.
The particular implementations and versions of each
application used in testing are as follows:

• Telnet: The standard Telnet [5] client and server
applications distributed as part of the FreeBSD 4.10
operating system were used to test the functionality
of a remote Telnet login session operating over the
shim. Both the Telnet client and server functioned
correctly while running over the shim and no errors
or unusual behavior occurred during testing.

• SSH: In addition to Telnet, we also experimented
with running SSH over the shim. SSH is a remote
login protocol that incorporates encryption and is
significantly more complex than Telent. The client
and server programs used for our SSH experimen-
tation were those included in OpenSSH 3.9p1 [14].
Our experiments found that SSH operated over the
shim without any identified errors. Additionally, the
SSH application suite includes the file transfer utility
SCP that was used in the quantitative shim perfor-
mance evaluation described in Section X. SCP also
performed without error when operating using the
shim rather than a normal TCP connection.

• HTTP: In the legacy-legacy configuration, we tested
HTTP over the shim using Apache 2.0.43 [1] as the
web server, and Firefox 1.04 [12] as the web browser
client. In our experiments, we verified web pages
(including all embedded objects, such as images)
downloaded and displayed correctly in the browser
when the interactions between the client and server
were run over the shim’s SCTP associations rather
than TCP connections.

• Icecast Streaming Audio: Icecast [19] is a streaming
audio server that streams music in the Ogg Vorbis
[20] format. For our testing, we used the Icecast
2.2.0 streaming audio server and the XMMS [21]
media player as the client. In our experiments, we
found the audio quality when using the shim to
be identical to the quality when using a normal
TCP connection and did not encounter any prob-
lems such as skipping, distortions, or hangups in
playback. In an additional experiment with Icecast,
we played streaming audio across the shim between
two multihomed systems. During playback, we dis-
abled the currently active network path (by physi-
cally unplugging the associated interface) to test the



fault tolerance provided by the shim’s underlying
SCTP association. As expected, SCTP failed over
to the remaining functional interface and playback
continued without interruption. Performing the same
experiment over TCP resulted in a complete failure
of the connection and halted playback. We believe
this experiment shows the shim’s potential to bring
SCTP’s fault tolerance to legacy TCP applications.

Although the set of applications we experimented
with is not exhaustive, we believe the normal, expected
operation of these four applications when using the shim
indicates the shim will be a viable and practical tool for
existing legacy TCP applications. We are currently aware
of only one potential problem with the shim, relating
to legacy TCP applications that explicitly depend on
the behavior of TCP’s half-closed state. SCTP’s design
does not incorporate a half-closed state (either endpoint
calling close() will terminate the whole association),
so applications which depend on the semantics of TCP’s
half-close may exhibit unusual behavior when running
over the shim.

B. Legacy-native Configuration

In addition to testing between legacy TCP endpoints,
we also experimented with HTTP in the legacy-native
configuration illustrated in Figure 1 using a version of
the Apache webserver that was rewritten to natively
support SCTP clients [16], and the same Firefox browser
used in the HTTP experiments for the legacy-legacy
configuration. In the legacy-native configuration, one
endpoint, in this case the modified Apache server, is
an application that is written to natively support SCTP,
while the other endpoint, in this case the Firefox web
browser, is a legacy TCP application using the shim
to translate calls to TCP into corresponding calls to
SCTP. Using Firefox, we conducted a sequence of page
requests over the shim in legacy-native mode, browsing
the documents available on our test server as a regular
end-user would. The web pages, including all embedded
graphics, were rendered identically to what users would
experience when using normal TCP connections. The
success of this test validates the incremental deployment
motivation of the TCP-to-SCTP translation shim.

X. PERFORMANCE ANALYSIS

The experiments described in Sections IX-A and IX-B
serve as a proof-of-concept for the shim, showing that
the idea of translating calls to TCP into equivalent calls
to SCTP without the application’s knowledge is practical
for several popular network applications. Showing that
applications running over the shim function correctly
is an important component of testing the TCP-to-SCTP
translation shim. However, such tests do not quantitify
the performance of application interaction when using

the shim compared to when applications use normal
TCP connections. In Section X-A, we describe the setup
of our experimental evaluation of shim’s performance
in terms of application throughput during file transfers.
Section X-B discusses the results and conclusions of the
performance evaluation.

A. Experimental Setup

For our experiments, we measure the total time re-
quired to transfer files of various sizes using the SSH
suite’s SCP tool when running over a normal TCP
connection and when running over the shim using an
SCTP association. We compare the transfer times for
TCP and the shim at a variety of loss rates.

• Bandwidth/Delay Configuration: We use a 1.5
Mbps, 35 ms delay path in all of our experiments,
simulating the bandwidth and delay for a typical
broadband Internet user in a US coast-to-coast con-
nection configuration. The path is symmetric, so the
bandwidth and delay are the same for client to server,
and server to client.

• Packet Loss Rates: We examined transfer time with
uniform loss rates of 0, 1, 3, 6, and 10%. Similar
to the bandwidth-delay configuration, the loss rates
are symmetric so the paths from client to server and
server to client experience the same loss rate.

• File Sizes: To determine if the size of the file being
transferred affects the transfer times for TCP or the
shim disproportionally, we transfer files of size 50
KB, 500 KB, 5 MB, and 25 MB.

Each experiment required three nodes: a server ma-
chine running the SSH/SCP service, an SCP client,
and an intermediate node running Dummynet [15] to
simulate bandwidth, propagation delay, and loss rate
configurations. The intermediate Dummynet router node
was configured with a tail-drop queue of 50 packets and
performed uniform random loss at the rates described
above. Each node was a Pentium 4 system running
FreeBSD 4.10 with a KAME kernel supporting SCTP.
The SCTP version used was patch level 25, released
in February 2005. To prevent the experiments with the
shim from naturally taking advantage of the SCTP’s
multihoming ability and using other paths not part of the
simulation topology, we disabled all interfaces besides
the ones attached to the Dummynet-simulated network
on the client and server systems before beginning the
experiments. Disabling the alternate interfaces allowed
for a fair comparison between TCP and the shim because
SCTP was restricted to the simulated network, and was
unable to use any alternate paths between the client and
server nodes.

Each run of the experiment involved measuring the
total time required to issue the SCP command to retrieve
a single file on the client system, and then transfer



the entire file from the server, including the SSH key
exchange overhead. We used a public-key authentication
configuration rather than passwords with SSH to allow
the experiments to be run in a non-interactive batch
mode. Every combination of file size and loss rate was
run with the 1.5 Mbps/35 ms bandwidth-delay configura-
tion a total of 30 times, except the 50K file experiments
which were run 90 times per loss rate due to higher
variance in the transfer times. Thus, each data point in
the graphs shown in Section X-B is the average of 30
(or 90) runs of the same file size/loss rate configuration.

B. Experimental Results

Figures 6, 7, 8, and 9 display our recorded transfer
times for each simulated loss rate for 50 KB, 500 KB, 5
MB, and 25 MB files, respectively. In situations where
SCTP is available on both peer endpoints, the shim
adds no significant communications overhead beyond
the inherent differences in the transport layer protocols
being used or substituted. The case where SCTP is
unavailable on the remote system can be a source of
overhead during the connection establishment process
because at least one additional RTT is required to detect
that SCTP is unavailable before reverting to TCP and
starting data transfer. However, because the nodes in our
experiment support SCTP and both the SSH/SCP client
and server have the shim enabled, no additional overhead
is introduced by using the shim. The differences in
transfer times are entirely due to the specific features and
implementations of the underlying transport protocols,
not the translation process.

The graphs yield two main observations about applica-
tion throughput over a TCP connection versus the shim
with an SCTP association. First, in situations without
any network-induced loss, TCP and the shim perform
approximately equivalently. Although not visible in the
graphs, TCP had a slight edge with average transfer
times between 4 and 240 ms faster than the shim at
0 percent loss across all four file sizes tested. This
difference is likely a result of SCTP’s more complex
four-way association establishment handshake compared
to TCP’s three-way handshake, and SCTP’s more ex-
pensive CRC32 checksum. The second observation is
that for all runs with loss rates greater than 1 percent,
the shim running over SCTP outperforms TCP by an
increasing margin as loss rates increase. The trend of the
shim providing better application throughput at all loss
rates greater than 1 percent holds across all files sizes,
with longer transfers (i.e., 25 MB files) seeing a greater
improvement than short transfers (i.e., 50 KB files). We
argue that the greater throughput afforded by the shim in
high loss conditions is due to the advanced congestion
control features in SCTP, such as Limited Transmit,
Appropriate Byte Counting, and Selective Acknowledg-
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ments, that are not present in FreeBSD 4.10’s version of
TCP (New Reno) [13]. Our results from experimenting
with SCP over the shim confirm the same trends at high
loss rates as earlier work [13] which experimented with
various implementations of FTP running over SCTP.
We speculate that if TCP were to incorporate the same
congestion control features that SCTP currently supports,
throughput for applications running over both the shim
and normal TCP connections would be similar at all loss
rates.

We feel our experimental results show the transparent
TCP-to-SCTP translation shim is technically feasible,
functions effectively with common network applications
under realistic conditions, and provides performance
(measured in terms of application throughput) that is
equivalent to or better than what is possible using TCP.

XI. SUMMARY

The transparent TCP-to-SCTP translation shim allows
legacy TCP applications to enjoy SCTP’s multihoming
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advantages (i.e., fault tolerance and potentially concur-
rent multipath transfer) without requiring any modifica-
tions to the legacy applications themselves. Addition-
ally, in non-multihoming situations, the shim encourages
increased SCTP deployment by providing a path for
gradual migration from legacy TCP applications to native
SCTP applications, solving the incremental deployment
problem typically experienced with new protocols.

Experimental results presented in Section IX illus-
trate that not only is the shim approach an interesting
theoretical concept, but that the shim is technically
feasible in practice with real applications under typical
network conditions. The hope of this work is that users
and developers alike will begin to appreciate how the
advanced features provided by SCTP can be valuable for
network applications. By ensuring that existing legacy
TCP applications can seamlessly interact with new SCTP
counterpart applications, the shim encourages innovation
and the increased deployment of SCTP throughout the
Internet.
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