
CIS-280: Program Development Techniques

Instructor: Sandra Carberry O�ce Hours: 12:45-1:45pm Tuesday
O�ce: 456 Smith 2:00-3:00pm Thursday

Teaching Assistant: Michael Smith O�ce Hours: Monday 12:15-1:15pm
O�ce: 115B Pearson Hall Wednesday 11:45am-1:45pm

Teaching Assistant: Manabu Torii O�ce Hours: Friday 10am-noon
O�ce: 115B Pearson Hall Monday after last lab (in lab room)

Web page: www.cis.udel.edu/�carberry/CIS-280
Project Number: 2081

1 Course Description

CIS-280 is a rigorous introduction to the methodology and paradigms of computer science.
Although the course will involve a great deal of programming to exemplify and gain experience
with the concepts being taught, the emphasis of the course is not on a particular programming
language. Instead, the course will focus on programming paradigms and concepts, including data
and procedural abstraction, modularity, object-oriented programming, functional programming,
data-directed programming, and algorithm complexity.

Mastery of the concepts in this course is essential for good software design, since a software
designer must be able to consider di�erent design options and select those that are most appropriate
for the problem at hand. Thus this course provides the foundations for addressing complex pro-
gramming projects in subsequent courses, particularly in the capstone software engineering course
required of all students pursuing a Bachelor of Science degree in computer science.

Why Scheme?

Programming assignments will be done in Scheme, a dialect of Lisp. Scheme is
a wonderful language in which to illustrate and experiment with the programming paradigms
introduced in CIS-280. First, the syntax of Scheme is easy to learn, so little e�ort needs to be
devoted to teaching the language itself. Second, Scheme removes the programmer from many of
the details involved in setting up and using data structures in most conventional programming
languages such as C++ | thus one can focus on the concepts and paradigms being studied. And
most important, Scheme supports the modular decomposition strategies and incremental design
techniques that we will be studying.

Objectives

� Have a command of the major techniques for designing programs and controlling complexity

� Be able to use modern approaches to dealing with time computationally (objects with state,
functional programming, concurrent programming, lazy evaluation, nondeterministic pro-
gramming)

1



� Understand the issues associated with programming language design and implementation

� Have a mastery of a non-standard programming language

Prerequisites

CIS-220: data structures
Competency with Unix

Textbooks

Abelson, H. and G. Sussman with J. Sussman, Structure and Interpretation of Computer Programs

(second edition)

2 Grading

Exam I 15%
Exam II 20%
Final Exam 20%
Homework Assignments 30%
Project 15%
Labs See below for lab policy

There will be two midterm exams and a �nal exam. Students enrolled in sections 010 and 011 will
be required to remain at the midterm exams for the entire period.

Lab Work

Labs meet on Monday in 009 Willard Hall. During labs, you will be working on exer-
cises that illustrate the concepts discussed in class the preceding week; these exercises will help
you with the homework assignments. At the end of lab, you should submit your work on the
course submission web site unless the assignment speci�es a di�erent method of submission. If
you attend lab and work conscientiously on the lab assignment, then you will be given credit for
that lab even if you do not �nish it; if you miss lab, you must correctly complete the lab assign-
ment in its entirety and submit it by the start of lab the following Monday in order to be given
credit for that lab. (Late labs will not be accepted.) One point will be deducted from your
�nal grade for each lab for which you do not receive credit (either by attendance at the lab, or by
correctly completing the lab assignment and submitting it by the start of lab the following Monday).
A few labs will not have associated lab assignments and thus you must attend those labs in order t

2



Homework and Project

Homework assignments are intended to give you an opportunity to work with the concepts
discussed in class. Assignments will be distributed throughout the semester. The project is a
longer programming assignment, requiring substantial e�ort. Unless the assignment or the course
web page says otherwise, all assignments must be submitted through the course submission web
page.

Both homework assignments and the project are due prior to the start of class on the
announced due date. They may be submitted without penalty prior to the start of the next

class.

Assignments submitted after the no penalty extension will be penalized as follows:

TURNED IN PENALTY
9am, one day after the no penalty extension 25%
9am, two days after the no penalty extension 50%
9am, three days after the no penalty extension 75%
after 9am, three days after the no penalty extension not accepted

Saturday and Sunday will not be counted in determining the number of late days. Thus an assign-
ment due on Tuesday but SUBMITTED prior to the start of class on the following Thursday will
not be penalized, an assignment due on Tuesday but SUBMITTED by 9am the following Friday
will be penalized 25% of the total points that the assignment is worth, and an assignment due
on Tuesday but SUBMITTED by 9am the following Monday will be penalized 50% of the total
points that the assignment is worth. Please note that penalties are based on when the assignment
was SUBMITTED.

Important Policies

� As noted under \Homework and Project" above, assignments must be submitted prior to the
start of class. Once class has begun, the assignment is late and will be penalized as speci�ed
in \Homework and Project" above.

� Students must do their work independently. This means that you may not work together with
another student on homework assignments or the project, and you may not examine another
student's code or homework assignment. You must protect your password, and you may not
give your password to another student or leave your assignments so that they are accessible
to another student. Both the student who turns in work that is not his or her own and the
student who allowed his or her work to be used by another student are guilty of cheating;
such cases will be handled according to University policies on academic dishonesty.

� However, students are encouraged to discuss the course material with one another. In addi-
tion, you are free to discuss debugging strategies with one another. But assignments must be
done independently.

3



3 Lectures and Readings: Abelson and Sussman

Chapters 1 through 3 will be covered, along with portions of chapters 4 or 5 if time permits.
An updated reading list will be distributed as the semester progresses.

DATE TOPIC TEXT

Feb. 8 Introduction to CIS-280
Basic Concepts pp.1-13

Feb. 10 Substitution Model, Simple Recursion pp. 13-31
Feb. 14 LAB: Exercises on Basic Concepts and Recursion

Feb. 15 Procedures and Processes pp.31-42
Complexity and Orders of Growth pp.42-46

Feb. 17 Algorithms: GCD, Primes pp. 48-52
Feb. 21 LAB: Exercises on Recursion and Complexity
Feb. 22 Probabilistic Methods pp.51-53

4


