
Draft of DAMSL: Dialog Act Markup in Several

Layers�

James Allen and Mark Core

October 18, 1997

Contents

1 Preliminaries 2

2 Utterance-Tags 4
2.1 Communicative-Status . 4
2.2 Information-Level . 6
2.3 Forward Looking Function . 9

2.3.1 Statement . 10
2.3.2 Info-Request . 10
2.3.3 Inuencing-addressee-future-action (Inuence-on-listener) 11
2.3.4 Committing-speaker-future-action (Inuence-on-speaker) . 13
2.3.5 Discussion . 15

2.4 Backward Looking Function . 17
2.4.1 Agreement . 17
2.4.2 Understanding . 20
2.4.3 Answer . 23
2.4.4 Information-Relations . 24
2.4.5 Antecedents . 24
2.4.6 Discussion . 27

�The structure of this annotation scheme was developed by the Multiparty Discourse Group
at the Discourse Research Initiative (DRI) meeting at the University of Pennsylvania in March,
1996 and a follow up meeting at Schloss Dagstuhl in February 1997. Additional revisions
and development of the manual have been greatly aided by suggestions and feedback from
Johanna Moore and her research group at the University of Pittsburgh, Rebecca Passonneau,
and Teresa Sikorski. The development of this manual was supported in part by NSF grant
IRI-95-03312 and IRI-95-28998, the latter of which was under a subcontract from Columbia
University. Thanks to Becky for the acronym for DAMSL. While we have tried to maintain
the spirit of the decisions made at the Dagstuhl workshop, we have also had to make changes
based on problems that have arisen as we used the scheme in practice. Thus it should not be
taken as the �nal word on the DRI scheme, but could be useful as a starting point to reach a
general consensus.

1

3 Multi-Dimensional Problems 27

4 Tagging Cue Words and Speech Repairs 28

5 Mechanics of Annotating 30

6 Appendix: Outstanding Issues 31

This manual describes a system for annotating dialogs. It marks important
characteristics of utterances that indicate their role in the dialog and their re-
lationship to each other. This annotation scheme has been de�ned in order to
provide a top-level structure for annotating a range of dialogs for many di�er-
ent purposes. For any particular project, we would expect that the annotation
scheme would be re�ned to provide further detail on phenomena of interest. By
agreeing to this standard, however, we would increase the chances that anno-
tations done in one project for one purpose would be reusable later in other
projects and for other purposes.

1 Preliminaries

A dialog is a spoken, typed or written interaction in natural language between
two or more agents. This scheme was developed primarily for two-agent task-
oriented dialogs, in which the participants collaborate to solve some problem.
Terms such as speaker and listener will be used in this manual, however, those
working with typed dialogs or with dialogs with more than two participants
should substitute \currently contributing participant" for \speaker". \listener"
refers to the person that the speaker directs their utterance toward or to the
person who responds to the speaker's utterance in the case where the speaker
does not direct his speech at a single person.

A dialog is divided into units called turns, in which a single speaker has
temporary control of the dialog and speaks/writes for some period of time.
Within a turn, the speaker may produce several spoken or typed utterance
units. While there are many possible ways to de�ne utterances, here we based
the notion of utterance on an analysis of the intentions of the speaker (the speech
act). For each utterance, the annotation involves making choices along several
dimensions, each one describing a di�erent orthogonal aspect of each utterance
unit.

In the unannotated dialogs as well as the examples in this manual, the start of
utterance units will be preceded by an utterance name such as utt1 or utt2, and
the turns will be marked to the left of the utterances (space permitting). The
dialog excerpt below shows the formatting; the excerpt contains three utterance
units, two spoken by u (\I need a" and \okay") and one by s (\so you've got
the engines at Elmira and uh").

2

T1 utt1: u: I need a

| utt2: okay

T2 utt3: s: so you've got the engines at Elmira and uh

In spoken dialogs, when one speaker interrupts the other, speakers will some-
times talk at the same time. Words of overlapping speech are marked with num-
bered square brackets with the number in parenthesis next to the right bracket.
You can match up overlapping sections by �nding all the bracketed text with
the same index. Consider the two utterance units below. Here, \assuming"
and \okay" are marked as overlapping since they are both are bracketed with
number 1 brackets.

T1 utt1: s: uh would take two hours <sil> [assuming](1) you have

| | an engine at Bath

T2 utt2: u: [okay](1)

In the middle of a sentence, a speaker will sometimes pause long enough for
a second speaker to interject a few words and then the �rst speaker will �nish
their sentence. This is marked by empty square brackets as shown below.

T1 utt1: s: so you've got the engines at Elmira and uh [](1) Avon

T2 utt2: u: [Avon](1)

Cases where one speaker interrupts the sentence of another will be handled
as shown above. Sometimes interruptions such as \mm-hm" or \okay" come be-
tween sentences that would be one utterance if not interrupted. In the example
below, s makes a three utterance answer that is interrupted by an acknowledg-
ment. You are allowed to group a continuous series of utterances together into
a segment to accommodate cases where several utterances form one answer,
request, etc.

Segments can receive any label that an utterance can. However, a segment
must be composed of a continuous set of utterances, so in the example below
\okay" and \and we need" must be included in the ans segment. Since the
segment is labeled as an answer, the individual utterances of the segment (utt2-
utt5) do not also need to be labeled as answers. However, utt3 and utt4 should
be given Answer tags (see section 2.4) of \no" since unlike utt2 and utt5 they are
not an answer to a question. Except for acknowledgments such as \okay" and
\mm-hm" and repaired utterances such as utt4, utterances within a segment
should have the characteristics with which the segment is labeled. Section 5
discusses how to tag dialogs using the dat annotation tool and how to form and
tag segments with the tool.

T1 utt1: u: where are the engines

ans| T2 utt2: s: there's an engine at Avon

| T3 utt3 u: okay

| T4 utt4 s: and we need

| | utt5 s: I mean there's another in Corning

3

You will be classifying each utterance unit along several dimensions (using
Utterance-Tags) in order to record the unit's purpose and role in the dialog.
Generally, the dimensions are orthogonal, and you can �nd examples of any
possible combination of labels. We will explicitly point out a few places where
this does not seem to hold.

Sometimes you will be unsure of whether or not a label should be applied
to an utterance. One option you will have is to apply the label with an \uncer-
tainty modi�er". Section 5 discusses the dat annotation tool and how to mark
uncertainty using it.

A special dimension called Communicative-Status is used to mark utterances
that appear to be abandoned in mid-stream or which are impossible to under-
stand. In general, if utterances are marked as being defective in one of these
ways, you don't need to complete the rest of the annotation for that utterance.

2 Utterance-Tags

The utterance tags all indicate some particular aspect of the utterance unit
itself, summarizing the intentions of the speaker (i.e., why the utterance was
spoken) and the content of the utterance. These tags can be classi�ed into four
main categories:

� Communicative Status - records whether the utterance is intelligible and
whether it was successfully completed.

� Information Level - a characterization of the semantic content of the ut-
terance.

� the Forward Looking Function - how the current utterance constrains the
future beliefs and actions of the participants, and a�ects the discourse.

� the Backward Looking Function - how the current utterance relates to the
previous discourse.

Note that utterances do not need to always have a component at each level.
For instance, some utterances may have no Forward Looking Function, while
others might have no Backward Looking Function.

2.1 Communicative-Status

This utterance tag records certain features of an utterance unit such as whether
it was interpretable. Unlike the other categories where a choice needs to be
made between options, here the features are independent of each other. Since
these features only mark exceptional circumstances, most utterance units have
no features marked in this classi�cation. The features marked are

4

� Uninterpretable

� Abandoned

� Self-talk

Uninterpretable

The utterance unit is not comprehensible. It may or may not be Self-talk
depending on how it sounds. These utterances are rare and are usually word
fragments although sometimes bad grammar and bad pronunciation/typing can
make an utterance impossible to understand. An utterance may also be seman-
tically ill-formed although syntactically perfect.

Abandoned

Sometimes a speaker will make an error in their utterance or change their
mind about what they are going to say, and simply abandon their utterance.
Such fragments are marked as abandoned only if they provide no content to the
dialog, i.e., the import of the dialog would not change if these utterance units
were removed. If the utterance does provide content to the dialog, it should not
be marked abandoned and should be annotated as usual. In the example below,
the abandoned utterance \so I pick up" does not provide content to the dialog
and so is labeled abandoned.

Abandoned utt1: u: so I pick up ..

utt2: can I take oranges um on tankers from Corning

Note that just because an utterance is broken o� does not mean it is aban-
doned as de�ned here. If it contributes content to the dialogue, then it is not
marked as abandoned. For instance, consider

utt1: s: You'll need two boxcars.

utt2: u: okay, and we-

Utt2 is not marked as abandoned as it serves at least to acknowledge utt1,
and possibly to accept it. Thus it contributes content to the dialogue.

Self-talk

The utterance unit consists of one speaker talking to him or herself. We
assume this does not occur in typed dialogs. This is impossible to detect without
listening to the actual speech. Just because an utterance is labeled as Self-talk
doesn't mean that the other agent can't hear it, or can't use the information.
It simply means that the speaker appears to not be intending to communicate
what is being said.

5

Discussion

While most of the categories are fairly straightforward, more examples and
explanation are needed concerning what makes an utterance Abandoned. If a
complete clause is uttered then it should not be considered abandoned even if
some extension to the clause is broken o�. In the dialog excerpt below, \it's
four hours" is a clause. u never gets to start the new clause introduced by \and"
but \it's four hours and" should not be labeled abandoned, since the content of
\it's four hours" has been communicated in the dialog. \how long" should be
labeled Abandoned because it does not play a part in the dialog.

utt1: u: mm <click> okay

Reassert utt2: four hours from Avon to Bath

Action-directive utt3: and then I guess attach that to the boxcar to Corning

Reassert utt4: it's four hours and

Abandoned utt5: how long

Info-request utt6: it is two hours from Bath to Corning

In this example, \um then go to Corn-" would be labeled abandoned even
though it was broken by s instead of u.

Action-directive utt1: u: then take one more boxcar from Bath to Corning

<click> fill up with oranges

Abandoned utt2: um <sil> then go to [Corn-](1)

Reject(utt1) utt3: s: [there are no](1) boxcars available with Bath

unless you're talking about the ones that are

filled with bananas

2.2 Information-Level

The Information-Level annotation provides an abstract characterization of the
content of the utterance. In task-oriented dialogs, we can roughly divide ut-
terances into those that address the task in some way, those that address the
communication process (Communication-management), and those that do not
fall neatly into either category (Other-level). In addition, we can subdivide the
�rst category into utterances that advance the task (Task) and those that discuss
the problem solving process or experimental scenario (Task-management).

Information-Level

� Task (\Doing the task")

� Task-management (\Talking about the task")

� Communication-management (\Maintaining the communication")

� Other-level

6

Task

The majority of utterances in most domains involve performing the task that
is the reason for the dialog, such as making an airline reservation or scheduling
a meeting. Utterances whose content is at the Task level directly move ahead
(or attempt to move ahead) the goals of the domain. Each di�erent domain
must specify clearly what the task is and characterize the types of activities
that occur while doing the task. It is not possible to make the level distinction
without this information. As an example, in TRAINS the domain involves
developing plans to move trains and cargo from one city to another. Examples
of utterances at the Task level include questions about the state of the world
(e.g., \Is there a train at Avon?", \When will it arrive?"), suggestions of routes
(e.g., \Let's send the engine at Bath to Corning"), utterances discussing the
plan (e.g., \That won't work because there's a long delay in Pittsburgh"), and
utterances that ask about general properties of the domain such as questions
about capabilities (e.g., \How many boxcars can an engine carry", \Can two
trains run on the same track at the same time?").

Task Management

Utterances at this level explicitly address the problem solving process and
experimental procedure. This includes utterances that involve coordinating the
activities of the two speakers (e.g., \Are you keeping track of the time?", \Let's
work on getting the train to Avon �rst", \Forget about that problem for a
while"), asking for help on the procedures (e.g., \Do I need to state the prob-
lem?") or asking about the status of the process (e.g., \Are we done?"). In
domains where the task involves building a plan such as TRAINS, it is impor-
tant to distinguish between utterances that concern the plan, which are Task
level, and utterances that involve the problem solving process, which are Task-
management level. For instance, consider a situation in a TRAINS dialogue
where a plan has been proposed; a question \will that work?" will be a Task
level utterance because evaluating possible plans is part of the task.

Communication-management

Utterances at this level include conventional phrases that maintain contact,
perception, and understanding during the communication process, and include
greetings (e.g.,\hello"), closings (\Good Bye"), acknowledgments (e.g., \Okay",
\uh-huh" or repeating part of what the speaker said), stalling for time (e.g.,
\Okay", \Let me see"), or signals of speech repairs (e.g., \oops") or misun-
derstandings (\sorry?", \huh?"). They also might address the communication
process explicitly, say to establish the communication channel (e.g., \Are you
there?", and answering with \I'm here"), to address communication problems
(e.g., \I didn't hear/understand what you said"), or to explicitly manage delays
or maintain the turn (e.g., \Wait a minute").

7

Other-level

This tag indicates that the utterance unit does not fall neatly into the
Task, Task-management, or Communication-management category even though
it may be relevant to the dialog. Jokes, non-sequitors, and small talk would �t
into this category.

Discussion

In coding this dimension, you should remember that every utterance has a
Communication component in some sense, but that utterances should be marked
at the Communication-management level only when they make no direct contri-
bution to solving the task. In other words, Communication-management level
utterances are concerned exclusively with maintaining the conversation and if
they were removed, the conversation might be less uent but would still have
the same content relative to the task and how it was solved. For instance, the
greeting \hi" could be considered at the Task level in the sense that it starts the
process of performing the task. Removing the utterance, however, would have
no signi�cant e�ect on the task or the way it was performed, thus we know its
function is mainly at the Communication-management level.

Sometimes it is tricky distinguishing between Task-management and Communication-
management, as utterances at either level may not add content directly relevant
to the Task. For example, consider the utterance \Sorry for taking so long"
which causes problems because it can be interpreted as apology both for not
answering quickly enough (Communication-management) or for slowing down
the interaction (Task-management). If you think that such an utterance has
a component of both readings, however, then it should be labeled as Task-
management.

Making the distinction between Task and Task-management can also be
tricky in dialogues where the task involves solving a problem and/or developing
a plan. Since the task involves building and evaluating plans, utterances such as
\does the plan work?", and \how does that sound" should be marked at the Task
level. Utterances referring to the current problem to be solved should also be
labeled Task: \what is the problem", \the problem is we need to get two boxcars
of oranges to Avon", \we have to get two boxcars of bananas to Corning", \is
there a time limit", etc. The utterances that are the most complicated appear
to have interpretations at both levels. For instance, the utterance \does that
solve the problem?" could be intended as a request to check if the plan should
work (a Task level utterance) or might be intended to ask whether the session
is done (i.e., a paraphrase of \Are we done with the task?" which is an Task-
management level utterance). In cases where it seems to do both, we will mark
it at the Task-management level.

Note that when answering a question at one level, the answer is usually,
though not always, at the same level. Question-answer pairs can occur naturally
at these levels as seen in the following examples:

8

Task: utt1: u: How long does it take to get to Corning?

Task: utt2: s: Three hours.

Task-management: utt1: u: Do I have to state the problem?

Task-management: utt2: s: Yes.

Communication-management: utt1: u: Can you hear me.

Communication-management: utt2: s: Yes

2.3 Forward Looking Function

The purposes behind an utterance are very complex. This dimension character-
izes what e�ect an utterance has on the subsequent dialogue and interaction.
For instance, as the result of an utterance, is the speaker now committed to
certain beliefs, or to performing certain future actions? Note it is often di�cult
to determine what actions the speaker intended to perform with an utterance.
Also the e�ect that an utterance has on the subsequent interaction may dif-
fer from what the speaker initially intended by the utterance. For this reason,
annotators are allowed to look ahead in the dialog to determine the e�ect an
utterance has on the dialog. Note, there are several decision trees presented in
this section that instruct annotators on how to make labeling decisions. The
decision trees ask questions about the speaker's actions but the annotator may
need to see how the listener responds to the speaker in order to determine what
the speaker's actions were.

Often, there are many di�erent e�ects simultaneously achieved by an ut-
terance. To allow for this, the coding in this dimension allows eight di�erent
aspects of every utterance to be coded. Speci�c constraints on how many as-
pects you can code at a time and the criteria for choosing between cases where
several seem applicable will be speci�ed in the domain-speci�c annotation in-
structions. As a default case, you can assume that you should code all aspects
that are applicable.

Forward Looking Function

� Statement

{ Assert

{ Reassert

{ Other-statement

� Inuencing-addressee-future-action

Open-option

Action-directive

� Info-request

9

� Committing-speaker-future-action

O�er

Commit

� Conventional

Opening

Closing

� Explicit-performative

� Exclamation

� Other-forward-function

2.3.1 Statement

The primary purpose of statements (utterances having a tag in the statement
aspect) is to make claims about the world as in utterances such as \It's raining
outside" or \I need to get cargo there" (the world includes the speaker) and in
answers to questions. As a rule, the content of statements can be evaluated as
being true or false. Note that the speaker does not have to be strongly claiming
that something is true or false. This classi�cation also includes weak forms of
statement such as hypothesizing or suggesting that something might be true.
Note also that we are only coding utterances that make explicit claims about
the world, and not utterances that implicitly claim that something is true. As
a intuitive test as to whether an utterance makes an explicit claim, consider
whether the utterance could be followed by \That's not true". For example,
the utterance \Let's take the train from Dansville" presupposes that there is
a train at Dansville, but this utterance is not considered a statement. You
couldn't coherently reply to this suggestion with \That's not true".

Figure 1 shows a decision tree for the statement aspect. The top level is an
applicability condition that tests whether an utterance should be coded along
this aspect. We only code utterances that make an explicit claim about the
world. If the statement aspect is applicable, the decision tree then indicates
how to select the appropriate tag. The key distinction for the Assert tag is that
the speaker is trying to change the beliefs of the hearer. If this is not true, then
a further distinction is made depending on whether the claim has been made
previously in the dialogue or not.

2.3.2 Info-Request

The Info-request aspect is simply a binary dimension where questions and other
requests for information are marked. Utterances that introduce an obligation
to provide an answer should be marked as Info-request. Note, answers can

10

Does speaker make a claim about the world?

Do not give a Statement tagIs the speaker trying to change the belief
of the addressee?

Tag as Assert

Yes No

Tag as ReAssert Tag as Other

Yes No

Yes No

Does the speaker think that the claim has already been made?

Figure 1: Decision Tree for Statement Aspect

be nonverbal actions providing information such as displaying a graph. Info-
request includes all questions, including yes/no questions such as \Is there an
engine at Bath?", \The train arrives at 3 pm right?", and even \The train is
late" said with the right intonation. The category also includes wh-questions
such as \When does the next ight to Paris leave?" as well as actions that are
not questions but request information all the same such as \Tell me the time".
Requests for other actions that can be used to communicate, such as \Show me
where that city is on the map" are also considered Info-Requests. Basically, any
utterance that creates an obligation for the hearer to provide information, using
any form of communication, is marked as an Info-Request.

2.3.3 Inuencing-addressee-future-action (Inuence-on-listener)

The primary purpose of this aspect is to directly inuence the hearer's fu-
ture non-communicative actions, as in the case of requests (\Move the train
to Dansville" and \Please speak more slowly") and suggestions (\how about
going through Corning"). There are many verbs in English that describe varia-
tions of these acts that di�er in strength, including acts like command, request,
invite, suggest and plead. These distinctions in strength are not fully captured
in the current annotation scheme.

A rough test to see if an utterance is in this aspect is to see whether the
hearer could coherently respond with \I can't do that". This test includes some
utterances such as \tell me the time" that do not belong in this category because
they only involve requesting information. In addition, there are some examples
where an utterance is in this class but the test fails. For instance, in TRAINS,

11

This aspect should not be coded.

Yes No

Tag as Open-OptionTag as Action-Directive

Is the speaker creating an obligation that the hearer do the action

Yes No

Is the speaker suggesting potential actions to the addressee beyond answering a request for information?

 unless the hearer indicates otherwise?

Figure 2: Decision Tree for Inuencing-addressee-future-action

say the participants are discussing how to get some oranges to Bath, and one
says \There's an engine at Avon", suggesting that they could use that engine
to move the oranges. This utterance falls into this aspect but could not be
followed by \I can't do that", although the variant \I can't use that engine"
is �ne. Questions only belong in this class if they suggest a course of action
in addition to asking a question. For instance, in TRAINS, the question \how
long will it take if we go through Corning" is sometimes used to suggest that
they move a train through Corning. All questions obligate the hearer to reply,
but this is not su�cient in itself to mark a question as having the Inuencing-
addressee-future-action aspect.

This annotation scheme makes the distinction between an Action-directive,
which obligates the listener to either perform the requested action or commu-
nicate a refusal or inability to perform the action, and an Open-option, which
suggests a course of action but puts no obligation on the listener.

As stated above, Action-directives may vary in strength, from commands,
such as \Open the door", to pleading, such as \I beg you not to go to the
party", but in each case the hearer is obligated to either perform the action or
respond to the request. While not all Action-directives are responded to, not
responding would be considered to be rude. Open-options, on the other hand,
can be responded to but also can be ignored without any negative e�ect since no
obligation beyond normal conversational constraints is placed on the listener.

For example, the �rst utterance below is an Open-option (abbreviated here
as OO) because B does not need to address it and can coherently answer with
utt2.

utt1 OO A: There is an engine in Elmira

utt2 Action-dir B: Let's take the engine from Bath.

On the other hand, in the following example utt1 is an Action-directive and
B should explicitly refuse the suggestion if it is not adopted.

12

Is the speaker potentially committing
to intend to perform a future action?

Is the commitment contingent on Addressee’s agreement This aspect should not be coded.

Yes No

Tag as Offer Tag as Commit

Yes No

Figure 3: Decision Tree for Committing-speaker-future-action

utt1 Action-dir A: Let's use the engine in Elmira.

utt2 Reject(utt1) B: No

utt3 Action-dir B: Let's take the engine from Bath.

An example of an Open-option utterance from a furniture purchasing domain
is shown below. Here what the speaker means is \we could buy my red sofa or
my blue sofa".

Action-directive A: Let's buy the living room furniture first.

B: OK

OO, Assert,Offer I have a red sofa for $150 or a blue one for $200.

Here is another example of an Open-option utterance from the TRAINS
domain.

Assert A: I need to get the train at Avon to Bath.

OO B: You could go through Corning.

2.3.4 Committing-speaker-future-action (Inuence-on-speaker)

The de�ning property of utterances with this aspect is that they potentially
commit the speaker (in varying degrees of strength) to some future course of
action. The only distinction made within this aspect is whether the utterance's
commitment is conditional on the listener's agreement or not. Commits that
are conditional on the Addressee's agreement include what are called o�ers in
English where the speaker indicates willingness to commit to an action if the
hearer accepts it. The prototypical case of a commit not dependent on listener
agreement is a promise, although this category may include other weaker forms
of commitment such as \I'll probably be at the meeting at 3". The speaker is not
making an o�er here, he or she is just not making a very strong commitment.

Here are some examples:

13

Typical O�ers:

Shall I come to your office

I'm free at 3 (in context of setting up a meeting)

O�ers with explicit conditions:

I'll be free after four if my meeting ends on time

I can meet at 3 if you're free

A weak Commit:

Maybe I'll come to your party

Regular Commits:

I'll come to your party

I promise that I'll be there

Utterances that accept a previous request or Open-option will typically be
a commit, as in the following dialogues:

Assert: B: I don't know what to do Saturday night

OO: A: You could go to Bob's party with me

Commit B: Great I'll see you there

Action-directive: A: Take the engine from Corning to Bath.

Commit: B: OK

The remaining forward looking functions are relatively rare. They include
(1) conventional conversational actions such as greeting and saying goodbye, (2)
explicit performatives where the speaker explicitly declares what is performed,
as in �ring someone by saying \You're �red", or, in TRAINS, quitting the
task by saying \I quit", (3) exclamations such as \Ouch", (4) forward looking
functions not captured by the current scheme such as holding/grabbing the turn
by saying an utterance such as \Right" or \Okay".

� Conventional-opening: Is the utterance a phrase conventionally used to
summon the addressee and/or start the interaction (e.g., \Can I help
you?", \hi")

� Conventional-closing: Is the utterance a phrase conventionally used in a
dialog closing or used to dismiss the addressee (e.g., \Good-Bye")

� Explicit-performative: Is the speaker performing an action by virtue of
making the utterance (e.g., \Thank you", \I apologize")

� Exclamation: Is the utterance an exclamation (e.g., \Ouch")

14

� Other-forward-function: Is the speaker performing an action not captured
by any other Forward Looking Function (e.g., signaling an error by saying
\Opps")

Note that acts that are conventional openings or closings can be coded on
other aspects as well. For example, at the start of a dialogue the utterance \Can
I help you" could serve both as a Conventional-opening and as an o�er.

A good intuitive test for the explicit performative class is whether you can
insert the word \hereby" before the verb. For example, since \You're hereby
�red" has approximately the same meaning as \You're �red", we know this is
an explicit performative. The utterance \I want to go to the store" is not since
\I hereby want to go to the store" is di�cult to interpret, and in contexts where
it might be understandable, the meaning would have changed.

2.3.5 Discussion

Note that the Forward Looking Function is a characterization of what e�ect the
utterance has on the dialogue, even though the actual form of the sentence might
look like something else. Each utterance could have multiple tags in this aspect
depending on how many functions it simultaneously performs. As an example,
in the right context, an utterance such as \There is an engine at Avon" could be
both an Assert and an Open-option (stating the possibility of using that engine
to move some cargo).

Other examples arise in dialogs where the agents are performing a task
together. For instance, if the two agents are trying to agree on how to furnish
a room, a suggestion like \Why don't we use the red sofa for the living room"
is both a O�er (roughly, if you agree then I will use the sofa) and an Open-
option (roughly, I state the possibility of you using that sofa). If this utterance
is accepted by the hearer, then the net e�ect is that both participants are
committed to using the red sofa.

Note that the previous version of this scheme had a separate category for
conventional acts like thanking and apologizing. These acts now fall into di�er-
ent categories based on the tests presented. For instance, an utterance like \I'm
sorry" is an Assert as it makes a claim about the world, which you can see by
observing that it could be followed by the response \No you're not". The ut-
terance \Thank you", on the other hand, cannot be responded to in such a way
and only falls into the explicit performative category (observe that \I hereby
thank you" is �ne).

The Info-request and Inuencing-addressee-future-action (Inuence-on-listener)
dimensions are similar in that they both apply to suggests and requests (Info-
requests request communicative actions and Inuencing-addressee-future-action
utterances request non-communicative action). Table 1 gives examples of how
various questions, imperatives, and indirect requests should be labeled in these
aspects.

15

Example Info-request Inuence-on-listener
What is the time? X
Tell me the time X

Can you tell me the time? X
Do you know the time? X

Go to Avon Action-directive
There is a engine at Bath Open-option
Use the engine at Bath Action-directive
How long does it take
to go from A to B X Option-option

Table 1: Examples of how to label Info-request and Inuence-on-listener

Short utterances such as \okay" and \yes" can have many di�erent inter-
pretations depending on how they are being used. In fact, they can be Asserts,
Commits and even Other-forward-functions. If the utterance conveys informa-
tion in answering a question, then the utterance is only an Assert, as in the
dialogue

Request-info Utt: s: is there a train at Chicago?

Assert Utt: u: yes.

On the other hand, if the utterance commits the speaker to a certain action,
say in response to a request or invitation, then it should only be labeled as a
Commit

Action-directive Utt: u: tell me if the route gets too long

Commit Utt: s: okay

Cases where the speaker utters an \okay" to accept a request and then
performs the act requested are also marked as a commit, even though the action
to which the speaker is committing is performed immediately after, e.g.,

Action-directive Utt: u: can you tell me the time?

Commit Utt: s: okay.

Assert Utt: three o'clock.

Utterances such as \okay" can also be used not only to convey information
but to manage the dialog, possibly to hold the turn, or to signal the introduction
of a new topic. In these cases, the Forward Function of these utterances is
not directly captured in the annotation scheme, and they should be marked
as Other-forward-function. This category serves as a place holder for groups
that want to analyze such utterances. Some communicative functions for these
utterances are also captured in the annotation of Backward Looking Function
that is described next.

16

2.4 Backward Looking Function

Backward Looking Functions (shown in �gure 4) indicate how the current utter-
ance relates to the previous discourse. For example, an utterance might answer,
accept, reject, or try to correct some previous utterance or utterances. To cap-
ture these Backward Functions, we need to both identify the type of Backward
Function and indicate the previous stretch of discourse that is being a�ected.

The previous utterance unit or set of units being responded to by the current
utterance will be called the antecedent. The relations we consider here are local,
and their antecedent typically is either the previous utterance unit or at least,
in the previous turn. For the moment, we will assume that antecedents are
single utterances near the current utterance, and in our examples, these will be
marked in parentheses after the Backward Function tag. Note, if any Backward
Looking Function is given to an utterance it must also be given a Response-
to tag indicating its antecedent utterances. See section 5 for details on how to
specify antecedent utterances in Response-to tags using the dat annotation tool.
Constraints on what can be an antecedent and how to annotate complicated
cases will be discussed after the basic set of tags is introduced.

There are four semi-independent aspects coded in this dimension. The �rst
concerns relations a�ecting agreement about the task or whatever the topic of
discussion is. The second concerns relations that signal understanding (or non-
understanding). The third marks utterances that answer previous information
requests. The fourth concerns the relationships between the informational con-
tent in utterances and is not developed further in this version of the annotation
scheme. It provides a place holder for individual projects to de�ne their own set
of relations for their speci�c domains. The possibility of developing an abstract
domain-independent level will be considered for later versions of this manual.

2.4.1 Agreement

The agreement aspect codes how the current utterance unit a�ects what the
participants believe they have agreed to, typically at the task level. These rela-
tions occur in contexts where one agent has made some kind of proposal such as
a request that the hearer do something, an o�er that the speaker do something,
or a claim about the world. The current utterance then indicates the other
participant's view of the proposal. In general, the agent may explicitly accept
or reject all or part of the proposal, or may simply be noncommittal on the
proposal, or may leave the proposal open by requesting additional information
or exploring the consequences.

Assuming the current speaker directly addresses another speaker's proposal,
they could respond in one of the �ve ways shown in �gure 5. Note, the label
of Maybe applies to cases like the one in the �gure where the speaker explicitly
states that they cannot give a de�nite answer at that moment.

Note that the Accept-part utterance implicitly rejects part of utt1 however

17

Backward Looking Function

� Agreement

{ Accept

{ Accept-part

{ Maybe

{ Reject-part

{ Reject

{ Hold

� Understanding

{ Signal-non-understanding

{ Signal-understanding

Acknowledge

Repeat-rephrase

Completion

{ Correct-misspeaking

� Answer

� Information-relation

Figure 4: Backward Looking Function

Context: utt1: A: Would you like the book and its review?

Accept(utt1) B: Yes please.

Accept-part(utt1) B: I'd like the book.

Maybe(utt1) B: I'll have to think about it

(intended literally rather than a polite reject)

Reject-part(utt1) B: I don't need the review.

Reject(utt1) B: No thanks

Figure 5: Various responses to an o�er

18

this aspect only codes what is explicitly (accepted/rejected) addressed by the
response. A response like \I'll take the book but not the review" will be seg-
mented into two utterance units; one marked as Accept-part and the other as
Reject-part.

Agreement can apply to cases other than proposals, as shown in the two
examples below. In the �rst example, utt1 is an Open-option as it simply
presents a possible option for solving a problem. Utt2 is still considered an
accept though. Note, accepts are often words such as \alright", \yes", and
\okay" as well as repetitions.

Open-option utt1: s: we can unload them and then reuse the boxcars

on the way to Corning

Accept(utt1) utt2: u: alright

Accepts also can occur in response to Asserts, indicating that the information
conveyed is accepted.

Assert utt1: s: boxcars don't travel by themselves

Accept(utt1) utt2: u: okay

Accepts can also be used as a response to an information request, as in the
example below. Note, utt3 is marked as an answer as discussed later.

Info-Request utt1: u: can you tell me the time?

Accept(utt1) utt2: s: yes

Answer(utt1) utt3: it's 5 o'clock

The Hold tag applies to the case where the participant does not address
the proposal but performs an act that leaves the decision open pending further
discussion. This includes cases such as counter-proposals and questions that
request additional information in order to help the participant make a decision
(i.e., one sense of clari�cation request). This tag does not apply to cases where
the speaker explicitly expresses uncertainty such as uttering \maybe".

In the dialog below, u's request is vague since there are two possible paths
so s makes a clari�cation request by asking a question.

Action-directive utt1: u: take the train to Corning

Info-request, Hold(utt1) utt2: s: should we go through Dansville or Bath

Assert, Answer(utt2) utt3: u: Dansville

Instead of asking a question, a responder may make a clari�cation statement
as shown below. This is also marked as a hold.

Info-Request utt1: u: how long will that take

Hold(utt1) utt2: s: you want to go from Avon to Dansville

Answer(utt1) utt3: s: that's 5 hours

19

Is the speaker addressing a previous
proposal, request, or claim?

Tag as Hold

Yes

This aspect should not be coded

Tag as Reject-partTag as Reject

No

No

No

Yes

Yes

Is the speaker stating their attitude towards the proposal, request or claim?

Is the speaker agreeing to part of the proposal, request, or claim?

request, or claim?
Is the speaker agreeing to all of the proposal Is the speaker disagreeing with part of the proposal, request, or claim?

Tag as Accept-PartTag as Accept

Yes No Yes

Yes No

Is the speaker disagreeing with all
 of the proposal, request, or claim?

Tag as Maybe

No

Figure 6: Decision Tree for Agreement Aspect

In the examples below, s's suggestion of an alternative route should be as
marked as a Hold if you think that s is leaving the original option open, but as
a Reject-part if not.

Action-directive utt1: u: take the train to Avon via Bath

Open-option, Hold(utt1) utt2: s: How about we go via Corning instead

Action-directive utt1: u: take the train to Avon via Bath

Action-directive, Reject-part(utt1) utt2: s: Go via Corning instead

2.4.2 Understanding

This aspect concerns the actions that speakers take in order to make sure that
they are understanding each other as the conversation proceeds. There are
many levels of \understanding", ranging from merely hearing the words to fully
identifying the speaker's intention. Here we group most of these levels together
so that if the hearer is said to have understood the speaker, then the hearer
knows what the speaker meant by the utterance.

Utterances that explicitly indicate a problem in understanding the antecedent
are labeled as Signal-non-understanding. As an applicability test for Signal-
non-understanding, you should be able to roughly paraphrase a Signal-non-
understanding utterance as \What did you say/mean?". Note that not all clar-
i�cation questions signal non-understanding. Clari�cation questions labeled as

20

Hold in the Agreement aspect involve acquiring additional information about
how or why something was requested or proposed, and do not signal mis-
understanding. Below are some examples of questions that are Signal-non-
understanding (SNU) utterances.

Context: utt1: A: Take the train to Dansville

SNU B: Huh?. (i.e., What did you say?)

SNU B: What did you say?. (i.e., What did you say?)

SNU B: to Dansville? (i.e., What did you say?)

SNU B: did you say Dansville? (i.e., What did you say?)

SNU B: Dansville, New York? (i.e., What did you mean?)

SNU B: Which train? (i.e., What did you mean?)

On the other hand, responses that query how to comply with the speaker's
request/proposal, or that question its desirability (\why are we doing this") are
marked as Hold acts at the Agreement level and are not marked as Signal-non-
understanding:

Context: utt1: A: Take the train to Dansville?

Hold(utt1) B: through Avon? (i.e, How shall we take the train)

Hold(utt1) B: to get the oranges? (i.e., Why are we taking the train)

Hold(utt1) B: Should it leave immediately?

(i.e., When should we take the train)

Utterances that explicitly signal understanding are marked with a Signal-
understanding tag. Note that any utterance that doesn't explicitly indicate
non-understanding implicitly indicates understanding. You do not need to mark
such cases. Rather, there are some speci�c mechanisms used to explicitly signal
understanding that we are interested in. Note in many cases, such utterances
may also count as Accept acts at the understanding level. However, the exam-
ples below are Signal-understanding utterances (acknowledgments) that are not
acceptances.

Acknowledgments are utterances consisting of short phrases such as \okay",
\yes", and \uh-huh", that signal that the previous utterance was understood
without necessarily signaling acceptance, as in

Context: utt1: s: Take the Avon train to Dansville

Ack(utt1) utt2: u: Okay

Hold(utt1) utt3 But wouldn't using the Bath train be faster?

Sometimes an acknowledgment interrupts a sentence as in the example be-
low.

utt1: u: if I take the engine and a boxcar from Elmira

Ack(utt1) utt2: s: yes

utt3: u: how long will that take

21

Another common case involves acknowledgments that are performed while
the other agent is still speaking, which are often called backchannel responses.
An example here is

utt1: u: The we take the engine at Avon [to Bath](1) for the oranges

Ack(utt1) utt2: s: [uh-huh](1)

Of course, many times an acknowledgment also counts as an acceptance
in which case it will be marked at both levels. In cases where it is uncertain
whether the acknowledgment accepts the antecedent, then the utterance can still
be marked unambiguously as an acknowledge, and can be labeled as a possible
accept using the uncertainty modi�er at the agreement level, as in

Assert utt1: s: It would take two hours [assuming](1) you have

an engine at Bath

Ack(utt1), Accept(utt1)? utt2: u: [okay](1)

The Repeat-rephrase tag is used for utterances that repeat or paraphrase
what was just said in order to signal that the speaker has been understood.
Like acknowledgments, Repeat-rephrases do not necessarily make any further
commitment as to whether the responder agrees with or believes the antecedent.

utt1: s: do you need the bananas [in boxcars](1) at Bath

Repeat-rephrase(utt1) utt2: u: [the bananas](1)

Sometimes a listener will show understanding by �nishing or adding to the
clause that a speaker is in the middle of constructing. Such phenomena are
marked with the Completion tag as shown in the example below. Here u com-
pletes s's sentence; s then goes on to �nish the sentence himself using the sug-
gested completion. Note, completions also include cases where another speaker
makes an extension (but not completion) to the current phrase being uttered.

utt1: s: so you've got the engines at Elmira and uh [](1) Avon

utt2: u: [Avon](1)

The Correct-misspeaking tag is used for utterances that by o�ering a cor-
rection indicate that the hearer believes that the speaker has not said what he
or she actually intended. In the example below, u misspeaks by saying \engine
E" instead of \engine E one" and s o�ers a correction.

utt1: u: so we should move the engine at Avon engine E to

Corr-misspeak(utt1) utt2: s: engine E one

Accept(utt2) utt3: u: E one to Bath

This category only applies to cases where another speaker makes a correction.
If u had corrected himself then no Correct-misspeaking label would be applied
to this section of the dialog. There is currently no dimension in this scheme for
annotating such speech repairs.

22

2.4.3 Answer

The Answer aspect is simply a binary dimension where utterances can be marked
as complying with an info-request action in the antecedent. A standard question
answer is shown below.

Info-request utt1: u: can I take oranges um on tankers from Corning

Assert, Answer(utt1) utt2: s: no you may not they must be in boxcars

Most questions are answered with one or more declarative sentences although
it is possible to answer a question with an imperative as shown in the direction
giving example below. Note this imperative-looking answer is also marked as
an Assert act as its Forward Function is to provide information rather than to
inuence u's future action. In fact, answers by de�nition will always be asserts.
The answer is also an Open-option because it describes one option for u's future
action.

Info-request utt1: u: How do I get to Corning?

Assert, Open-option, Answer(utt1) utt2: s: Go via Bath.

Questions generally cannot answer questions and are usually not answers.
Mostly they are used for clari�cation and an answer is given later.

utt1: u: How long will it take to go from Corning to Avon

utt2: s: Which route do you want to take

Answer(utt2) utt3: u: go through Bath

Answer(utt1) utt4: s: it'll take 6 hours

Sometimes a speaker will answer an implicit or indirect question. The gen-
eral rule of thumb is to consider whether the implicit or indirect question was
obvious enough to obligate the hearer to respond with the information (i.e., the
antecedent is an Info-request). The example below is similar to the previous
one except that u has not asked a question and we would not mark utt1 as an
Info-request. Thus s's utterance is an Action-directive, a request, and is not
considered an Answer that gives information and makes a suggestion.

Assert utt1: u: I need to get the train to Corning.

Action-directive utt2: s: Go via Bath.

Of course there are borderline cases where these distinctions are a matter of
degree. For instance, if u says \I don't know how to get oranges to Corning",
in many contexts this strongly suggests an implicit question and implies that a
response like \You could get them from Bath" is an Answer. These di�cult cases
are left to the annotator's intuition, but the two utterances should be annotated
consistently, so that if the second is an Answer, the �rst is an Info-request.

23

Consider an unambiguous case where we wouldn't mark an information re-
quest and hence don't mark an answer. Here A is trying to avoid going to
a meeting, but B does not cooperate. Because we do not consider utt2 as a
request for information, we don't mark utt3 as an answer.

utt1: A: I should be at the meeting.

utt2: A: Luckily, I don't know what time it is.

utt3: B: It's 3 o'clock.

Note that clari�cation requests and other utterances that refuse to answer
an Info-request are not considered answers. For instance, consider the dialogue
fragment:

Info-request utt1: u: How can I get oranges to Corning?

Assert, Reject(utt1) utt2: s: I don't know.

Here s states that he doesn't know the answer (and hence can't answer the
question). Thus it is treated as a Reject just as in cases of requests for non-
communicative actions as in

Action-directive utt1: u: Please open the door

Assert, Reject(utt1) utt2: s: I can't, my arm is broken.

Occasionally, speakers ask a question and then answer it themselves. Even
though it is the same speaker throughout, we still mark it as an info-request/answer
pair, as in

Info-request utt1: u: Will I be able to take the tanker plus four boxcars

Answer(utt1) utt2: u: No

2.4.4 Information-Relations

The fourth aspect of the Backward Looking Function is the Information relation,
which captures how the content of the current utterance relates to the content of
its antecedent. This category is not currently elaborated and will be the subject
of future study. For the moment, this aspect provides a hook for individual
groups to experiment with their own schemes for encoding this information.

2.4.5 Antecedents

Typically responses follow directly after the utterances that they are respond-
ing to. Sometimes, however, they are further apart and separated by a series
of clari�cation requests, con�rmations, and elaborations. Only those responses
that still have a close contextual connection to their antecedent should be anno-
tated. Unfortunately, we do not yet have a precise de�nition of \close contextual
connection." For the short term, here are some guidelines for re�ning intuitions

24

about how close an utterance(s) and its response must be. Assume that utter-
ance X by s is a proposal, a claim, a question or some other act that can be
responded to. Then an utterance can be part of an antecedent to X if

� every utterance by the responding agent between utterance X and the
current utterance can be marked as a Hold at the Agreement level;

� or the content of the entire interaction from X to the current utterance
could be paraphrased as a single claim, proposal or question that is being
responded to.

In such cases, the antecedent is marked as containing all the utterances from
X up to the response. We expect that this de�nition of allowable antecedents
may have to be modi�ed after we have some additional experience coding and
have seen where it breaks down.

Consider some examples of common cases that satisfy this de�nition.

Open-option utt1: u: We could use that train.

Info-request, Hold(utt1) utt2: s: The one at Dansville?

Assert, Answer(utt2) utt3: u: yes

Accept(utt1-utt3) utt4: s: Okay.

In this case, the option accepted is to use the train at Dansville, and the con-
tent of utt1-utt3 could be paraphrased as \We could use the train at Dansville".

Open-option utt1: u: We could use the train at Dansville.

Open-option, Hold(utt1) utt2: s: Could we use one at Avon instead?

Assert, Reject(utt2) utt3: u: No, I want it for something else.

Open-option, Hold(utt1-utt3) utt4: s: How about the one at Corning then?

Assert, Accept (utt4) utt5: u: Okay.

Accept(utt1-utt5) utt6: s: Okay.

In this example s produces two alternatives before an agreement is reached.
The content of the antecedent for utt6 could be paraphrased as \We could use
the train at Corning".

This example shows the initial speaker adding further elaboration before the
question is answered.

Info-request utt1: u: How long will it take to get to Avon?

Info-request, Hold(utt1) utt2: s: With engine E one?

Assert, Answer(utt2) utt3: u: yes

Info-request utt4: and going by way of Bath.

Assert, Answer(utt1-utt4) utt5: s: Six hours.

Note that utt4 is classi�ed as an Info-request even though it doesn't look
like a question out of context. But it is said to inuence u's future action

25

and involves the act of providing information, hence it satis�es the de�nition
of Info-request. This interpretation is further strengthened by considering that
utt4 certainly is not making any claim about the world, nor committing u to any
future action. The content of segment utt1-utt4 can be paraphrased as \How
long will it take engine E one to get to Avon by way of Bath".

With keyboard dialogues, we need to generalize the de�nition of antecedent
somewhat as a turn might contain several di�erent interactions, each of which
are then addressed in the following turn: in a keyboard dialogue, a turn may
be divided into several antecedents, each of which can be responded to in the
next turn.

Consider the following keyboard dialogue from the Coconut domain where
participants must agree on a set of furniture with which to furnish two rooms.
The dialog shows how in keyboard dialogs, several responses (each with its own
antecedent) may occur in the same turn. Note, Assert is abbreviated (AS) here.

Open-option,Offer utt1: M: i do have a lamp-floor, blue. i have a green

table (200) and four chairs for 75 a piece.

AS utt2: sorry I am taking so much time.

AS utt3: I lost a chair. Meghan is finding it

AS,Accept(utt2-utt3) utt4: D: Not a problem with the time

AS utt5: sorry about the typo, my brain forgets that

my fingers don't function as quick as it does.

Accept-part(utt1) utt6: the lamp and table sound good

We also may want to allow such structures in spoken dialogues, if we start
to �nd cases where the more restrictive rule is a problem. Certainly a model of
higher-level segmentation would predict that examples like the one above could
occur naturally in spoken dialogue.

If we switch the example around a bit, however, we �nd a case involving a
cross-serial dependency that can occur in keyboard dialogue but is extremely
rare and possible disuent in spoken dialogue:

Open-option,Offer utt1: M: i do have a lamp-floor, blue. i have a green

table (200) and four chairs for (75)

a piece.

Assert utt2: sorry I am taking so much time.

Assert utt3: I lost a chair. Meghan is finding it

Accept-part(utt1) utt4: D: the lamp and table sound good

Assert,Accept(utt2-utt3) utt5: Not a problem with the time

Assert utt6: sorry about the typo ...

There may also be cases where you would like to mark more than one re-
sponse relation for an utterance. We may consider adding this capability if there

26

turns out to be a signi�cant need. For the moment, however, if an utterance
appears to realize several di�erent responses, then you should annotate the one
you feel is most important and relevant to the dialogue, and note the other
interpretations using a Comment tag.

2.4.6 Discussion

There are a couple issues common to all the Backward Looking Functions. The
�rst concerns whether a person can respond to themselves. Although this is rare,
speakers sometimes answer their own questions as shown below or reject/accept
their own utterances. In the example below, u answers her own question (\will
I be able to take the tanker plus four boxcars") and then goes on to ask another
(\I need two right").

utt1: u: <sil> I guess <sil> with one engine <sil>

will I be able to take the tanker <sil> plus four boxcars <sil>

utt2: u: no

utt3: u: I + need <sil> two right +

Another issue concerns acknowledgments. Utterances such as utt2 are clearly
acknowledging understanding/hearing what the previous speaker said. It is
a di�cult issue whether utt2 is accepting utt1. If you do decide that utt2
is an accept or an accept with uncertainty, you still need to mark it as an
acknowledgment since acceptances by their de�nition indicate acknowledgment.

utt1 u: um engine two from Elmira to Corning

utt2 s: okay

utt3 s: let's pick up oranges in Corning

3 Multi-Dimensional Problems

The dimensions of the DAMSL annotation scheme are mostly independent how-
ever there are a few dialog phenomena that form distinct patterns across the di-
mensions and should be annotated consistently. Acknowledgments and accepts
are one such phenomenon. If an utterance is labeled as an acknowledgment
but not an accept then it must be labeled as Communication Management at
the Information Level dimension because it signals hearing/understanding of
the message but says nothing about its content. If an utterance is an accept
(and by de�nition an acknowledgment) then it should be labeled with the same
Information Level as its antecedent as shown in the examples below:

Task utt1: u: take the boxcars to Corning

Task,Accept(utt1) utt2: s: okay

27

Task-Management utt1: u: let's work on the oranges plan first

Task-Management,Accept(utt1) utt2: okay

Comm utt1: u: I'm turning up the microphone so I can hear you

better

Comm,Accept(utt1) utt2: s: okay

Other utt1: u: that noise is the telephone next door

Other,Accept(utt1) utt2: s: okay

(assuming the telephone had nothing to do with the dialog)

Check questions are a second phenomenon that forms a distinct pattern
across two types of labels. Check questions such as the example below are
similar to yes/no questions but can be answered with words such as \right",
\okay" in addition to \yes" and \no". The questions ask for con�rmation of
a fact, so unlike standard questions their Statement tag is Other-statement
instead of none. Check questions are labeled Other-statement instead of Assert
because the speaker is asking for con�rmation, not trying to change the belief of
the addressee. The speaker does not think the claim has already been made; if it
had they would not need to ask for con�rmation. Responses to check questions
are both answers and asserts. The pair of a check question and a positive answer
also resembles an accepted assert (such as shown in utterances utt3 and utt4)
so a positive answer to a check question should also be labeled as an accept.
Note, if utt3 is said with the proper intonation then it can be a check question
as well.

Info-Request, Assert utt1: u: and it's gonna take us also an hour to load

boxcars right

Answer,Accept(utt1) utt2: s: right

Assert utt3: u: and it's gonna take us also an hour to load boxcars

Accept(utt1) utt4: s: right

Note, in general answers to questions are always asserts. Words such as
\okay" and \right" when not answers are not asserts. However responses that
make a claim about the world are asserts. This even includes responses such as
\that's right".

4 Tagging Cue Words and Speech Repairs

Spoken language contains many elements that function mainly to manage the
interaction (i.e., turn taking) and to maintain reliable communication. Some of
these elements include cases where the speaker is stalling for time while they
think (keeping the turn in other words), signaling a speech repair/topic shift, or

28

making a con�rmation. This section describes how to label such phenomenon
with the current annotation scheme.

As discussed before, cue words include words such as \okay" that, depending
on the context and the way they are pronounced, can serve several di�erent
purposes in the dialog. When used as a response to a proposal, request or
statement, it has the Backward Function Accept and a Forward Function such as
Commit. If it is used simply to signal understanding, then it has the Backward
Function Acknowledge and no Forward Function. On the other hand, if it is used
to hold a turn or signal a topic shift, it has a Forward Function not captured
with the current scheme except by the Other-forward-function label.

Consider the following example that contains two instances of \okay", one as
an acceptance and the other as a cue word to maintain the turn. u �rst accepts
s's directive with an \okay". Since the e�ect of this act is that the speaker is
committed to get a tanker, it is marked as a Commit. u's second utterance
seems to be further con�rmation that utt1 was understood (and might even be
labeled as an Accept instead of a Repeat-rephrase). Utt4 is a cue word uttered
presumably in order to keep the turn or to signal a continuation of the topic.
Presently, it would be labeled as Other-forward-function. Given its position in
a series of utterances by u, and its intonation, it clearly is not a response to
anything.

Action-directive utt1: s: so I'm assuming you'll also be taking a

tanker from [Corning](1)

Commit,Accept(utt1) utt2: u: [oh](1) okay

Repeat-rephrase(utt1) utt3: take a tanker there

Other-forward-function utt4: okay

Assert utt5: so its two hours ...

Sometimes, cue words like the one above will not be broken into their own
utterance units. For example, u's third utterance above might have been \Okay,
so its two hours ...". In this case, the most important aspect of the utterance
unit is the Assert act, and the cue word's individual functions would be ignored.

Consider another example. Cue words such as \alright" may maintain a
turn, con�rm understanding, make an acceptance, or may signal a discourse
event such as a speech repair or topic switch. In the example below, u utters
the �rst \alright" with the intention to signal the description of a new plan.
The second \alright" signals the second start of the restarted phrase. The
current annotation scheme does not distinguish between these cases, and both
are marked as Other-forward-function.

Assert utt1: u: ah three p.m. that's not gonna work

Other-forward-function utt2: alright um <breath>

Abandoned utt3: if I take

Other-forward-function utt4: alright

29

Assert utt5: if I take the engine and a boxcar from

Elmira

Ack(utt1-utt5) utt6: s: yes

Assert utt7: u: uh I just use it

As previously noted, the utterance segmentation will a�ect how you label cue
words. For instance, utt3-utt5 might have been a single unit (as shown below),
in which case the speech repair would be ignored in favor of the completed act.

Assert, Task utt1: u: if I take <sil> alright <sil> if I take the engine

<sil> and a boxcar <sil> from Elmira

Sometimes a speaker is interrupted and their utterance is not completed. In
these cases, you have to decide whether the utterance was abandoned in the
sense that the dialog continues as though it were never said. In the example
below, u never completes her sentence but s treats it as an information request
(as if u wants him to complete her sentence), so utt1 is not marked abandoned.

Info-Request utt1: u: so that's

Assert, Answer(utt1) utt2: s: loading the orange <sil> juice will take

another hour

Accept(utt2) utt3: u: okay

5 Mechanics of Annotating

A new dialog annotation tool (dat) is available on our web site:

http://www.cs.rochester.edu/research/trains/annotation

The site contains instructions on how to setup and run dat. When you start
dat, you can give it a dialog �le to open. You can also chose Open from the
File menu to open a dialog. dat expects �les to be in a format called DAMSL
(Dialog Act Markup in Several Layers) which is a variant of SGML tailored to
this application. The dat tool can convert raw text �les into DAMSL and the
man pages of dat contain more information about this format.

The sets of tags discussed previously can be applied through menus, but-
tons, and text �elds (in the bottom half of the dat window) once an utterance
or segment is selected. dat allows you to select utterances by clicking on them.
Clicking on another utterance while holding the shift key allows multiple ut-
terances to be selected. Once you have selected one or more utterances, you
may select various Utterance-Tags for the utterance(s). In addition, if the ut-
terance(s) are a response then choose the appropriate Backward Function labels
and indicate what was responded to, using the Response-to �eld. In this �eld,
type the names of the utterances that a response pertains to, and separate names
by dashes (NOT spaces). In the example below, you should type \utt1-utt2" in
the Response-to �eld of utt3 since it accepts both utt1 and utt2.

30

T1 utt1 u: take the engine to Corning

| utt2 u: there will be a tanker there and we will take that to Elmira

T2 utt3 s: okay

The Communicative-Status tags are implemented as menus near the middle
of the screen. If a tag applies then select \yes" or \maybe" from its menu
depending on how certain you are. All of the other dialog tags have question-
mark buttons next to them allowing uncertainty to be encoded.

Once you are done annotating an utterance or a set of utterances, click the
\Apply" button. Click \Reset" to eliminate any changes you made since you
last clicked \Apply".

We encourage you to listen to any speech associated with each utterance.
To do so, select the utterance unit and click the \Play Speech" button.

Note, tagging a series of utterances with a label such as Assert means that
you have a series of Asserts. If you would rather a series of utterances be
considered one unit then form a segment from the utterances and label the
segment. To form a segment, �rst select a series of adjacent utterances and
then choose De�ne Segment from the Group menu. You can click on this
new segment and label it just like an utterance.

When you wish to stop annotating, select Save As from the File menu. The
dialog box is similar to the one you saw when opening a �le. Edit the �lename
to create a new �le to save your changes in. Selecting Save afterwards will save
in this new �le. You may open this �le later in order to �nish an annotation.
You quit dat by selecting Quit from the File menu. To attach notes to the
dialog, use a comment tag or select Dialog Attrs from the Edit menu to make
general comments.

The organization of tag descriptions in this manual was picked to simplify
the explanation but this does not mean it is easiest to annotate in this order.
You may annotate in any order you wish.

6 Appendix: Outstanding Issues

These are temporary decisions that may be reconsidered later.

Agreement to Asserts

Consider

A: It's raining

B: yes.

Does B's utterance have a Forward Function? Intuitively, it seems that it
does and we will for the moment label such acts as Assert.

31

Conditional Commits

There are some commits that are conditional but not conditional on a de-
cision of the hearer, such as \I'll be there if the package arrives on time". At
present, we would mark this as a Commit even though it does not seem to
belong in the same group as promises which are unconditional.

32

