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Abstract

To coordinate with other agents in its envi-
ronment, an agent needs models of what the
other agents are trying to do. When com-
munication is impossible or expensive, this
information must be acquired indirectly via
plan recognition. Typical approaches to plan
recognition start with a speci�cation of the
possible plans the other agents may be follow-
ing, and develop special techniques for dis-
criminating among the possibilities. Perhaps
more desirable would be a uniform procedure
for mapping plans to general structures sup-
porting inference based on uncertain and in-
complete observations. In this paper, we de-
scribe a set of methods for converting plans
represented in a exible procedural language
to observation models represented as proba-
bilistic belief networks.

1 Introduction

Decisions about what to do should be based on knowl-
edge of the current situation and expectations about
possible future actions and events. Anticipating the
actions that others might take requires models of their
decision-making strategies, including models of goals
that they are pursuing. Unfortunately, ascertaining
the goals of others can be problematic. In competi-
tive situations, agents may forfeit some advantage by
revealing their true goals. Even in cooperative situ-
ations, explicit dialogue about goals can be impossi-
ble or undesirable given possible failures, restrictions,
costs, or risks.

Agents that function in environments where explicit
communication about goals is often impractical need
alternative means to ascertain each others' goals, such
as recognizing the plans and goals of other agents by
observing their actions. To perform plan recognition,
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an observing agent needs a model of the observed
agent's possible goals and plans, and what actions
the observed agent could take to accomplish those
plans and goals. We focus on the case of collaborative
agents, where e�cient and e�ective team coordination
requires good models of each team participant's goals
and plans. If we assume that team participants will
either be designed or trained similarly, then they will
have similar or identical knowledge for planning ac-
tions to achieve goals. Unfortunately, however, knowl-
edge of the plan structures of the other agents does
not, by itself permit the agent to perform plan recog-
nition.

To perform plan recognition, therefore, an agent needs
to reason from the evidence provided by observations
of other agents' activities. An agent's actions are, in
general, applicable toward a number of di�erent goals,
so that observation of any single action will not provide
enough evidence to disambiguate the goal that moti-
vated the agent's choice of action. Sequences of ac-
tions will tend to disambiguate the intentions of other
agents, as the hypotheses that are consistent with all
(or many) of the observed agents' actions gain more
and more support.

An agent therefore needs to be able to take the plan
structures that it has for another agent and convert
them to a model that relates plans to observable ac-
tions. In this paper, we describe a method that takes
plans as generated by a planning system, and creates a
belief network model in support of the plan recognition
task.

2 Related Work

An issue common to all plan recognition systems is the
source and availability of the plan structure, which
de�nes the relationships among goals, subgoals, and
primitive actions. Many di�erent plan structures have
been utilized, including hierarchies of varying forms
(plan spaces [CLM84], action taxonomies [KA86],
AND/OR trees [Cal89], context models [Car90], plan
libraries [LG91]), associative networks [CC91], Shared-
Plans [LGS90], plan schemas [GL90], and multi-agent



templates [AFH89]. All of these structures were de-
signed speci�cally to support the plan recognition task.
The direct output of a planning system, in contrast,
is an object designed to be executed, not recognized.
For the most part, prior work has not addressed the
problem of how the plan recognition structures are (or
could be) derived from executable plans as generated
by planning systems.

In our research, we start from a language designed
(not by us) for plan speci�cation, as opposed to plan
recognition. The particular language we have adopted
is PRS [IGR92, IG90], though any standard plan lan-
guage would serve just as well. PRS was chosen for
a number of reasons, including that it supports all of
the standard planning constructs such as conditional
branching, context, iteration1, subgoaling, etc. PRS
also has a hierarchically structured plan representa-
tion which we exploit to create belief networks that
are organized in a similar, hierarchical manner.

From a PRS plan, we generate a model that directly
serves plan recognition by relating potential observa-
tions to the candidate plans. The model we gener-
ate is in the form of a probabilistic belief network
(henceforth: belief network) [Pea88], which expresses
probabilistically the causal relations among under-
lying goals, intentions, and the resulting observable
actions.2

Our research bears the strongest resemblance to Gold-
man and Charniak's prior work on plan recognition
using belief networks [CG93]. Like ours, their sys-
tem generates a belief network dynamically to solve
a plan recognition problem. There are several signif-
icant di�erences, however. First, the plan language
they employ is a predicate-calculas-like representation
based on collections of actions with slot �llers with
hierarchical action descriptions. This representation
seems well suited for modeling part-subpart relation-
ships (goal/subgoal and is-a), and their target domain
of story understanding and may have inuenced this.
Our plan language is based upon PRS, which has a
very di�erent set of structural primitives, including
explicit sequencing, conditionalization, iteration and
context. PRS is a general purpose planner, with a
representation that is intended to permit any form of
plan structure.

Second, Goldman and Charniak �rst translate plan
knowledge into an associative network (their term) by
using a set of generic rules for instantiating (unifying)
the network with the plan knowledge. It is these in-
stantiated rules from which they dynamically generate
a belief network for a given sequence of observations

1Our methodology does not currently support iteration,
although this is being investigated.

2The issue of probabilistic plan recognition is orthog-
onal to the issue of probabilistic planning (cf. BURI-
DAN [KHW93], for example) and hence the representa-
tions created for planning under uncertainty are not inher-
ently any more conducive to the plan recognition process.

(i.e. bottom-up). Our system, on the other hand,
generates a belief network from the plan representa-
tion itself, and before receiving any observations (i.e.
top-down). We foresee the top-down approach having
the characteristic of being able to prune (perhaps sig-
ni�cant) portions of the resulting belief network based
upon the context in which the plan recognition sys-
tem �nds itself. We believe these approaches are com-
plementary, both in addressing separate sets of plan-
language issues, and in emphasizing di�erent forms of
dynamism in model generation.

Finally, this work is related to a growing body of
other work in the the dynamic generation of belief
networks [Bre92, WBG92]. Although our methods are
speci�cally geared to plan recognition (like Goldman
and Charniak's), techniques for generating probabilis-
tic models from other forms of knowledge may have
wider applicability.

3 PRS and Belief Networks

The Procedural Reasoning System (PRS) [IGR92,
IG90] speci�es plans as collections of actions orga-
nized into Knowledge Areas, or KAs. PRS KAs spec-
ify how plans are selected given the current goal (its
purpose) and situation (its context). PRS KAs also
specify a procedure, called the KA body, which it fol-
lows while attempting to accomplish its intended goal.
This procedure is represented as a directed graph in
which nodes represent states in the world and arcs
represent actions or subgoals. Actions may consist of
primitive operations (indicated by * in KA diagrams),
goals to achieve (!), goals to maintain (#), goals to
be tested (?), or conditions to be waited upon (^).
KA actions may also assert facts (!), or retract them
( ). Branches in the graph may be of type AND
or OR, indicating, respectively, that all or only one
of the branches must be completed successfully in or-
der to satisfy the KA's purpose. See the PRS papers
[IGR92, IG90] for a more detailed description.

A belief network is a directed acyclic graph (F;X) rep-
resenting the dependencies F among a set of random
variablesX. Each random variable xi 2 X ranges over
a domain of outcomes 
i, with a conditional proba-
bility distribution �i specifying the probabilities for
xi = !i for all !i 2 
i, given all combinations of
outcome values for the predecessors of xi in the net-
work. For a more thorough account of belief networks,
see, for example, [Pea88] or [Nea90]. To avoid confu-
sion, we refer to the action and goal nodes in a KA as
nodes, and the nodes of a belief network as (random)
variables.

4 The Mapping Method

We now describe our method for mapping plans into
belief networks, �rst with simple sequences of actions
and then with more complex plan structures. The re-
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Figure 1: (a) Single level, non-branching KA. (b) Be-
lief network.

sulting procedures a broad class of plans, including
those with conditional branching and subgoaling. Two
notable features that we do not cover, however, are it-
eration (or recursion), and plan variables. Both are
left for future work.

In the remainder of the section, we discuss the basic
operations involved in mappingPRS KAs to belief net-
works. Our description is illustrated with an example
military reconaissance task, in which two (or more)
cooperative agents pass through a sequence of loca-
tions, alternately navigating (also called bounding) or
protectively watching (overwatching) while concealed
from view.

4.1 Single, non-branching plans

Figure 1(a) depicts an example PRS plan consisting of
a simple sequence of primitive actions. This KA says
that in order to achieve the goal of accomplishing a
\bound" goal, the operations of moving to the next
location (the via point) and �nding a place of con-
cealment must be accomplished. Knowing this, if an
observer were to see an agent moving toward a grove
of trees, the observer might predict that the observed
agent was about to enter the grove. We would like the
belief network generated from this KA to support this
sort of inference.

The �rst step in creating the belief network is to create
a variable representing the goal to be achieved by the
KA. The remaining variables, connections, and proba-
bilities all provide evidence for or against the proposi-
tion that this is the goal being pursued by the observed
agent. In our �gures, we use the KA's name for the
variable in the belief network representing the KA's
goal.

We now create a new random variable for each ac-
tion in the KA. The state space for each variable
is determined by whether the action is a goal|with
a state space of fInactive, Active, Achievedg, or a

primitive action (a basic, non-decomposable behav-
ior of the agent)|with a state space of fPerformed,
NotPerformedg. Each of these new variables is de-
pendent upon the KA's goal variable because it is the
adoption of this goal that causes the performance of
these actions in this particular sequence.3 To model
the temporal relationship between move to viapt and
�nd cover, we create an arc between these variables.4

Because we are constructing the belief network in order
to perform plan recognition, it is important to model
the uncertainty associated with observations [HD93].
For example, detecting the exact movements of an-
other agent might be error-prone, while it might be
easy to ascertain when the agent enters a grove of
trees. Yet whether this entry represents a concealment
action may be relatively less certain. To capture these
di�erences, we add evidence variables to represent the
relation between an observation and our belief that the
observed event is an instance of the corresponding ac-
tion. Evidence variables also provide a way to account
for features that, while not corresponding to actions
directly, provide some information regarding whether
the action was performed. This indirect evidence is
often all we have, as some fundamental actions may
be inherently unobservable. In Figure 1(b), we indi-
cate evidence variables by drawing them with heavy
outlines.5

A typical KA also speci�es the context in which it is
useful, which restricts its applicability for the associ-
ated goal. For example, the \bounding overwatch"
technique of travel between locations might only be
necessary when enemy forces are in the vicinity. To
capture these constraints in the belief network, we add
one new variable for each condition in the KA's con-
text, and include a dependency link from the goal to
each context variable. The belief network constructed
for the KA shown in Figure 1(a) is shown in Fig-
ure 1(b).

The last task is to determine the probability distribu-
tions for each of the random variables. Unfortunately,
information about the degree of uncertainty in these
relationships is not inherent in the executable plan de-
scription, and no planning system provides this prob-
abilistic knowledge as a matter of course. We could
specify this information separately based on our own
subjective assessment of the domain, or it could be

3In our depiction of belief networks, we distinguish
among the various sources of dependency graphically by
line type: subgoal/subaction arcs are normal-weight solid
lines, inhibitory arcs are normal-weight dashed lines, tem-
poral dependency arcs are heavy dashed lines, and context
arcs are heavy solid lines.

4To apply this technique for a plan language support-
ing partially ordered actions, we would simply omit the
temporal dependency arcs between steps in plans that are
unordered.

5In subsequent �gures, for simplicity, we treat evidence
implicitly by depicting the pair of action and evidence as
a single variable.
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Figure 2: (a) Multi-level KA. (b) Corresponding belief
network.

estimated syntactically by analyzing the frequency of
occurrence of particular actions among all those that
achieve particular goals. Alternately, the probabili-
ties might be determined through empirical study of
the frequency of occurrence of goals and actions dur-
ing the execution of the plans in actual situations. If
there is no available probabilistic information, a de-
fault assignment of equiprobability among alternatives
can be used to indicate this lack of knowledge. This
would permit a belief network to be fully speci�ed in
the presence of incomplete modeling informationwhile
perhaps still providing useful inferences based upon
the part of the model that was speci�ed.

Some of the dependencies of the constructed belief net-
work are generically speci�able, however. For exam-
ple, the relation between goal and context variables (if
they represent true constraints) are partially determin-
istic, as the goal cannot be active unless the context
condition is satis�ed.

The procedure for subgoaling plans is essentially the
same as that for the single-level case, with the ex-
tension that subgoals need to be expanded into their
constituent KA procedure. This requires treating the
subgoal as a goal variable in Section 4.1. An ex-
ample multi-level KA is shown in Figure 2(a), and
Figure 2(b) depicts its corresponding belief network.
Notice that the belief network structure beneath the
move to next viapt variable has the same form as that
of perform bound in Figure 1(b).

4.2 Conditional plans

For plans with conditional branches, the KA's goal is
again the root variable for the belief network. Each
action in the KA body becomes a random variable
in the network as in the mapping speci�ed in Sec-
tion 4.1. However, in the conditional case, not all
actions are linked. For instance, an OR branching
in a KA means that an agent need only successfully
execute one of those branches. We assume that one
branch is executed (either successfully or unsuccess-
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Figure 3: (a) Single plan with OR branch. (b) Corre-
sponding belief network.

fully) before another one is tried, so that only one
sequence of actions will be active at one time. There-
fore, the action variables within a branch are linked
temporally as in a non-branching plan, and the vari-
ables representing the �rst actions in each of the dis-
junctive branches are linked with inhibitory arcs rep-
resenting their exclusivity. The e�ect of this arc is
that positive belief that the agent is pursuing one
of the branches will inhibit belief in the alternative
branch(es).6 For AND branches, we can similarly as-
sume either independence (our default), or a positive
mutual reinforcement among branches. An example of
a KA with an OR branch, and the resulting belief net-
work, are shown in Figure 3(a) and Figure 3(b), respec-
tively. If the branch were an AND instead, the same
belief network would result, minus the arc between
�nd concealing foliage and �nd concealing object.

4.3 Multiple goals, multiple plans

Quite often, there are several top-level goals that an
agent may be pursuing. To represent the interde-
pendencies between multiple top-level goals, we adopt
the convention of always creating an arc between the
top-level goal variables and modeling the dependence
(or independence) through the conditional probabili-
ties associated with these variables. An example of a
mapping for this type of plan to a belief network is
shown in Figures 4 and 5.

Thus far we have assumed that an agent being ob-
served is pursuing only a single approach (KA) to sat-
isfy each of its goals. However, there are often multiple
KAs for any goal. The approach that we take is sim-
ilar to the mapping for OR branches. We �rst create
an abstract goal variable that encompasses the KAs

6The assumption of exclusivity can be relaxed by suit-
able assignments of inhibitory probabilities. Or, we could
alternately have chosen to assume that pursuit of the alter-
nate branches are independent, in which case the inhibitory
dependencies would be unnecessary.
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Figure 5: Belief networks for multiple top-level plans.

with a common purpose (goal). The variables that
represent each of the alternate plans (KAs) are then
connected, with the alternate plans as the dependents,
in keeping with the future expected use of the belief
network. An example of multiple goals is presented in
Figures 6 and 7.

4.4 Summary

The following table (Table 1) shows a summary of the
mapping methods, with the various plan features in
the left column and their corresponding belief network
topology in the right column.

Plan Construct Belief Net Topology

Subgoal/Action new variable for subgoal/action,
subgoal/action variable is child
of the supergoal variable.

Action new variable for each action,
Sequence each action variable is child of

KA's goal variable, temporal
arcs between steps.

Context new variable for context, context
variable becomes child of goal
variable.

OR Branch separate action sequences for
each branch, branch node
variable is parent to all initial
action variables of each branch,
inhibitory arcs between initial
action variables of each branch

AND Branch same as OR branch but without
the inhibitory arcs.

Multiple Goals separate variable for each goal,
inhibitory arcs between
competing goals.

Table 1: Mapping methodology summary.

5 An Example

The following example illustrates the entire process,
mapping PRS plan structures to a belief network, and
using the result for plan recognition.

5.1 Mapping to belief network

Figure 8 depicts four KAs relevant to the bounding
overwatch task. The !bound performed KA shows that
the agent must �rst move to its next via point before
looking for a suitable place from which to watch over
the other agent. There are two KAs for dealing with
an enemy agent, both conditioned on the context of an
enemy agent having been sighted. Hiding, however,
can consist of either moving into foliage or moving
behind some concealing object. Furthermore, moving
to a via point requires the agent to �rst accomplish
!moved to next viapt, the rightmost KA in Figure 8,
which consists of a simple, non-branching sequence of
operations.

Using the methods described in Section 4, the sys-
tem begins mapping this collection of KAs into a
belief network, starting with the top-level goals of
!bound performed and !dealt with enemy. The system
�nds that the �rst action in the !bound performed KA
is the goal !moved to next viapt and recurses. The
!moved to next viapt KA is straightforwardly added
and the mapping of !bound performed resumes. The
system then proceeds to map !dealt with enemy. As
!dealt with enemy has two potentially applicable KAs,
the methodology of Section 4.3 is used, where each
KA is processed individually and then joined by an
abstract goal variable representing both KAs. In ad-
dition, the OR branch in the hide KA complicates the
construction a bit by introducing additional dependen-
cies (as discussed above in Section 4.2). To complete
the mapping, the system creates an inhibitory link be-
tween the two top-level goals (!bound performed and
!dealt with enemy) to indicate that only one OR the
other of these goals can be achieved at the same time.
The �nished belief network structure is shown in Fig-
ure 9. The marginal and conditional probabilities are
then loaded into the network (as mentioned in Sec-
tion 4). We now show how the new representation
permits an agent to infer the plans and goals of an-
other agent based on its observed behavior.

5.2 Plan recognition

Suppose that Agent A is watching Agent B as they
perform a reconnaisance task. Agent A and Agent B
are in the military so of course there are standard
operating procedures for everything. In this case
the agents are using bounding-overwatch for reconnai-
sance, which means that one agent moves while the
other agent watches for danger while concealed, with
the two agents alternating between roles. These pro-
cedures are represented by the KAs in Figure 8, which
get mapped into the belief network structure shown
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in Figure 9. Agent A observes the actions taken by
Agent B, and, whenever an action is performed that
�ts into the model, Agent A adds this information
to the belief network. After the evidence is propa-
gated, the resulting probability distributions represent
Agent A's beliefs about Agent B's goals posterior to
the evidence.

Starting with a belief network without any applied ev-
idence, suppose Agent A notices that Agent B moves
in the direction of, and arrives at, the next stop in the
reconnaisance route.7 Agent A interprets this as hav-
ing completed !moved to next viapt (an example of the
ability to make observations at a higher level than the
\primitive" action level) and propagates this evidence
through the network. This results in distributions of
perform bound : Inactive 0.19; Active 0.69, Achieved
0.11, and deal with enemy : Inactive 0.41; Active 0.49;
Achieved 0.09. The relatively high level of belief in
the deal with enemy goal is due to its having a high
prior. This evidence alone suggests to Agent A that
Agent B might be involved with performing the bound-
ing role of the reconnaisance task, but it is not entirely
clear at this point. Agent A determines, based upon
its beliefs, that it should continue to watch for enemy
agents. Continuing, if Agent A later observes Agent B
moving into cover, Agent A now strongly believes that
Agent B is �nishing its bound process with beliefs of
perform bound : Inactive 0.0; Active 0.17, Achieved
0.83, and deal with enemy: Inactive 0.62; Active 0.32;
Achieved 0.06. However, if instead of moving to a

7Until Agent B actually arrives at the via point, its
movements might be ambiguous enough that it is unclear
which of the move-type observations should be instanti-
ated. In this case, evidence for all of them might be in-
stantiated and the resulting beliefs used, providing Agent A
with at least some information.

via point, Agent B moves in some other direction
and moves into a growth of foliage, Agent A, through
the plan recognition system, realizes that Agent B es-
tablished a goal of hide (Inactive 0.03, Active 0.51,
Achieved 0.46) since it has detected an enemy (Per-
formed 0.64, NotPerformed 0.36) and that it should
therefore come to its aid.

6 Conclusions

We have described methods by which plans in their ex-
ecutable form can be automatically mapped to belief
networks. The examples of the implemented system
illustrate that, at least for the simple plans so far ex-
plored, our methods yield belief networks that allow
agents to recognize the plans of others. In the near fu-
ture we plan to extend our methodology to deal with
iteration and recursion, and to implement this system
on physically embodied agents (robots) that will use
plan recognition as part of their coordination mecha-
nism.

While much work yet remains, we see these methods
as important steps toward knowledge re-use, where au-
tomating the mapping process allows the same knowl-
edge to be used for both planning and plan recognition.
Moreover, just as concerns about storing all possible
plans for all possible combinations of goals and worlds
led to algorithms for dynamically constructing plans
on the y, so too do concerns about building unwieldy
models of agents' actions in all possible worlds lead to
a desire for dynamically constructing belief network
models for situation-speci�c plan recognition activi-
ties. Our methods represent some initial steps in this
direction.
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