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Abstract

In computational function learning in the limit, an algorithmic learner tries to �nd a program
for a computable function g given successively more values of g, each time outputting a conjectured
program for g. A learner is called postdictively complete i� all available data is correctly postdicted
by each conjecture.

Akama and Zeugmann presented, for each choice of natural number δ, a relaxation to postdictive
completeness: each conjecture is required to postdict only all except the last δ seen data points.

This paper extends this notion of delayed postdictive completeness from constant delays to dy-

namically computed delays. On the one hand, the delays can be di�erent for di�erent data points.
On the other hand, delays no longer need to be by a �xed �nite number, but any type of computable
countdown is allowed, including, for example, countdown in a system of ordinal notations and in
other graphs disallowing computable in�nitely descending counts.

We extend many of the theorems of Akama and Zeugmann and provide some feasible learnability
results. Regarding fairness in feasible learning, one needs to limit use of tricks that postpone output
hypotheses until there is enough time to �think� about them. We see, for polytime learning, postdictive
completeness (and delayed variants): 1. allows some but not all postponement tricks, and 2. there
is a surprisingly tight boundary, for polytime learning, between what postponement is allowed and
what is not. For example: 1. the set of polytime computable functions is polytime postdictively
completely learnable employing some postponement, but 2. the set of exptime computable functions,
while polytime learnable with a little more postponement, is not polytime postdictively completely
learnable! We have that, for w a notation for ω, the set of exptime functions is polytime learnable with
w-delayed postdictive completeness. Also provided are generalizations to further, small constructive
limit ordinals.

1 Introduction

�Explanatory learning�, or Ex-learning for short, is a standard model of limit learning of computable
functions. In this model a learner is given successively longer initial segments of a target function.
For each initial segment of the target function, the learner gives an hypothesis. The learner is said to
successfully Ex-learn the target function i� the in�nite sequence of hypotheses generated by the learner
on the initial segments of the target functions converges in the limit to a (single) correct program for the
target function [JORS99].

In some literature on limit learning this intuitively simple success criterion is used as a minimal require-
ment for success, and additional requirements are de�ned and examined. We call two such extra require-
ments postdictive completeness (the hypotheses correctly postdict the data seen so far) and postdictive
consistency (the hypotheses do not explicitly contradict the given data) [B	ar74, BB75, Wie76, Wie78].1

There are Ex-learnable sets of functions that cannot be learned with the additional requirement of post-
dictive completeness or consistency.

∗Student author.
1We use the terminology postdictive completeness because the the hypotheses must completely postdict the data seen

to that point. We use the terminology postdictive consistency because the the hypotheses need only avoid explicit incon-

sistencies with the data seen to that point. Such an hypothesis may, then, on some input for which the data seen to that
point tells the answer, go unde�ned (i.e., go into an in�nite loop) and, thereby, not explicitly contradict the known data. In
the literature on these requirements, except for [Ful88], what we call postdictively complete is called consistent, and what
we call postdictively consistent is called conformal.
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Akama and Zeugmann [AZ07] presented success criteria that are a little less restrictive than postdic-
tively complete Ex-learning. Their criteria delay the requirement to postdict a given datum by a �xed
natural number δ of (not necessarily distinct) hypotheses output. For ordinary postdictive completeness,
if a learner h has seen so far, on a computable g input, g(0), . . . , g(n − 1), then h's corresponding hy-
pothesis, pn, must correctly compute g(0), . . . , g(n − 1).2 For delay δ, Akama and Zeugmann, require
only that, on g(0), . . . , g(n − 1), h's later hypothesis, pn+δ, must correctly compute g(0), . . . , g(n − 1).
Essentially, the delay δ learner could, after seeing g(0), . . . , g(n − 1), run a counter down from δ to 0 to
see which future hypothesis must correctly compute g(0), . . . , g(n − 1).

In the present paper we extend this notion of delayed postdictive completeness from constant delays
δ to dynamically computed delays. One of the ways we consider herein to do this involves counting down
from notations for constructive ordinals. We explain. Everyone knows how to use the natural numbers
for counting, including for counting down. Freivalds and Smith [FS93], as well as [ACJS04], employed
in learning theory notations for constructive ordinals [Rog67, � 11.7] as devices for algorithmic counting
down.

Theorems 4 and 5 in Section 3 provide strong justi�cation for studying the herein ordinal countdown
variants of Postdictive Completeness.

Intuitively ordinals are representations of well-orderings. 0 represents the empty ordering, 1 represents
the ordering of 0 by itself, 2 the ordering 0 < 1, 3 the ordering 0 < 1 < 2, . . . . The ordinal ω represents the
standard ordering of all of N. ω + 1 represents, for example, the ordering of N consisting of the positive
integers in standard order followed by 0. The successor ordinals are those of the form α+ 1 which have a
single element laid out after a copy of another ordinal α. ω +ω can be thought of as two copies of ω laid
end to end � much bigger than ω. ω ⋅ 3 represents three copies of ω laid end to end. By contrast, 3 ⋅ ω
represents ω copies of 3 � which is just ω. We see, then, for ordinals, +, ⋅ are not commutative. ω ⋅ω is ω
copies of ω laid out end to end. We can iterate this and de�ne exponentiation for ordinals. Limit ordinals
are those, like ω, ω + ω, ω ⋅ ω, and ωω, which are not 0 and are not successor ordinals. All of them are
in�nite. Importantly, the constructive ordinals are just those that have a program (called a notation) in
some system which speci�es how to build them (lay them out end to end, so to speak).3 Informally, here,
for example, is how to think of counting down from such a notation for ω + ω. One �rst computes some
estimate for a natural number to count down from and begins counting down from it; then, later, one can
revise once this estimate and subsequently count down some more from that. For counting down from a
notation for ω + ω + ω = ω ⋅ 3, one can revise the initial estimate twice. Since ordinal notations represent
well-orders, they do not permit in�nitely long countdowns, neither algorithmic (we do �nite, algorithmic
countdowns) nor non-algorithmic.

[SSV04] gives a further generalized notion of counting down. They consider certain partial orders
with no computable in�nitely descending chains. In the present paper we consider arbitrary and also
computable graphs with no in�nite, computable paths, and we algorithmically count �down� along their
paths. Theorem 4.11, in Section 4.2 below, gives a nice example of linearly ordered, computable such
graph which nonetheless has in�nite paths (just not computable ones). We call our graphs in the present
paper, countdown graphs.

We make use of countdown graphs for delaying the requirement of postdictive completeness (respec-
tively, consistency) by requiring a learner to start an independent countdown for each datum g(i) seen
and to be postdictively complete (respectively, consistent) regarding g(i) as soon as the countdown for
g(i) terminates.4

Section 2 will introduce the notation and concepts used in this paper.
In the prior literature we also see further variants of postdictive completeness and consistency not

based on delay. For example, [CJSW04] surveys with references these variants. Roughly, below, when
we attach R to the front of a name of a criterion requiring postdictive completeness or consistency, this
means that the associated learnability must be witnessed by a (total) computable learner as opposed
to just a partial computable learner (de�ned at least where it minimally needs to be); when we attach
a T to the front of a name of a criterion requiring postdictive completeness (respectively, consistency),
this means that the associated learnability must be witnessed by a (total) computable learner which is
postdictively complete (respectively, consistent) on all input functions regardless of whether the learner
actually learns them.

2Note that, for n = 0, the data seen is empty and the output hypothesis, p0, is unconstrained.
3Technically, we count down from notations for constructive ordinals (instead of from the ordinals themselves) simply

because notations, being �nite (programs), in principle, �t inside computers; whereas, at least in�nite ordinals do not.
4Below we refer to a vector of such individual counts as a multicount.
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Sections 3 and 4 present our results. All of our results in Section 3 provide information about poly-
nomial time learners. Furthermore, some of our results in Section 4.1 entail learnability with linear time
learners. These time bounds are uniform bounds on how much time it takes the learner to conjecture each
hypothesis in terms of the total size of the input data it can use for making this conjecture. Suppose for
discussion p is a polynomial time bound. Pitt [Pit89] notes that Ex-learning allows unfair postponement
tricks, i.e., a learner h can put o� outputting signi�cant conjectures based on data σ until it has seen
a much larger sequence of data τ so that p(∣τ ∣) is enough time for h to think about σ as long as it
needs.5 In this way the polytime restriction on each output does not, by itself, have the desirable e�ect
of constraining the total learning time. Pitt [Pit89] then lays out some additional constraints toward
avoiding �cheating� by such postponement tricks. He discusses in this regard what we are calling postdic-
tive completeness. He also considers further constraints since he wants to forbid enumeration techniques
[JORS99]. For our complexity-bounded results in Section 4.1 we get by with an extremely fair, restricted
kind of linear-time learner, we call transductive. A transductive learner has access only to its current
datum.

In Section 3 we see, from Theorems 3.5 and 3.6 and the proof of the �rst, that, for polytime learning,
postdictive completeness (and delayed variants): 1. allows some but not all postponement tricks, and 2.
there is a surprisingly tight boundary, for polytime learning, between what postponement is allowed and
what is not. For example: 1. the set of polytime computable functions is polytime postdictively completely
Ex-learnable (by a complexity-bounded enumeration technique) employing some postponement, but 2. the
set of exptime computable functions, while polytime Ex-learnable with a little more postponement, is
not polytime postdictively completely Ex-learnable! From Theorem 3.5, we see that, for w a notation
for ω, the set of exptime functions is polytime Ex-learnable with w-delayed postdictive completeness.
Theorems 3.5 and 3.6 also provide generalizations to further, small constructive limit ordinals.

Section 4.1 shows how the di�erent variants of our criteria relate in learning power. Our main theorem
in this section is Theorem 4.3. For example, it entails that there is a set of computable functions which
is postdictively consistently learnable (with no delays) by a transductive, linear time learner but is not
postdictively completely learnable with delays employing any countdown graph.

In Section 4.2, our main result, Theorem 4.14, entails (including with Corollaries) complete character-
izations of learning power in dependence on associated (computable) countdown graphs. Corollary 4.17
extends the �nite hierarchy given in [AZ07] into the constructive trans�nite.

Many of our proofs use recursion theorems and are a bit combinatorially di�cult.

2 Mathematical Preliminaries

Any unexplained complexity-theoretic notions are from [RC94]. All unexplained general computability-
theoretic notions are from [Rog67].

Strings herein are �nite and over the alphabet {0,1}. {0,1}∗ denotes the set of all such strings; ε
denotes the empty string.

N denotes the set of natural numbers, {0,1,2,. . . }. We do not distinguish between natural numbers
and their dyadic representation as strings.6

For each w ∈ {0,1}∗ and n ∈ N, wn denotes n copies of w concatenated end to end. For each string
w, we de�ne size(w) to be the length of w. As we identify each natural number x with its dyadic
representation, for all n ∈ N, size(n) denotes the length of the dyadic representation of n. For all strings
w, we de�ne ∣w∣ to be max{1, size(w)}. 7

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset and proper superset
relation between sets.

For sets A,B, we let A ∖B ∶= {a ∈ A ∣ a /∈ B}, A ∶= N ∖A.
We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda notation (as in Lisp) as

λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N, λx c is the constantly c function of one argument.
A function ψ is partial computable i� there is a Turing machine computing ψ. R and P denote the

set of all (total) computable and partial computable functions N → N, respectively. If ψ is not de�ned

5Pitt talks in this context of delaying tricks. We changed this terminology due to the clash with Akama and Zeugmann's
terminology for delayed postdictive completeness.

6The dyadic representation of a natural number x ∶= the x-th �nite string over {0,1} in lexicographical order, where the
counting of strings starts with zero [RC94]. Hence, unlike with binary representation, lead zeros matter.

7This convention about ∣ε∣ = 1 helps with runtime considerations.
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for some argument x, then we denote this fact by ψ(x)↑ and we say that ψ on x diverges. The opposite
is denoted by ψ(x)↓ and we say that ψ on x converges.

We say that a partial function ψ converges to p i� ∀∞x ∶ ψ(x)↓ = p.
[RC94, �3] describes an e�ciently numerically named or coded8 programming system for multi-tape

Turing machines (TMs) which compute the partial computable functions N → N. Herein we name this
system ϕ. ϕp denotes the partial computable function computed by the TM-program with code number
p in the ϕ-system, and Φp denotes the partial computable runtime function of the TM-program with
code number p in the ϕ-system. In the present paper, we employ a number of complexity bound results
from [RC94, �� 3 & 4] regarding (ϕ,Φ). These results will be clearly referenced as we use them.

Let

� LinPrograms ∶= {e ∣ e ∈ N ∧ ∃c, d∀n ∈ N ∶ Φe(n) ≤ c ⋅ ∣n∣ + d)};
� LinF ∶= {ϕe ∣ e ∈ LinPrograms};
� PolyPrograms ∶= {e ∣ e ∈ N ∧ ∃p polynomial ∀n ∈ N ∶ Φe(n) ≤ p(∣n∣)}; and
� PF ∶= {ϕe ∣ e ∈ PolyPrograms}.

For g ∈ LinF we say that g is computable in linear time, for g ∈ PF we say that g is computable in
polytime, or also, feasibly computable.9

We �x the 1-1 and onto pairing function ⟨⋅, ⋅⟩ ∶ N × N → N from [RC94], which is based on dyadic
bit-interleaving. Pairing and unpairing is computable in linear time. π1 and π2, respectively, denote the
unpairing into the left and right component of a given coded pair, respectively.

For all f, g ∈R we let ⟨f, g⟩ denote λi ⟨f(i), g(i)⟩.
Whenever we consider sequences of natural numbers as input to TMs, it is understood that the general

coding function ⟨⋅, ⋅⟩ is used to (left-associatively) code the tuples into appropriate TM-input.
A �nite sequence is a mapping with a �nite initial segment of N as domain. ∅ denotes the empty

sequence (and, also, the empty set). The set of all �nite sequences of natural numbers is denoted by Seq.
For each �nite sequence σ, we will denote the �rst element, if any, of that sequence by σ(0), the second,
if any, with σ(1) and so on. #elets(σ) denotes the length of a �nite sequence σ, that is, the size of its
domain.

We will consider in�nite sequences s as functions with domain N, and denote them at position x ∈ N
by s(x).

◇ denotes concatenation on sequences; the second argument may be an in�nite sequence, the �rst may
not. We use in�x notation when we use ◇.

From now on, by convention, f , g and h with or without decoration range over (partial) functions
N → N, x, y with or without decorations range over N and σ, τ with or without decorations range over
�nite sequences of natural numbers.

Following [LV97], we de�ne for all x ∈ N: x = 1#elets(x)0x. Using this notation we can de�ne a function
⟨⋅⟩Seq coding arbitrarily long �nite sequences of natural numbers into N (represented dyadically) such that

⟨σ⟩Seq ∶= σ(0) . . . σ(#elets(σ) − 1). (1)

For example the �nite sequence (4,7,10)decimal = (01,000,011)dyadic is coded as
11 0 01 111 0 000 111 0 011 (but without the spaces, which were added for ease of reading).10

Note that, for all σ, τ ∶ ⟨σ ◇ τ⟩Seq = ⟨σ⟩Seq⟨τ⟩Seq. Also note that, for all x ∈ N, x is equal to the code of
the sequence of length 1 containing only x, and, for all n ∈ N, xn is equal to the code of the sequence of
length n, each element being x.

For any �nite sequence σ such that #elets(σ) > 0, we let last(σ) be the last element of σ and σ− be
σ with its last element deleted.

Obviously, ⟨⋅⟩Seq is 1-1 [LV97]. The set of all sequences is decidable in linear time. The time to

encode a sequence, that is, to compute λk, v1, . . . , vk ⟨v1, . . . , vk⟩Seq is O(λk, v1, . . . , vk ∑ki=1 ∣vi∣). There-
fore, the size of the codeword is also linear in the size of the elements: λk, v1, . . . , vk ∣⟨v1, . . . , vk⟩Seq∣ is
O(λk, v1, . . . , vk ∑ki=1 ∣vi∣).11

8This numerical coding guarantees that many simple operations involving the coding run in linear time. This is by
contrast with historically more typical codings featuring prime powers and corresponding at least exponential costs to do
simple things.

9We are mostly not considering herein interesting polytime probabilistic or quantum computing variants of the deter-
ministic feasibility case.

101100111100001110011 is of course the dyadic representation of some number ∈ N.
11For these O-formulas, ∣ε∣ = 1 helps.
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Furthermore we have

∀x ∶1 ≤ size(x̄); (2)

∀σ ∶#elets(σ) ≤ ∣⟨σ⟩Seq∣; (3)

λ⟨σ⟩Seq #elets(σ) ∈ LinF; (4)

λ⟨σ⟩Seq, i

⎧⎪⎪⎨⎪⎪⎩

σ(i), if i < #elets(σ);
0, otherwise,

∈ LinF. (5)

Henceforth, we will many times identify a �nite sequence σ with its code number ⟨σ⟩Seq. However,
when we employ expressions such as σ(x), σ = f and σ ⊂ f , we consider σ as a sequence, not as a number.

For a partial function g and i ∈ N, if ∀j < i ∶ g(j)↓, then g[i] is de�ned to be the �nite sequence
g(0), . . . , g(i − 1).

For every set of functions S ⊆R we de�ne [S] = {σ ∣ ∃g ∈ S ∶ σ ⊆ g}.
By s-m-n, there is patch computable such that, for all σ, e,

∀x ∶ ϕpatch(σ,e)(x) =
⎧⎪⎪⎨⎪⎪⎩

σ(x), if x ∈ dom(σ);
ϕe(x), otherwise.

(6)

By [RC94, Theorem 3.13], there is patch0 such that such that,

patch0 ∈ LinF, (7)

∀σ∀x ∶ ϕpatch0(σ)
(x) =

⎧⎪⎪⎨⎪⎪⎩

σ(x), if x < #elets(σ);
0, otherwise,

(8)

and
∀σ ∶ patch0(σ) ∈ LinPrograms. (9)

Some of our proofs will use Kleene's Recursion Theorem (KRT) [Rog67, page 214, problem 11-4], a
variant of Roger's recursion theorem, representing a form of individual self-reference.

In one case we will use a stronger theorem thenKRT, namely we use the Operator Recursion Theorem
(ORT) [Cas74]. ORT is a form of in�nitary self-reference. That is, ORT provides a means of forming
an in�nite computable sequence of programs P (0), P (1), . . . such that each program P (i) knows all
programs in the sequence and its own index i. The function P can also be assumed monotone increasing
(hence, 1-1); this is referred to as padded ORT. For a thorough explanation of ORT see [Cas94]. ORT
generalizes Kleene's Parametric Recursion Theorem (PKRT). PKRT provides a means of forming an
in�nite computable sequence of programs P (0), P (1), . . . such that each program P (i) knows its own
program and its own index i, but does not necessarily know the other programs in the sequence.

A pre-order is a pair (A,≤A) such that ≤A is a transitive and re�exive binary relation on A.

2.1 Systems of Ordinal Notations

Church and Kleene introduced systems of ordinal notations. Our de�nition follows Rogers [Rog67, � 11.7].
A system of ordinal notations is a pair (N ,≤N ) and associated functions kN , pN , qN ∈ P and νN

mapping N into the set of all ordinals, such that

� N ⊆ N;
� ∀u, v ∈ N ∶ u ≤N v⇔ νN (u) ≤ νN (v);
� For all u ∈ N : νN (u) = 0 ⇒ kN (u) = 0, νN (u) is successor ordinal ⇒ kN (u) = 1 and
νN (u) is limit ordinal ⇒ kN (u) = 2;

� For all u ∈ N : νN (u) is successor ordinal ⇒ νN (pN (u)) = νN (u) + 1;
� For all u ∈ N : νN (u) is limit ordinal ⇒ ϕqN (u) is a monotonic increasing computable function such
that νN ○ ϕqN (u) converges to νN (u).12

12N.B. Kleene's (O,≤O) [Rog67] is technically not an example system of ordinal notations � since ≤O on all of O has
incomparable elements.

5



(N ,≤N ) is called computably related i� ≤N is computable.
An ordinal α is called constructive i� it receives a notation in some system of ordinal notations.
For countdown in polynomial time, as required for Section 3, we use feasibly related feasible systems

of ordinal notations [CKP07].
A system of ordinal notations N is called feasible i�

� kN , pN and λu,0n ϕqN (u)(n) are computable in polytime;
� there are polytime computable functions +N and ⋅N such that for all u, v ∈ N , νN (u +N v) =
νN (u) + νN (v) and νN (u ⋅N v) = νN (u) ⋅ νN (v); and

� there are polytime computable functions ⋅N , lN and nN such that, ∀n ∈ N ∶ νN (nN ) = n, lN (u) is
a notation for a limit ordinal and ∀u ∈ N ∶ νN (u) = νN (lN (u)) + nN (u). 13

N is called feasibly related i� ≤N is feasibly decidable.
Note that for any constructive ordinal α, there is a computably related system of ordinal notations

which gives a notation to α [Rog67]; furthermore, there is also a feasibly related feasible system of ordinal
notations giving a notation to α .

2.2 Computational Limit Learning

In this paper we consider several indexed families of learning criteria. We proceed somewhat abstractly
to avoid needless terminological repetitions.

For each C ⊆ P and δ ⊆ R2, we say that the pair (C, δ) is a learning criterion (for short, criterion).
The set C is called a learner admissibility restriction, and intuitively serves as a limitation on what
functions will be considered as learners. Typical learner admissibility restrictions are P,R, as well as
complexity classes. The predicate δ is called a sequence acceptance criterion, intuitively restricting what
output-sequences by the learner are considered a successful learning of a given function. For h ∈ P, g ∈R
we say that h (C, δ)-learns g i� h ∈ C and (λx h(g[x]), g) ∈ δ. For h ∈ P, g ∈ R, we call λx h(g[x])
the learning-sequence of h given g. Here's an example δ, herein called Ex. Let Ex = {(⟨p, d⟩, q) ∈
R2 ∣ p converges to some e ∧ ϕe = q}. Intuitively, (⟨p, d⟩, q) ∈ Ex means that the learning-sequence
⟨p, d⟩ successfully learns the function q i�: for some i, p(i) is a correct program number for q, and this
hypothesized program number will never change after that point i. N.B. For this example, the learning-
sequence is a sequence of coded pairs and Ex completely disregards the second component d. Some other
sequence acceptance criteria below make use of d as an auxiliary output of the learner. In these cases,
d will code countdowns until some events of interest must happen. For h ∈ P and S ⊆ R we say that h
(C, δ)-learns S i�, for all g ∈ S, h (C, δ)-learns g. The set of (C, δ)-learnable sets of computable functions
is Cδ ∶= {S ⊆ R ∣ ∃h ∈ C ∶ h (C, δ)-learns S}. Instead of writing the pair (C, δ), we will ambiguously write
Cδ. We will omit C if C = P.14 One way to combine two sequence acceptance criteria δ and δ′ is to
intersect them as sets. We write δδ′ for the intersection, and we present examples featuring countdowns
in the next section.

We can turn a given sequence acceptance criterion δ into a learner admissibility restriction T δ by
admitting only those learners that obey δ on all input : T δ ∶= {h ∈ P ∣ ∀g ∈R ∶ (λx h(g[x]), g) ∈ δ}.

2.3 Dynamically Bounded Postdiction

The following two de�nitions formalize the intuitive discussion about countdown graphs as given above
in Section 1.

De�nition 2.1. A graph is a pair (G,→), where G ⊆ N and → is a binary relation on G. We will use
in�x notation for →. For each graph (G,→), we say that τ is a G-path i� #elets(τ) > 0, ∀i < #elets(τ) ∶
τ(i) ∈ G and ∀i < #elets(τ) − 1 ∶ τ(i) → τ(i + 1). For each graph G, let G⃗ denote the set of all G-paths.
(S,R) is a subgraph of (G,→), i� S ⊆ G and R =→ ∣(S × S). For all m,n ∈ N, we write m →∗ n
(respectively, m →+ n) i� there is a G-path τ such that τ(0) = m, last(τ) = n (respectively, additionally

13The tally argument, 0n, in the �rst bullet just above, is used in place of n to provide su�cient computational complexity
resource for any uses of qN . N.B. In Section 3 of the present paper, we do not need to use the qN s; we get by with employing
the feasibility of some of the other feasible functions: +N , ⋅N , . . . .

14Thus, every sequence acceptance criterion denotes at the same time a learning criterion and the set of learnable sets.
It will be clear from context which meaning is intended. An example: Ex, then, denotes sequence acceptance criterion Ex,
learning criterion (P,Ex) and set PEx of (P,Ex)-learnable sets.
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#elets(τ) > 1). We sometimes write G for (G,→). A graph (G,→) is said to be computable i� G and →
are computable. Note that a graph G is computable i� G⃗ is computable. For a graph (G,→) we sometimes
identify m ∈ G with {n ∈ G ∣ m →+ n}. With every pre-order (A,≤A) we associate the graph (A,>A),
where, for all a, b ∈ A, a >A b i� (b ≤A a and a /≤A b).

De�nition 2.2. A graph (G,→) is called a countdown graph, i� ¬∃r ∈ R∀i ∈ N ∶ r(i) → r(i + 1). Note
that if G is a countdown graph, then so is every subgraph of G. Let G and Gcomp, respectively, denote the
set of all and all computable countdown-graphs, respectively.

Example countdown graphs can be obtained from systems of ordinal notations. Let (N ,≤N ) be a
system of ordinal notations. Then, (N ,≤N ) is a pre-order without in�nite descending chains, so the graph
associated with (N ,≤N ) is a countdown graph. If (N ,≤N ) is computably related, then the associated
graph will be computable.

In Theorem 4.11 below we give one example of a countdown graph not based on a system of ordinal
notations. Section 4.2 shows the impact of using these di�erent kinds of countdown graphs for our
purposes described below.

Soon we de�ne what postdictive consistency, respectively completeness, with respect to G ∈ G means.
Intuitively, every learner is required to have two outputs: a hypothesis, and a countdown output. For
any learnee g ∈ R, if the learner sees g[i], the countdown output will need to encode one countdown for
each j < i. As soon as the countdown for a given data item is over, the hypothesis has to be postdictively
consistent, respectively complete, for that data item. We will refer to the countdown output of a learner
as a multicount (as it represents more than one countdown). We refer to an learning-output of hypothesis
and multicount as a hypothesis-multicount.

De�nition 2.3. The set of all multicountdown sequences is de�ned as

M ∶= {σ ∈ Seq ∣ ∀i < #elets(σ) ∶ (σ(i) ∈ Seq ∧#elets(σ(i)) = i)}.15

An example multicountdown sequence is σ0 ∶= ⟨⟩Seq, ⟨3⟩Seq, ⟨2,3⟩Seq, ⟨1,2,2⟩Seq, ⟨0,1,2,1⟩Seq,
⟨0,0,2,2,2⟩Seq, ⟨2,0,2,3,1,1⟩Seq, ⟨0,0,2,7,0,0,5⟩Seq.
σ0 can be displayed as a matrix like this:

x
n

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 2 1 0 0 2 0
3 2 1 0 0 0

2 2 2 2 2
1 2 3 7

2 1 0
1 0

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (10)

In (10) each column is a multicount. For example, column x = 4 represents the multicount σ0(4) =
⟨0,1,2,1⟩. Each row of (10) provides the successive values of a particular countdown. For example, each
row of (10) (without initial empty entries) is the n-th countdown of σ0. As we will see below, for an
associated learnee g, the n-th row will be relevant to g(n).

De�nition 2.4. For each σ ∈ M and n < #elets(σ) − 1 we de�ne

row(n,σ) ∶= ⟨σ(n + 1)(n), . . . , σ(#elets(σ) − 1)(n)⟩Seq. (11)

For σ0 as presented above in (10), we have, for example row(4, σ0) = ⟨2,1,0⟩Seq. Each row(n,σ) is a
countdown.

We will consider a given countdown sequence τ as terminated with respect to a given countdown
graph G ∈ G, i� τ /∈ G⃗. We then say that �τ has terminated� or �τ has bottomed out�. For a given
multicountdown sequence we will de�ne the set of all n such that the n-th countdown has (started and)
bottomed out just below.

15Of course, σ(i) ∈ Seq means that the number σ(i) is the code of a sequence.
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De�nition 2.5. For all σ and all G ∈ G, de�ne

�G(σ) = {n < #elets(σ) ∣ σ /∈ M ∨ row(n,σ) /∈ G⃗}. (12)

Furthermore, de�ne áG(∅) = �G(∅) and, for σ ≠ ∅, áG(σ) = �G(σ) ∖ �G(σ−).16 We omit the subscript
G whenever no confusion can arise.

We pronounce � as �bottom� and á as �recent bottom�. For σ ∈ M, �(σ) is the set of all countdown
numbers where the countdown has terminated, while á(σ) is the set of countdowns that have intuitively
�just now� terminated.

Let us, for example, consider the �nite countdown graph G on {0,1,2,3} with the natural >-order on
N. For σ0 depicted above in (10), we have �G(σ0) = {0,1,2,3,6}. The example of rows n = 4 and n = 5
shows that reaching a minimal element (in this case 0) of G does not imply immediate termination of the
countdown. The example of rows n = 2 and n = 3 shows how countdowns terminate when not obeying
the graph relation. Note that the countdown for row n = 6 has terminated immediately when it started,
as it started with 5, and ⟨5⟩Seq is not a G-path. From rows n = 4 and n = 6 we see that the di�erent
countdowns do not have to terminate in row order.

Next we de�ne two families of sequence acceptance criteria, employing countdowns as described above.
The rest of the paper will be concerned with studying these criteria in various settings.

De�nition 2.6. For G ∈ G let, for all p, d, q ∈R,

� PcsG(⟨p, d⟩, q) ∶⇔ ∀x∀n ∈ �G(d[x]) ∶ ϕp(x)(n)↓ ⇒ ϕp(x)(n) = q(n) and

� PcpG(⟨p, d⟩, q) ∶⇔ ∀x∀n ∈ �G(d[x]) ∶ ϕp(x)(n)↓ = q(n).

For all g ∈ R and h, f ∈ P, we say that ⟨h, f⟩ works postdictively consistently (respectively, completely)
on g with G-delay i� (⟨h, f⟩, g) = (λi (⟨h(g[i]), f(g[i])⟩), g) ∈ PcsG (respectively, PcpG). We omit �with
G-delay�, if no confusion can arise.

For notational purposes, we de�ne the following variants on row, � and á.

De�nition 2.7. For all G ∈ G, σ ∈ Seq, f ∈ P and n ≤ #elets(σ), de�ne

row(n, f, σ) ∶= row(n,λi ≤ #elets(σ) f(σ[i])), (13)

�G(f, σ) ∶= �G(λi ≤ #elets(σ) f(σ[i])), (14)

áG(f, σ) ∶=áG(λi ≤ #elets(σ) f(σ[i])). (15)

We omit the subscript G whenever no confusion can arise.

Note that, for all f ∈ P, all σ and all n < #elets(σ),

row(n, f, σ) = λi ≤ #elets(σ) − n − 1 f(σ[i + n + 1])(n). (16)

Also we have, for all G ∈ G and all f ∈ P such that ∀τ ∶ (λi ≤ #elets(τ) f(τ[i])) ∈ M, for all σ ∈ Seq and
all n < #elets(σ),

n ∈ �G(f, σ)⇔ row(n, f, σ) /∈ G⃗. (17)

3 Complexity Results

For this section only, let N be a feasibly related feasible system of ordinal notations for at least the
ordinals < ω2. Let w be a notation for ω in N . For each n ∈ N, n denotes a notation for n in N , such
that λn n is computable in polytime. We will assume for all constructive ordinals α,

∀n ∈ N, u ∈ N ∶ (u is notation in N for α + n)⇒ n ≤ u.17 (18)

16Note that áG(∅) = �G(∅) = ∅.
17Speci�c systems of ordinal notations seen in the literature typically, perhaps always, satisfy (18).
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De�nition 3.1. Let exp denote the function λx 2x. Furthermore, for all n, we write expn for the n-times
application of exp. In particular, exp0 denotes the identity. For all k let

ExpkPrograms ∶= {e ∣ e ∈ N ∧ ∃p polynomial ∀n ∈ N ∶ Φe(n) ≤ expk(p(∣n∣))};
EXPkF ∶= {ϕe ∣ e ∈ ExpkPrograms};

ExpPrograms ∶= Exp1Programs
EXPF ∶= EXP1F

For g ∈ PF we say that g is computable in polytime, or also, feasibly computable. Recall that we have,
by (3), ∀σ ∶ #elets(σ) ≤ ∣σ∣.

De�nition 3.2. Let S,T be such that

∀p, x, t ∶ S(p, x, t) =
⎧⎪⎪⎨⎪⎪⎩

ϕp(x), if Φp(x) ≤ ∣t∣;
0, otherwise;

(19)

∀p, x, t ∶ T (p, x, t) =
⎧⎪⎪⎨⎪⎪⎩

1, if Φp(x) ≤ ∣t∣;
0, otherwise.

(20)

Lemma 3.3. There exist linear time computable functions min and all, such that

∀p, x,m ∶ ϕmin(p)(x,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y,
if y is the least number ≤ ∣m∣ such
that:
ϕp(x, y)↓ ≠ 0 ∧ ∀z < y ∶ ϕp(x, z) = 0;

∣m∣ + 1, if ∀z ≤ ∣m∣ ∶ ϕp(x, z)↓ = 0;
↑, otherwise;

(21)

∀p, x,m ∶ ϕall(p)(x,m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if ∀z ≤ #elets(m) ∶ ϕp(x, z)↓ ≠ 0;

0,
if ∀z ≤ #elets(m) ∶ ϕp(x, z)↓ ∧
∃z ≤ #elets(m) ∶ ϕp(x, z)↓ = 0;

↑, otherwise,

(22)

and, for all p ∈ PolyPrograms, min(p),all(p) ∈ PolyPrograms.

Proof. This follows from [RC94, Lemmas 3.15 & 3.16] and (3).

Lemma 3.4. Regarding timebounded computability, we have the following.

� #elets is computable in polytime by (4).
� Equality checks, ⌊log⌋ and −̇ are computable in linear time [RC94, Lemma 3.2].
� λk 2k is computable in time O(k) [RC94, Lemma 3.2].
� Conditional de�nition is computable in a time polynomial in the runtimes of its de�ning programs
[RC94, Lemma 3.14].

� Boolean combinations of predicates computable in polytime are computable in polytime [RC94,
Lemma 3.18].

� From [RC94, Corollary 3.7] S and T from (19) and (20) above are polytime computable.18

� By (7), patch0 is computable in polytime.

Theorem 3.5. (a) PF ∈ PFPcp0Ex.

(b) EXPF ∈ PFPcpwEx.

(c) ∀n ∶ EXPnF ∈ PFPcpw⋅nEx.
Furthermore, each of (a), (b) and (c) is witnessed by a respective learner ⟨h, f⟩ such that range(h) ⊆

PolyPrograms, ⊆ ExpPrograms and ⊆ ExpnPrograms, respectively.

18N.B. S and T above are variants of the S and T featured in [RC94, Corollary 3.7].
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Note that (a) and (b) are both special cases of (c). We will prove (a) in detail and will then give a
sketch as to how this proof can be generalized to a proof of (c).
Proof of (a). This proof employs a complexity-bounded enumeration technique [JORS99].

By [RC94, Theorems 4.13(b) & 4.17] there is a linear time computable e such that PF = {ϕe(j) ∣ j ∈ N}
and ∀j ∈ N ∶ e(j) ∈ PolyPrograms. Then, by Lemma 3.4, it is easy to see that there is h ∈ PF such that19

∀σ ∶ h(σ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e(j), if there is a minimal j ≤ ∣σ∣ ∶ ∀x < #elets(σ) ∶
(T (e(j), x, σ) ∧ S(e(j), x, σ) = σ(x));

patch0(σ), otherwise.
(23)

To show that h converges on all g ∈ PF: Let g ∈ PF. Let j0 be minimal such that ϕe(j0) = g. Let p
be a polynomial such that ∀x ∶ Φe(j0)(x) ≤ p(∣x∣). We then have the following.

� ∀∞n, j0 ≤ n ≤ ∣g[n]∣ (by (3)).
� ∀∞n∀j < j0 ∶ g[n] /⊆ ϕe(j) (as j0 minimal such that ϕe(j0) = g).
� We have ∀∞x ∶ Φe(j0)(x) ≤ x.20 Hence, ∀∞n∀x ≤ n ∶ Φe(j0)(x) ≤ n.21 Therefore, using (3),
∀∞n∀x < n ∶ T (e(j0), x, g[n]); hence, also ∀∞n∀x < n ∶ S(e(j0), x, g[n]) = ϕe(j0)(x) = g(x).

By the three items above, we have ∀∞n ∶ h(g[n]) = e(j0). Let f = λσ 0. Obviously, ⟨h, f⟩ witnesses
PF ∈ Pcp0Ex. The furthermore clause follows from the choice of e and patch0. (for (a))

Proofsketch of (c). De�ne

∀σ,∀k < #elets(σ) ∶ fk(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

w ⋅ n − 1 + exp1(k)−̇#elets(σ), if #elets(σ) ≤ exp1(k);
⋮ ⋮
w ⋅ 1 + expn−1(k)−̇#elets(σ), else if #elets(σ) ≤ expn−1(k);
w ⋅ 0 + expn(k)−̇#elets(σ), otherwise.

(24)

We de�ne f ∈ PF by
∀σ ∶ f(σ) = ⟨f0(σ), . . . , f#elets(σ)−1(σ)⟩Seq.

Theorem 3.6. (a) ∀n ∈ N ∶ EXPF /∈ PFPcpnEx.

(b) ∀k,n ∈ N ∶ EXPk+1F /∈ PFPcpw⋅k+nEx.

Proof of (a). Suppose by way of contradiction otherwise as witnessed by n and ⟨h, f⟩. Note that
[EXPF] = Seq; thus, ⟨h, f⟩ ∈ T Pcpn (see Remark 4.1 below).

De�ne g ∈ R according to the following informal de�nition in stages. gs denotes g as de�ned until
before stage s.

g0 = ε
stage s = 0 to ∞

if h(gs ◇ 0 ◇ 0
n) = h(gs)

then gs+1 = gs ◇ 1 ◇ 0
n

else gs+1 = gs ◇ 0 ◇ 0
n

Claim 1: h does not converge on g.
We show the claim by showing ∀s ∶ h(gs+1) ≠ h(gs). As ⟨h, f⟩ ∈ T Pcpn, we have for all s ∈ N and

each j ∈ {0,1}, λi ≤ n f(gs ◇ j ◇ 0
i) is not a n-path, as there is no path of length n + 1 in n; hence,

ϕh(gs◇j◇0
n
)
(#elets(gs)) = j.

If now h(gs ◇ 0 ◇ 0
n) = h(gs), then ϕh(gs+1)(#elets(gs)) = ϕh(gs◇1◇0

n
)(#elets(gs)) = 1 ≠ 0 =

ϕh(gs◇0◇0
n
)(#elets(gs)) = ϕh(gs)(#elets(gs)); thus, h(gs+1) ≠ h(gs).

If h(gs ◇ 0 ◇ 0
n) ≠ h(gs), then h(gs+1) = h(gs ◇ 0 ◇ 0

n) ≠ h(gs). (for Claim 1)

19Recall that the properties of patch0 are listed in (7-9).
20By [RC94, �2.5, (9)], there are a, b ∈ N such that ∀x ∶ 2∣x∣ ≤ a ⋅ x + b; thus, there is d > 0 such that ∀∞x ∶ 2∣x∣ ≤ d ⋅ x.

Clearly, ∀∞x ∶ p(∣x∣) ≤ 1
d

2∣x∣. Thus, ∀∞x ∶ p(∣x∣) ≤ x.
21Let n0, n1 be such that ∀x ≥ n0 ∶ Φe(j0)(x) ≤ x and ∀x < n0 ∶ Φe(j0)(x) ≤ n1. Then, for all n ≥ max{n0, n1} and for all

x ≤ n, we have (if x < n0) Φe(j0)(x) ≤ n1 ≤ n, and (otherwise) Φe(j0)(x) ≤ x ≤ n.
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Claim 2: g ∈ EXPF.
By the construction of g, we have ∀s ∶ gs ∈ {0,1}s⋅(n+1). Hence, to compute g(x) for any given x, it
su�ces to execute stages 0 through x of the above algorithm to get gx+1, from which g(x) can then be
extracted. Therefore, it su�ces to show that, for all s, the stages 0 through s of the above algorithm can
be done with an appropriate timebound.

Let p be a polynomial upper-bounding the runtime of h such that ∀x ∶ x ≤ p(x). For any stage s,

the time to execute stage s is in O(λs p(∣gs ◇ 0
n+1∣) + p(∣gs∣)) = O(λs p(∣gs∣ + n + 1)) =22O(λs p(s ⋅ (n +

1) + n + 1)) = O(λs p(s)). Therefore, for all s, the time to execute all stages 0 to s is bounded above by

O(λs (s + 1) ⋅ p(s)) ⊆ O(λs 2p
′
(∣s∣)) for some polynomial p′.23 (for Claim 2) (for (a))

Proof of (b). Suppose by way of contradiction otherwise as witnessed by ⟨h, f⟩ ∈ PF. The proof requires
a di�erent de�nition of g as follows.

g0 = ε
stage s = 0 to ∞

loop until #elets(gs) ∈ �(f, gs ◇ 0 ◇ 0
i)

i ∶= i + 1
loop until #elets(gs) ∈ �(f, gs ◇ 1 ◇ 0

j)
j ∶= j + 1

if h(gs ◇ 0 ◇ 0
i) = h(gs)

then gs+1 = gs ◇ 1 ◇ 0
j
;

else gs+1 = gs ◇ 0 ◇ 0
i
.

Let p be a polynomial bounding the runtime of h and f , as well as deciders for S and <S . Let s be a
stage, set x ∶= #elets(gs).
Claim: There is a polynomial p′ such that each loop will terminate after at most expk(∣p′(x)∣) steps.
Proof. Let m ∈ {0,1}. Clearly, fx(σ ◇ m ◇ 0

n) <S w ⋅ k. By runtime considerations and (18) we see

fx(gs◇m◇0
n) <S w ⋅(k−1)+exp(p(xs + n + 1)); hence, for some polynomial p1, fx(σ◇m◇0

exp(p1(xs))) <S
fx(σ ◇m ◇ 0

n+exp(p(xs+n+1))) <S w ⋅ k − 1. Inductively one can now see that there is a polynomial pk−1

such that

fx(σ ◇m ◇ 0
expk−1(pk−1(xs))) <S w; (25)

in particular, one can see that there is a polynomial pk such that x ∈ �(f,0 ◇m ◇ 0
expk(pk(xs))).

(for Claim)

Using [RC94, Theorem 3.17], one can now see g ∈ EXPk+1F. The rest of the proof is analogous to
the proof of (a). (for (b))

4 General Results

Remark 4.1. Obviously, we have for all G ∈ G and S ⊆R such that [S] = Seq

S ∈RPcsGEx ∪PcsGEx⇒ S ∈ T PcsGEx; (26)

S ∈RPcpGEx ∪PcpGEx⇒ S ∈ T PcpGEx. (27)

The lemma just below encapsulates diagonalizations we employ in several proofs in the present section.

Lemma 4.2. Let C ⊆ P. Let δ ∈ O2 such that δ ⊆ Ex. Let S ⊆ R such that (∀⟨h, f⟩ ∈
C ∣ ⟨h, f⟩ δ-learns S)∃t0, t1 ∈ P∀e ∈ N ∶ ∃Se ⊆R such that (i) and (ii) just below hold.

(i) ([ϕe] ⊆ [Se] ∧ ϕe ∈R)⇒ ϕe ∈ S; and
22O(∣gs∣) = O(#elets(gs)).
23Find k such that O(p) = O(λx xk). By [RC94, �2.5, (9)], there are a, b such that x ≤ a ⋅ 2∣x∣ + b. Thus, there is are

c, d, c′, d′ such that ∀x ∶ p(x) ≤ c ⋅ xk + d ≤ c ⋅ (a ⋅ 2∣x∣ + b)k + d ≤ c′ ⋅ 2k⋅∣x∣ + d′.
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(ii) For all σ ∈ [Se], (iia)-(iie) just below hold.

(a) ϕe = σ⇒
(t0(e, σ)↓ ∧ t1(e, σ)↓ ∧ h(σ ◇ t0(e, σ))↓ ∧ h(σ)↓)

(b) (t0(e, σ)↓ ∧ t1(e, σ)↓)⇒ (t0(e, σ), t1(e, σ) ∈ Seq ∧#elets(t0(e, σ)),#elets(t1(e, σ)) > 0).
(c) σ ⊆ ϕe ∧ h(σ ◇ t0(e, σ))↓ ≠ h(σ)↓ ⇒ σ ◇ t0(e, σ) ∈ [Se].
(d) σ ⊆ ϕe ∧ h(σ ◇ t0(e, σ))↓ = h(σ) ∧ t1(e, σ)↓ ⇒ σ ◇ t1(e, σ) ∈ [Se].
(e) (t0(e, σ)↓ ∧ t1(e, σ)↓ ∧ h(σ ◇ t0(e, σ))↓ = h(σ) = h(σ ◇ t1(e, σ)))⇒ ϕh(σ◇t1(e,σ)) /∈R.

Then S /∈ Cδ.

Proof. Suppose, by way of contradiction otherwise. Suppose h ∈ C witnesses S ∈ Cδ. For all j ∈ {0,1}, let
tj be as found by (ii).

De�ne with KRT g = ϕe so that g works according to the following informal de�nition in stages. For
each s, gs denotes the �nite initial segment of g as de�ned just before the beginning of stage s.

g0 = ∅
stage s = 0 to ∞

let τ0 ∶= t0(e, gs) and τ1 ∶= t1(e, gs)
if h(gsτ0) ≠ h(gs)

define gs+1 = gs ◇ τ0
otherwise

define gs+1 = gs ◇ τ1
goto stage s + 1

For s ∈ N and j ∈ {0,1} we de�ne
τsj ∶= t0(e, gs). (28)

Claim 1: We have (29) and (30) just below.

∀s ∈ N ∶ (gs is de�ned ∧ gs ∈ [Se]). (29)

∀s ∈ N ∶ (τs0 ↓ ∧ τs1 ). (30)

Proof. We show the claim by induction on s with trivial base case. Let now s ∈ N such that the claim
holds for s. By (iia) we have τs+1

0 ↓ and τs+1
1 ↓, as well as h(gs ◇ τs0 ) ≠ h(gs) is a computable predicate. We

use (iic) and (iid) to see that gs+1 is de�ned and gs+1 ∈ [Se]. (for Claim 1)

By Claim 1, all stages will be reached. Furthermore, by (iib), for all s, #elets(τs0 ),#elets(τs1 ) > 0;
hence, g(i) will be de�ned no later then after stage i. Thus,

g ∈R. (31)

By (31), (i) and Claim 1, we now have g ∈ S.

Claim 2: h does not converge on g.
Proof. We show that, for any stage s, there exist a y ≥ #elets(gs) such that h(g[y + 1]) ≠ h(g[y]). Let s
be any stage.
Case 1: h(gs ◇ τs0 ) ≠ h(gs). Trivial.
Case 2: h(gs ◇ τs0 ) = h(gs) and h(gs ◇ τs1 ) ≠ h(gs). Trivial.
Case 3: h(gs ◇ τs0 ) = h(gs) = h(gs ◇ τs1 ).
S, we have (h ○ g[xs]τ0, g[xs]τ0), (h ○ g[xs]τ1, g[xs]τ1) ∈ [δ]. By (iie), we have that ϕh(gs◇τs1 ) ≠ g. As
δ ⊆ Ex and h δ-learns g ∈ S, there is a y ≥ #elets(gs) as required.

(for Claim 2) (for Lemma)
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4.1 Results mostly not Comparing Graphs

The following theorem shows the relationship between the di�erent learning criteria as de�ned in this
paper.

Theorem 4.3. We have the following.

∀G ∈ Gcomp ∶ T PcpGEx = T PcsGEx. (32)

RPcs∅Ex ∖ (⋃
G∈G

PcpGEx) ≠ ∅. (33)

RPcp∅Ex ∖ (⋃
G∈G

T PcpGEx) ≠ ∅. (34)

Pcp∅Ex ∖ ( ⋃
G∈Gcomp

RPcsGEx) ≠ ∅. (35)

Furthermore, the separations (33) and (34) are witnessed by sets of functions such that the positive part
of the separation is witnessed by a (fair) learner computable in linear time working transductively.

Proof of (32). This proof of (32) above is an extension of Fulk's proof of the G = ∅ case [Ful88]. Let
G ∈ Gcomp.
�⊆�: Clear.
�⊇�: Let S ∈ T PcsGEx as witnessed by ⟨h, f⟩ ∈ T PcsG. Let R be a computable predicate such that, for
all p, p′, n, τ, t,

R(p, p′, n, τ, t) i� [p′ = h(τ) ∧ n ∈ �(f, τ) ∧
∀n′ < n ∶ (n′ ∈ �(f, τ)⇒ (ϕp(n′)↓ = τ(n′) in ≤ t steps))].

By padded PKRT there is a 1-1 e ∈R such that

∀σ,n ∶ ϕe(σ)(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ(n), if n ∈ dom(σ);

τ0(n),
else if ∃⟨τ0, t0⟩ =
µ⟨τ, t⟩ R(e(σ), h(σ), n, τ, t);

↑, otherwise.

(36)

Let S be a partial computable predicate such that, for all p, p′, n, σ,

S(p, p′, n, σ) i� [p′ = h(σ) ∧ ∃t ∶ R(p, p′, n, σ, t)
and with ⟨τ0, t0⟩ = µ⟨τ, t⟩ R(p, p′, n, τ, t)
we have σ(n) = τ0(n)].

(37)

De�ne h′ such that, for all σ,

h′(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h′(σ−),
if σ ≠ ∅ ∧ h(σ) = h(σ−) ∧
with σ0 such that
h′(σ−) = e(σ0): ∀n ∈á(f, σ):
S(h′(σ−), h(σ0), n, σ);

e(σ), otherwise.

(38)

Claim 1: h′ ∈R.
We prove ∀σ ∃σ0 ∀σ1 ∶ σ0 ⊆ σ1 ⊆ σ⇒ h′(σ)↓ = e(σ0) by induction on σ, trivial for σ = ∅. Let σ and σ0 be
given such that

∀σ1 ∶ σ0 ⊆ σ1 ⊆ σ− ⇒ h′(σ1)↓ = e(σ0). (39)

Claim 1.1:
∀n ∶ (∃τ ∶ S(e(σ0), h(σ0), n, τ)↓ = true )⇒ ϕe(σ0)(n)↓. (40)

Proof of Claim 1.1. Let n ∈ N such that ∃τ ∶ S(e(σ0), h(σ0), n, τ)↓ = true. By the de�nition of S, there
are now τ, t such that R(e(σ0), h(σ0), n, τ, t). The de�nition of e(σ0) shows that ϕe(σ0)(n)↓.

(for Claim 1.1)

Claim 1.2:
∀n ∈ �(f, σ−) ∶ ϕe(σ0)(n)↓. (41)
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Proof of Claim 1.2. Let n ∈ �(f, σ−). If n < #elets(σ0), then, trivially, ϕe(σ0)(n)↓. Suppose now n ≥
#elets(σ0). By choice of n and the de�nition of á, there is then σ1 such that σ0 ⊂ σ1 ⊂ σ and n ∈á(f, σ1).
From (39) we have that in the de�nition of h′(σ1) the �rst case holds. Thus, S(e(σ0), h(σ0), n, σ1)↓ =
true. By (40) we have ϕe(σ0)(n)↓.

(for Claim 1.2)

Obviously, it su�ces now to show the following claim.
Claim 1.3: For all n ∈á(f, σ),

(∀n′ ∈á(f, σ) ∶ n′ < n⇒ S(e(σ0), h(σ0), n′, σ)↓ = true)⇒ S(e(σ0), h(σ0), n′, σ)↓. (42)

Proof of Claim 1.3. Let n ∈á(f, σ) be such that the antecedent of (42) holds. Using (40) and (41) we
now have

∀n′ ∈ �(f, σ) ∶ n′ < n⇒ ϕe(σ0)(n′)↓ = σ(n). (43)

We show S(e(σ0), h(σ0), n, σ)↓. If we can show the second conjunct of S(...) to hold, then
the minimization in the third conjunct of S will also terminate. Hence, it remains to show
∃tR(e(σ0), h(σ0), n, σ, t). h(σ0) = h(σ) and n ∈ �(f, σ) are clear, the remainder follows by (43).

(for Claim 1.3) (for Claim 1)

Claim 2: ⟨h′, f⟩ ∈ T PcpG.
Let σ,σ0 ∈ Seq be such that h′(σ) = e(σ0). Obviously, using induction, it now su�ces to show ∀n ∈
á(f, σ) ∶ ϕe(σ0)(n)↓ = σ(n). Let n ∈á(f, σ). We have S(e(σ0), h(σ0), n, σ)↓ =true. From the de�nitions
of S and e(σ0) we now see ϕe(σ0)(n) = σ(n), as both minimizations give the same result.

(for Claim 2)

Claim 3: ⟨h′, f⟩ witnesses S ∈ T PcpGEx.
Let g ∈ S. There exists σ↓ ⊂ g minimal such that ∀σ ∶ σ↓ ⊆ σ ⊂ g⇒ h(σ) = h(σ↓) and ϕh(σ↓) = g.

We proceed by showing ∀σ ∶ σ↓ ⊂ σ ⊂ g ⇒ h′(σ) = h′(σ↓). Let σ be such that σ↓ ⊂ σ ⊂ g. Obviously,
using induction, it su�ces to show that h′(σ) is de�ned according to the �rst case. Let σ0 be such that
h′(σ−) = e(σ0). Note that, by the second conjunct in the cases for (38) and because of the minimality of
σ↓, σ↓ ⊆ σ0; hence,

h(σ) = h(σ↓) = h(σ0). (44)

Let n ∈á(f, σ). We show S(e(σ0), h(σ0), n, σ). By (44), we have h(σ0) = h(σ). As shown in the proof of
Claim 1, ∃t ∶ R(e(σ0), h(σ0), n, σ, t). Then the minimization in the de�nition of S(e(σ0), h(σ0), n, σ) will
terminate. Let ⟨τ0, t0⟩ ∶= µ⟨τ, t⟩ R(e(σ0), h(σ0), n, τ, t). By de�nition of R we have now h(τ0) = h(σ0) =

(44)

h(σ↓); hence,
ϕh(τ0)(n) = ϕh(σ↓)(n) = g(n)↓;

therefore, ϕh(τ0)(n)↓, and, by postdictive consistency, τ0(n) = ϕh(τ0)(n) = g(n) = σ(n).
(for Claim 3) (for (32))

Proof of (33). Let S ∶= {g ∈R ∣ (0◇(π1○g), g) ∈ Pcs∅Ex}. Obviously, S ∈ LinFTdPcs∅Ex ⊆RPcs∅Ex.
Let G ∈ G. We set up to use Lemma 4.2. Suppose by way of contradiction S ∈ PcpGEx, as witnessed by
⟨h, f⟩. De�ne, for all e ∈ N, Se ∶= {g ∈ R ∣ ∀i ∶ π1(π1(g(i))) = e}. Note that [Se] is uniformly computable
in e. De�ne t ∈ P by setting for all e, σ,

t(e, σ) = µ⟨ρ, s⟩ σ ◇ ρ ∈ [Se] ∧ (h(σ)↓ ≠ h(σ ◇ ρ)↓ each in ≤ s steps).

Claim: Let e ∈ N, σ ∈ [Se], such that ϕe = σ. Then t(e, σ)↓.
Let, for each j ∈ {0,1},

nj ∶= ⟨⟨e,0⟩, j⟩;
ij ∶= µi > 0 #elets(σ) ∈ �(f, σ ◇ nij);
ρj ∶= nijj .

Note that ij may not be de�ned and when de�ned not algorithmically extractable from e, σ and j, as �G
not necessarily computable (since G is not necessarily computable). For all j ∈ {0,1} and i ∈ N we have
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σ ◇ nij ∈ [S], as ϕe = σ; thus, as ⟨h, f⟩ PcpGEx-learns S, ⟨h, f⟩(σ ◇ nij)↓. Hence, for each j ∈ {0,1}, ij
and ρj are well de�ned. We have now

ϕh(σ◇ρ0)(#elets(σ))↓ = ρ0(0) ≠ ρ1(0) = ϕh(σ◇ρ1)(#elets(σ))↓;

thus, h(σ ◇ ρ0) ≠ h(σ ◇ ρ1) and t(e, σ)↓. (for Claim)

By setting t0 ∶= t1 ∶= t, we can now use Lemma 4.2 to show (33). (for (33))

Proof of (34). 24 Let S ∶= {g ∈ R ∣ (0 ◇ (π1 ○ g), g) ∈ Pcp∅Ex}. Obviously, S ∈ LinFTdPcp∅Ex ⊆
RPcp∅Ex. Let G ∈ G. We set up to use Lemma 4.2. Suppose by way of contradiction S ∈ T PcpGEx as
witnessed by ⟨h, f⟩. De�ne, for all e ∈ N, Se ∶= {g ∈R ∣ ∀i ∶ π1(π1(g(i))) = e}. Note that [Se] is uniformly
computable in e. De�ne t ∈ P by setting for all e, σ,

t(e, σ) = µρ σ ◇ ρ ∈ [Se] ∧ h(σ) ≠ h(σ ◇ ρ).

Claim: Suppose e ∈ N, σ ∈ Seq. Then t(e, σ)↓.
Let, for each j ∈ {0,1},

nj ∶= ⟨⟨e,0⟩, j⟩;
ij ∶= µi > 0 #elets(σ) ∈ �(f, σ ◇ nij);
ρj ∶= nijj .

Note that ij may not be de�ned and when de�ned not algorithmically extractable from e, σ and j, as �G
not necessarily computable (since G is not necessarily computable). As ⟨h, f⟩ ∈ T PcpG, we have that,
for each j ∈ {0,1}, ij and ρj are de�ned and we have

ϕh(σ◇ρ0)(#elets(σ))↓ = ρ0(0) ≠ ρ1(0) = ϕh(σ◇ρ1)(#elets(σ))↓;

thus, h(σ ◇ ρ0) ≠ h(σ ◇ ρ1); therefore, as σ ◇ ρ0, σ ◇ ρ1 ∈ [Se], t(e, σ)↓. (for Claim)

By setting t0 ∶= t1 ∶= t, we can now use Lemma 4.2 to show S /∈ T PcpGEx, a contradiction.
(for (34))

Proof of (35). Let S ∶= {g ∈ R ∣ (0 ◇ λn ⟨ϕg(n)(0),0⟩, g) ∈ Pcp∅Ex}. Obviously, S ∈ Pcp∅Ex. Let
G ∈ Gcomp. We set up to use Lemma 4.2. Suppose now, by way of contradiction, S ∈ RPcsGEx, as
witnessed by

⟨h, f⟩ ∈R. (45)

By padded ORT there is a 1-1 function P ∈R such that

P = λ⟨d, j, e, σ, n⟩ =
⎧⎪⎪⎨⎪⎪⎩

` if d = 0;
pj,e,σ(n) otherwise,

(46)

where ` and pj,e,σ are de�ned just below.25

∀j, e, σ ∶ ϕ`(j, e, σ) = µi > 0 #elets(σ) ∈ �(f, σ ◇ pj,e,σ[i]) (47)

∀e, σ, n, x ∶ ϕp0,e,σ(n)(x) =
⎧⎪⎪⎨⎪⎪⎩

patch0(σ ◇ p0,e,σ[n + 1]), if h(σ) = h(σ ◇ p0,e,σ[ϕ`(0, e, σ)])
e, otherwise; and

(48)

∀n,x∀j > 0 ∶ ϕpj,e,σ(n)(x) = e. (49)

24An anonymous referee pointed out that (34) can easily be proven by showing that all sets in T PcpGEx can be reliably
learned, as it is known that not all reliably learnable sets are RPcpGEx-learnable [CJSW04]. We retain our original proof
of (34) herein, since it exercises, in a simple way, an application of Lemma 4.2.

25Recall that the properties of patch0 are listed in (7-9).
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Clearly, as P above is total, and by (46), we have that each function pj,e,σ is total. Hence, by (45) and
(47) we have that ϕl is total. Therefore, by (48), for all j, e, σ, ϕpj,e,σ is total. For each j ∈ {0,1}, de�ne

tj(e, σ) ∶= pj,e,σ[ϕ`(j, e, σ)]. (50)

By the discussion before (20) we have for all j,

tj ∈R. (51)

Let, for all e ∈ N, Se ∶= {g ∈R ∣ ∀n ∈ N ∶ ϕg(n)(0) = e}. We apply Lemma 4.2 with C =R and δ = PcsGEx.
(i) is trivial. To show (ii), let e ∈ N, σ ∈ [Se]. (a) follows from (45) and (51). The conclusion of (b) is
trivial from (50). (c) follows from (47), (48) and (50). (d) is trivial from (49). We show (e) by showing
the contrapositive: Suppose ϕh(σ◇τ1) ∈R. De�ne, for each j ∈ {0,1}, τj ∶= tj(e, σ). Note that, as P is 1-1,
we have τ0(0) = p0,e,σ(0) ≠ p1,e,σ(0) = τ1(0). Then, by (47),

ϕh(σ◇τ0)(#elets(σ)) = τ0(0) ≠ τ1(0) = ϕh(σ◇τ1)(#elets(σ)).

Thus, h(σ ◇ τ0) ≠ h(σ ◇ τ1), which shows (iie). Lemma 4.2 gives now S /∈ RPcsGEx, a contradiction.
(for (35))

De�nition 4.4 ([Min76, BB75]). Given a set F ⊆ T, a function ⟨h, f⟩ ∈R is called F-reliable i� ∀g ∈ F ∶
λi h(g[i]) converges⇒ ∀∞i ∶ ϕh(g[i]) = g. The set of all F-reliable functions is denoted by RelF.

� ⟨h, f⟩ is said to be reliable, i� ⟨h, f⟩ ∈ RelR.
� ⟨h, f⟩ is said to be monotonically reliable, i� ⟨h, f⟩ is reliable and h is monotone (that is, for all
σ ⊆ τ ∶ h(σ) ≤ h(τ)).

Let pad ∶ N2 → N be a 1-1 computable function such that ∀e, n ∈ N ∶ ϕe = ϕpad(e,n) such that
∀e, n ∈ N ∶ pad(e, n) ≥ n).

Lemma 4.5. Let ⟨h, f⟩ be reliable. Then there is a monotonically reliable h′ such that ∀σ ∶ [∀n ≤
#elets(σ) ∶ h(σ[n])↓]⇒ ϕh(σ) = ϕh′(σ). Furthermore, a program number for h′ can be obtained construc-
tively from a program number for h.

Proof. De�ne

∀σ ∶ h′(σ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(σ), if σ = ∅;
h′(σ−), if σ ≠ ∅ and h(σ) = h(σ−);
pad(h(σ), h(σ−)), otherwise.

Theorem 4.6. Let G ∈ G. Then T PcpGEx is closed under computably enumerable unions.

Our proof for Theorem 4.6 makes use of the notion of reliability [Min76, BB75].
Proof. Suppose, for each i ∈ N,

⟨hi, f i⟩ witnesses Si ∈ T PcpGEx, (52)

such that λi, σ ⟨hi(σ), f i(σ)⟩ is computable. It is easy to see that, for all i ∈ N, ⟨hi, f i⟩ is reliable. By
padding [Rog67] we can then assume without loss of generality ⟨hi, f i⟩ is also monotonically reliable.
assume all hi to be monotonically reliable.

De�ne i, n, h∞, f∞ ∈R such that, for all σ and for all k < #elets(σ),

i(σ) = µj ≤ #elets(σ) (hj(σ) = min
`≤#elets(σ)

h`(σ)); (53)

n(σ) = { µm ≤ #elets(σ) (∀j∣m ≤ j < #elets(σ)) ∶
i(σ) = i(σ[j]); (54)

h∞(σ) = patch(σ[n(σ)], hi(σ)(σ)); (55)

f∞(σ) = f i(σ)(σ). (56)
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Intuitively, i de�nes which learner to use when seeing σ. n de�nes the most recent number where i
changed the learner to use. ⟨h∞, f∞⟩ is our learner for the union.

Claim 1: ⟨h∞, f∞⟩ works postdictively completely on all g ∈R.
Proof. Let σ ∈ Seq, let k ∈ �(f, σ). Let n0 ∶= n(σ).
Case 1: k < n0.
Then we have

ϕh∞(σ)(k) =
(55)

ϕpatch(σ[n0],hi(σ)(σ))(k) =
k<n0

σ(k).

Case 2: k ≥ n0.
Then we have

row(k, f∞, σ)
=

(16)
λi ≤ #elets(σ) − k f∞(σ[i + k])(#elets(σ))

=
(55)

λi ≤ #elets(σ) − k f i(σ[i+k])(σ[i + k])(#elets(σ))

=
k≥n0

λi ≤ #elets(σ) − k f i(σ)(σ[i + k])(#elets(σ))
=

(16)
row(k, f i(σ), σ).

(57)

Hence, we have

k ∈ �(f∞, σ) ⇔
(17)

row(k, f∞, σ) /∈ G⃗ (58)

⇔
(57)

row(k, f i(σ), σ) /∈ G⃗ (59)

⇔
(17)

k ∈ �(f i(σ), σ) (60)

⇒
(52)

ϕhi(σ)(σ)(k) = σ(k) (61)

⇔
(55)

ϕh∞(σ)(k) = σ(k). (62)

(for Claim 1)

Claim 2: h∞ converges on all g ∈ ⋃j Sj to a program number for g.
Proof. Let g ∈ ⋃j Sj . De�ne M ∶= {k ∣ hk converges on g}, N ∶= {k ∣ hk converges on g to some pk ∈
N ∧ (∀j ∶ hj converges on g to some pj ∈ N⇒ pk ≤ pj)}. Obviously, N ≠ ∅.
Claim 2.1: i converges on g to min(N).
Proof. Let p ∈ N be such that hmin(N) converges on g to p. We have, for all k /∈M , as hk is monotonically
reliable, ∀∞t ∶ hk(g[t]) > p. Similarly, for all k ∈ M ∖ N we have ∀∞t ∶ hk(g[t]) > p. Furthermore,
∀k ∈ N∀∞t ∶ hk(g[t]) = p. (for Claim 2.1)

Now we have that also n converges on g; hence ⟨h∞, f∞⟩ converges on g. (for Claim 2)

(for Theorem)

Theorem 4.7. We have

⋃
G∈G

PcsGEx ⊂ Ex. (63)

Furthermore, the separation is witnessed by a (fair) learner computable in linear time working transduc-
tively.

Proof. �⊆� is trivial.
�≠�: Let S ∶= {g ∈ R ∣ (0 ◇ (π1 ○ g), g) ∈ Ex}. Obviously, S ∈ LinFTdEx ⊆ Ex. Suppose, by way of
contradiction, there are G ∈ G and ⟨h, f⟩ ∈ P such that ⟨h, f⟩ witnesses S ∈ PcsGEx. Note that

[S] = Seq. (64)

Hence, ⟨h, f⟩ ∈ R. We set up to use Lemma 4.2. Let, for all e, Se ∶= {g ∈ R ∣ ∀i ∶ π1(π1(g(i))) = e}. [Se]
is uniformly computable in e. De�ne t ∈ P such that

∀e, σ ∶ t(e, σ) = µτ (σ ◇ τ ∈ [Se] ∧ h(σ) ≠ h(σ ◇ τ)). (65)
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Claim: For all e ∈ N, σ ∈ [Se], t(e, σ)↓.
Proof. Suppose, by way of contradiction, there are e ∈ N, σ ∈ [Se] such that t(e, σ)↑. Hence,

∀τ ∶ σ ◇ τ ∈ [Se]⇒ h(σ) = h(σ ◇ τ). (66)

Obviously, there are τ, τ ′ such that σ ◇ τ, σ ◇ τ ′ ∈ [Se], #elets(σ) ∈ �(f, σ ◇ τ), #elets(σ) ∈ �(f, σ ◇ τ ′) and
τ(0) ≠ τ ′(0). Hence, as σ ◇ τ, σ ◇ τ ′ ∈ [Se] ⊆ [S], and ⟨h, f⟩ works postdictively consistently on S, we have
with (66), ϕh(σ)(#elets(σ))↑. Let g ∈ Se be an extension of σ. By (66), h on g converges to h(σ), which
is not a program number for g (as ϕh(σ) is not total), a contradiction. (for Claim)

We apply Lemma 4.2 with t0 ∶= t1 ∶= t, C = P and δ = PcsGEx. Therefore, S /∈ PcsGEx, a contradic-
tion. (for Theorem)

4.2 Dependencies on the Countdown Graphs

Next we de�ne a pre-order, ≤CD, on G. We will see that ≤CD characterizes relative learning-power in
dependence on countdown graphs.

De�nition 4.8. For two graphs G,G′ we write G ≤CD G′ (read: G is countdown reducible to G′) i�
there is a k ∈R, such that

(i) for all y ∈ G: k(y) ∈ G′;

(ii) for all τ ◇ y ∈ G⃗ such that #elets(τ) > 0, we have k(τ)→G′ k(τ ◇ y).
Intuitively, k maps any G-path into a vertex of G′.26 Clearly, ≤CD is a pre-order.

Proposition 4.9. Let G,G′ ∈ G. Let k ∈R. The following are equivalent.

(a) G ≤CD G′ as witnessed by k;

(b) ∀τ ∈ G⃗ ∶ (λi < #elets(τ) k(τ[i + 1])) ∈ G⃗′.

Next we exhibit nice example countdown graphs and indicate how they compare by ≤CD.
De�nition 4.10. We will use the following computability-theoretic notions.

� A set A ⊆ N is called semi-recursive i� (by a characterization by McLaughlin and Appel, cited in
[Joc68, Theorem 4.1(iii)]) A is an initial segment of some computable linear ordering of the natural
numbers.

� A set A ⊆ N is called immune i� A is in�nite and does not contain a ce set [Rog67, � 8.2].
� A set A ⊆ N is called hyper-immune i� A is in�nite and for the unique r ∈ T strictly monotonic
increasing such that range(r) = A we have ∀f ∈ R∃x ∈ N ∶ f(x) < r(x) [Rog67, � 9.5]. Note that
every hyper-immune set is immune [Rog67, � 9.5].

ω denotes the order-type of the natural numbers ordered by ≤, ω−1 denotes the order-type of the
natural numbers ordered by ≥.
Theorem 4.11. There are a computable total ordering ≤R on N and a set A ⊆ N such that A is semi-
recursive, A and A are hyperimmune, hence immune, ≤R∣A an initial segment of ≤R, ≤R∣A is of order-type
ω and ≤R∣A is of order-type ω−1. In particular, ≤R is of order-type ω + ω−1 and there are no computable
in�nitely descending chains with respect to ≤R; hence, (N,>R) is a countdown graph.

Proof. By [Joc68, Theorem 5.2], there is a semi-recursive, hyper-immune set A, such that A is hyper-
immune. As A semi-recursive, there exists a computable total ordering ≤R on N such that A is an initial
segment of this ordering. As A (and A) are not computable, ≤R∣A does not have a maximal element, and
≤R∣A does not have a minimal element. As A and A are both immune, we now have by [Cas76, Lemma
2], that ≤R∣A is of order-type ω and ≤R∣A is of order-type ω−1.

Every in�nitely descending chain is therefore a subset of A. As A is immune, these chains are not
computable.

For the rest of this section, let ≤R be as in Theorem 4.11, and let R denote the countdown graph
(N,>R).

26Neither of mapping G vertices into G′ vertices nor mapping G paths into G′ paths will give us the same characterization
results that we have in Theorem 4.14 below.
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Example 4.12. Let (N ,≤N ), (N ′,≤N ′) be computably related systems of ordinal notations. Then we
have

(a) N ≤CD N ′ ⇒ N ′ gives a notation to at least all the ordinals N gives a notation to;

(b) N ≤CD R⇔ N gives a notation to all and only the ordinals < ω ⋅ i+ j for some i ∈ {0,1}, j ∈ N; and

(c) R /≤CD N .

Proof. For all u ∈ N , de�ne Mu ∶= {τ ∣τ ◇ u is an N -path}. Clearly, for all u ∈ N , Mu ≠ ∅.
Proof of (a). Suppose N ≤CD N ′ as witnessed by k. Obviously, it su�ces to show the following claim.
Claim: ∀u ∈ N ,∀τ ∈Mu ∶ νN (u) ≤ νN ′(k(τ ◇ u)).
Proof of Claim. We prove the claim by trans�nite induction on νN (u) for u ∈ N . The base case is
trivial. Suppose u ∈ N is such that νN (u) > 0 and the claim holds for all v <N u. Let τ ∈ Mu. For all
v <N u we now have

νN (v) ≤
(IH)

νN ′(k(τ ◇ u ◇ v)) < νN ′(k(τ ◇ u)). (67)

Thus,
νN (u) = sup

v<Nu
(νN (v) + 1) ≤

(67)
νN ′(k(τ ◇ u)).

(for Claim) (for (a))

Proof of (b). �⇒�: Suppose N ≤CD R as witnessed by k ∈ R. Suppose, by way of contradiction, N
gives a notation to all ordinals < ω ⋅ 2. Let w be a notation in S for ω. It is straightforward that, for
all τ ∈ Mw, k(τ ◇ w) ∈ A. We have that M ∶= {τ− ∣ ∀i < #elets(τ) − 1 ∶ τ(i + 1) is predecessor of τ(i) ∧
last(τ) is a notation for a limit-ordinal} is a ce subset of Mw. Hence, is a ce subset of A. As A is
immune, T is �nite. Let n be the cardinality of T . Let τ ∈ M be a sequence of length n + 1. Hence,
{k(τ[i + 1])∣i ≤ n} is a subset of T of size n + 1, a contradiction.

�⇐�: Let i ∈ {0,1}, j ∈ N and N systems of ordinal notations having notations for all and only the ordinals
< ω ⋅ i+ j. It is easy to see from the de�nition of a system of ordinal notations, that there is a computable
function f ∈R such that ∀u ∈ N ∶ f(u) = ⟨a, b⟩⇔ νN (u) = ω ⋅ a + b.

Let r be a �nite sequence strictly increasing with respect to ≤R in A of length max(j,1). As N
computably related, there exists k ∈R such that

∀τ ∈ N⃗ ∶ k(τ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r(b), if f(τ(#elets(τ) − 1)) = ⟨1, b⟩ for some b ∈ N;

ρ0(#elets(τ1)),
otherwise, with τ = τ0 ◇ v ◇ τ1, where τ0 does not contain
any notation for a �nite ordinal, f(v) = ⟨0, b′⟩ and ρ0 = µρ ∈
R⃗ #elets(ρ) = b′ + 1 ∧ ∀i ≤ b′ ∶ ρ(i) <R r(0).

(for (b))

Proof of (c). Suppose, by way of contradiction, otherwise, as witnessed by k. Let r be an in�nite
decreasing sequence in ≤R. Then λi k(r[i+ 1]) is an in�nite strictly decreasing sequence in N , a contra-
diction. (for (c))

We prove �⇒� of Theorem 4.14 below by using a speci�c set of self-learning functions S. Each g ∈ S
will give su�cient information as to how to learn it. Intuitively, in order to learn S by a learner in T PcpG
for some G ∈ G, this information has to be checked for correctness before being output (and patched if
incorrect). In general, this validation may not be computable, but ce. S will in fact be de�ned to be the
set of all those g, that not only give su�cient information for learning it, but also give an upper bound
on the number of steps that a validation will require.

Next we de�ne the validation-predicate. The predicate takes the sequence σ of input seen so far
and (computably) decides, whether it will be safe to output π1(last(σ)) as hypothesis-multicount, using
π2(last(σ)) as an upper bound for the number of steps that a validation is attempted.

De�nition 4.13. Let G ∈ Gcomp. Let VG be the following predicate: For all σ, VG(σ) i� σ = ∅ or σ ≠ ∅
and, with e ∶= π1(π1(last(σ))), we have for each l < #elets(σ): (row(l, π2○π1○σ) ∈ G⃗ or ϕe(l) = σ(l) in ≤
π2(last(σ)) steps).
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Obviously, for G ∈ Gcomp, VG is computable.

Theorem 4.14. Let G ∈ Gcomp, G
′ ∈ G. We have

T PcpGEx ⊆ T PcpG′Ex⇔ G ≤CD G′.

Proof. �⇐�: Suppose G ≤CD G′ as witnessed by k ∈ R. Let S ∈ T PcpGEx as witnessed by ⟨h, f⟩. We
now set f ′ such that ⟨h, f ′⟩ witnesses S ∈ T PcpG′Ex.

∀σ∀l < #elets(σ) ∶ f ′l (σ) ∶= k(row(l, f, σ));
∀σ ∶ f ′(σ) ∶= ⟨f ′0(σ), . . . , f ′#elets(σ)(σ)⟩.

�⇒�: Suppose T PcpGEx ⊆ T PcpG′Ex. Let

S ∶= {g ∈R ∣ (0 ◇ (π1 ○ g), g) ∈ PcpGEx ∧ ∀nVG(g[n])}. (68)

Obviously, S ∈ T PcpGEx; therefore, S ∈ T PcpG′Ex. Let ⟨h, f⟩ be such that

⟨h, f⟩ witnesses S ∈ T PcpG′Ex. (69)

In particular, we have now
⟨h, f⟩ ∈R. (70)

For each e ∈ N, de�ne
Se ∶= {g ∈ S ∣ ∀i ∶ π1(π1(g(i))) = e}. (71)

Note that,
∀e ∶ [Se] ⊆ [S]. (72)

We set max(∅) ∶= 0. De�ne, for each j ∈ {0,1}, e ∈ N and σ, τ ∈ Seq,

rj(e, σ, τ) = ⟨λi < #elets(τ) ⟨⟨e, (τ(i))#elets(σ)+i⟩, max
x<#elets(σ)

(Φe(x)) + j⟩⟩Seq; (73)

Obviously, the i-th component of rj(e, σ, τ) does not depend on any components of τ besides the i-th.

Furthermore, note that for all j ∈ {0,1}, e ∈ N, σ ∈ [Se] and τ ∈ G⃗,

(σ ⊆ ϕe ∧ rj(e, σ, τ)↓)⇒ σ ◇ rj(e, σ, τ) ∈ [Se]. (74)

t(e, σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rj(e, σ, τ),
if ⟨j, τ⟩ is �rst number found in a dovetailing
search such that j ∈ {0,1}, τ ∈ G⃗ and
h(σ) ≠ h(σ ◇ rj(e, σ, τ)↓);

↑, if no such ⟨j, τ⟩ is found.
(75)

Claim: (∃e ∈ N∃σ ∈ [Se] ∶ ϕe = σ ∧ t(e, σ)↑)⇒ G ≤CD G′.
Proof. Suppose e ∈ N and σ ∈ [Se] are such that

ϕe = σ ∧ t(e, σ)↑. (76)

Therefore, we have for all τ ∈ G⃗ and j ∈ {0,1}, by τ, τ ′ ≠ ∅, (73) and the �rst conjunct of (76),

rj(e, σ, τ)↓. (77)

Note that we have now, for all τ, τ ′ ∈ G⃗, by (73) and (77),

r0(e, σ, τ)(0)↓ ≠ r1(e, σ, τ ′)(0)↓. (78)

By (75), the second conjunct of (76) and (77) we have, for all τ ∈ G⃗ and j ∈ {0,1},

h(σ) = h(σ ◇ rj(e, σ, τ)). (79)

Obviously, if ϕh(σ)(#elets(σ)) is de�ned, it can be at most one element in the set {rj(e, σ, τ)(0) ∣ j ∈
{0,1}, τ ∈ G⃗}. Hence, with (78), we can (possibly not constructively) �x j ∈ {0,1} such that

ϕh(σ)(#elets(σ)) /∈ {rj(e, σ, τ)(0) ∣ τ ∈ G⃗}. (80)
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By (69), (79) and (80) we have

∀τ ∈ G⃗ ∶ #elets(σ) /∈ �G′(f, σ ◇ rj(e, σ, τ)). (81)

By (17), this is equivalent to

∀τ ∈ G⃗ ∶ row(#elets(σ), f, σ ◇ rj(e, σ, τ)) ∈ G⃗′. (82)

We de�ne k ∈R such that, for all τ ∈ N,

k(τ) ∶=
⎧⎪⎪⎨⎪⎪⎩

f(σ ◇ rj(e, σ, τ))(#elets(σ)), if τ ∈ G⃗;
0, otherwise.

(83)

or all τ ∈ G⃗, since for all i < #elets(τ), τ[i + 1] ∈ G⃗, we have

λi < #elets(σ) k(τ[i + 1])
=

(83)
λi < #elets(σ) f(σ ◇ rj(e, σ, τ[i + 1]))(#elets(σ))

=
(73)

λi < #elets(σ) f(σ ◇ (rj(e, σ, τ)[i + 1]))(#elets(σ))
=

(16)
row(#elets(σ), f, σ ◇ rj(e, σ, τ)).

(84)

(82), (84) and Proposition 4.9 show G ≤CD G′. (for Claim)

Suppose, by way of contradiction, G /≤CD G′. Hence, by the claim,

∀e∀σ ∈ [Se] ∶ ϕe = σ⇒ t(e, σ)↓. (85)

We apply Lemma 4.2 with t0 ∶= t1 ∶= t, C ∶= T PcpG′ and δ = Ex. (i) is trivial from the de�nitions
and (72). (ii)(a) follows with (70) and (85). (ii)(b), (ii)(c) and (ii)(d) are straight from (74) and (75).
Furthermore, by (75), we get directly t0(e, σ)↓ ⇒ h(σ) ≠ h(σ ◇ t0(e, σ)); hence, the antecedent of (ii)(e)
is false.

Therefore, S /∈ T PcpG′Ex, a contradiction. (for Theorem)

Next are three corollaries to Theorem 4.14 (or its proof). The �rst two are regarding the other
restricted learnability notions of the present paper. The third is our hierarchy theorem for ordinal
notations.

First, we observe that the set S as in (68) in the proof of Theorem 4.14 does depend only on G, not
on G′. Therefore, we can give the following strong corollary.

Corollary 4.15. Let G ∈ Gcomp. We have

T PcpGEx ∖ ⋃
G′

∈Gcomp

G/≤CDG
′

PcsG′Ex ≠ ∅.

Proof. Let S be as given in (68) in the proof of Theorem 4.14. Let V ∶= {g ∈R ∣ ∀∞x ∶ f(x) = 0}, the set
of functions of �nite support. Clearly, V ∈ T PcpGEx; hence, by the union theorem (Theorem 4.6), we
have S ′ ∶= S ∪ V ∈ T PcpGEx. Let G′ ∈ Gcomp such that G /≤CD G′. The proof of Theorem 4.14 showed
S /∈ T PcpG′Ex; hence, S ′ /∈ T PcpG′Ex. Since [S ′] = Seq and T PcpG′Ex =

(32)
T PcsG′Ex, we have, by

the contrapositive of (26) given in Remark 4.1,

S ′ /∈ PcsG′Ex.

Next is a characterization of the graph dependence of relative learning power for the restricted learning
criteria not covered by Theorem 4.14.
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Corollary 4.16. For all G,G′ ∈ Gcomp we have

G ≤CD G′⇔RPcpGEx ⊆RPcpG′Ex (86)

⇔RPcsGEx ⊆RPcsG′Ex (87)

⇔ PcpGEx ⊆ PcpG′Ex (88)

⇔ PcsGEx ⊆ PcsG′Ex. (89)

Proof. Obviously, all right-hand-sides are implied by G ≤CD G′, just as in the proof of �⇐� of Theo-
rem 4.14. By Corollary 4.15, G /≤CD G′ implies the negation of each right-hand-side.

Recall that, from Section 2, for a graph G ∈ G and m ∈ G, we ambiguously use m to refer to the
countdown-graph {n ∈ G ∣m→+ n}. For two sets M,N we write M # N i� (M /⊆ N ∧ N /⊆M).

Corollary 4.17. Let (N ,≤N ) be a computably related system of ordinal notations. Let u, v ∈ N . Then
we have

u <N v ⇔ u <CD v (90)

⇔ T PcpuEx ⊂ T PcpvEx. (91)

Furthermore, if N gives a notation to at least all ordinals < ω ⋅ 2, then

T PcpNEx # T PcpREx. (92)

Proof of (90). �⇒�: Suppose u <N v. Hence, considering u and v as graphs, we have u ⊂ v. Then we
have u ≤CD v is witnessed by any k ∈ R such that ∀τ ∈ N⃗ ∶ k(τ) = last(τ), so that Theorem 4.14 applies.
By Example 4.12(a), v /≤CD u
�⇐�: This follows directly from Example 4.12(a). Proof of (91). By Theorem 4.14.
Proof of (92). This follows directly from Theorem 4.14 and Example 4.12.
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