
CISC 672 – Advanced Compiler Construction

Timo Kötzing

September 9, 2008



Disclaimer

The following does not describe the cool-language in depth. It is
not designed to be used as a syntax reference, but rather as an
introduction into programming with cool, and also into object
oriented programming in general.

For the purpose of writing your own cool-compiler, please read the
cool-manual carefully.

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Program?

I a cool-program is a list of cool-classes

I classes may be spread over several files

I one of the classes has to be named “Main”

I this class has to contain a method named “main”

I executing a cool-program is equivalent to evaluating this
“Main.main()” function

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Program?

I a cool-program is a list of cool-classes

I classes may be spread over several files

I one of the classes has to be named “Main”

I this class has to contain a method named “main”

I executing a cool-program is equivalent to evaluating this
“Main.main()” function

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Program?

I a cool-program is a list of cool-classes

I classes may be spread over several files

I one of the classes has to be named “Main”

I this class has to contain a method named “main”

I executing a cool-program is equivalent to evaluating this
“Main.main()” function

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Program?

I a cool-program is a list of cool-classes

I classes may be spread over several files

I one of the classes has to be named “Main”

I this class has to contain a method named “main”

I executing a cool-program is equivalent to evaluating this
“Main.main()” function

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Program?

I a cool-program is a list of cool-classes

I classes may be spread over several files

I one of the classes has to be named “Main”

I this class has to contain a method named “main”

I executing a cool-program is equivalent to evaluating this
“Main.main()” function

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Program?

I a cool-program is a list of cool-classes

I classes may be spread over several files

I one of the classes has to be named “Main”

I this class has to contain a method named “main”

I executing a cool-program is equivalent to evaluating this
“Main.main()” function

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Class?

I a cool-class is a list of features

I features are either attributes or methods

I attributes are local variables (with scope of the class)

I methods are global functions, addressed by
“< functionName > . < methodName > (...)”

I attributes have to have a type and may be initialized

I methods have a (possibly empty) list of formal parameters, a
return type and a body

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Class?

I a cool-class is a list of features

I features are either attributes or methods

I attributes are local variables (with scope of the class)

I methods are global functions, addressed by
“< functionName > . < methodName > (...)”

I attributes have to have a type and may be initialized

I methods have a (possibly empty) list of formal parameters, a
return type and a body

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Class?

I a cool-class is a list of features

I features are either attributes or methods

I attributes are local variables (with scope of the class)

I methods are global functions, addressed by
“< functionName > . < methodName > (...)”

I attributes have to have a type and may be initialized

I methods have a (possibly empty) list of formal parameters, a
return type and a body

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Class?

I a cool-class is a list of features

I features are either attributes or methods

I attributes are local variables (with scope of the class)

I methods are global functions, addressed by
“< functionName > . < methodName > (...)”

I attributes have to have a type and may be initialized

I methods have a (possibly empty) list of formal parameters, a
return type and a body

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Class?

I a cool-class is a list of features

I features are either attributes or methods

I attributes are local variables (with scope of the class)

I methods are global functions, addressed by
“< functionName > . < methodName > (...)”

I attributes have to have a type and may be initialized

I methods have a (possibly empty) list of formal parameters, a
return type and a body

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Class?

I a cool-class is a list of features

I features are either attributes or methods

I attributes are local variables (with scope of the class)

I methods are global functions, addressed by
“< functionName > . < methodName > (...)”

I attributes have to have a type and may be initialized

I methods have a (possibly empty) list of formal parameters, a
return type and a body

Timo Kötzing CISC 672 – Advanced Compiler Construction



What is a COOL-Class?

I a cool-class is a list of features

I features are either attributes or methods

I attributes are local variables (with scope of the class)

I methods are global functions, addressed by
“< functionName > . < methodName > (...)”

I attributes have to have a type and may be initialized

I methods have a (possibly empty) list of formal parameters, a
return type and a body

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I every class is a type

I the basic types are the classes “Object”, “IO”, “Int”, “String”
and “Bool”

I all classes but Object have to be inherited from exactly one
other class (be a child of this class)

I every class that does not specify a class to inherit from is
inherited from Object

I the “is child of”-relation has to be a tree, rooted at Object

I basic classes provide several basic functions

I “Int”, “String” and “Bool” may not be inherited from

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I Int-constants: 5, 3, 221, . . .

I String-constants: ”Hello World!”, ”\t Hi\n”,. . .

I Bool-constants: true, false

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I Int-constants: 5, 3, 221, . . .

I String-constants: ”Hello World!”, ”\t Hi\n”,. . .

I Bool-constants: true, false

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I Int-constants: 5, 3, 221, . . .

I String-constants: ”Hello World!”, ”\t Hi\n”,. . .

I Bool-constants: true, false

Timo Kötzing CISC 672 – Advanced Compiler Construction



What are Types in COOL?

I Int-constants: 5, 3, 221, . . .

I String-constants: ”Hello World!”, ”\t Hi\n”,. . .

I Bool-constants: true, false

Timo Kötzing CISC 672 – Advanced Compiler Construction



Simple Example

class Main {
main() : Int { 0 };

};

Timo Kötzing CISC 672 – Advanced Compiler Construction



IO-Example

class Main {
myIO : IO < − new IO;
myInput : Int;

main() : Int { {
myIO.out string(’’How many? ’’);
myInput < − myIO.in int();
while 0 < myInput loop

myIO.out string(’’Hello world!’’)
pool;
0;

}};
};

Timo Kötzing CISC 672 – Advanced Compiler Construction



Sally

class Silly {
f() : Int { 5 };

};

class Sally inherits Silly { };

class Main {
x : Int < − (new Sally).f();

main() : Int { x };
};

Timo Kötzing CISC 672 – Advanced Compiler Construction



Inheritance

I all features are inherited

I no attribute may be redefined

I methods may be overridden, if the number and all types of
the formal parameters match, as well as the return type

I static dispatch possible with
< object > @ < type > . < methodName > (. . .)

Timo Kötzing CISC 672 – Advanced Compiler Construction



Inheritance

I all features are inherited

I no attribute may be redefined

I methods may be overridden, if the number and all types of
the formal parameters match, as well as the return type

I static dispatch possible with
< object > @ < type > . < methodName > (. . .)

Timo Kötzing CISC 672 – Advanced Compiler Construction



Inheritance

I all features are inherited

I no attribute may be redefined

I methods may be overridden, if the number and all types of
the formal parameters match, as well as the return type

I static dispatch possible with
< object > @ < type > . < methodName > (. . .)

Timo Kötzing CISC 672 – Advanced Compiler Construction



Inheritance

I all features are inherited

I no attribute may be redefined

I methods may be overridden, if the number and all types of
the formal parameters match, as well as the return type

I static dispatch possible with
< object > @ < type > . < methodName > (. . .)

Timo Kötzing CISC 672 – Advanced Compiler Construction



Inheritance

I all features are inherited

I no attribute may be redefined

I methods may be overridden, if the number and all types of
the formal parameters match, as well as the return type

I static dispatch possible with
< object > @ < type > . < methodName > (. . .)

Timo Kötzing CISC 672 – Advanced Compiler Construction



Sally, revised

class Silly { f() : Int { 5 }; };

class Sally inherits Silly {
f() : Int { 7 }; };

class Main {
mySally : Sally < − new Sally;

main() : Int {
mySally.f()

};

alternative() : Int {
mySally@Silly.f()

};
};

Timo Kötzing CISC 672 – Advanced Compiler Construction



The COOL-Manual

Read the cool-manual on if-then-else, case-statements, let,
arithmetic operations and so forth.
The cool-manual will be your main reference when working on any
of the phases of your cool-compiler.

Timo Kötzing CISC 672 – Advanced Compiler Construction



The COOL-Manual

Read the cool-manual on if-then-else, case-statements, let,
arithmetic operations and so forth.
The cool-manual will be your main reference when working on any
of the phases of your cool-compiler.

Timo Kötzing CISC 672 – Advanced Compiler Construction


