

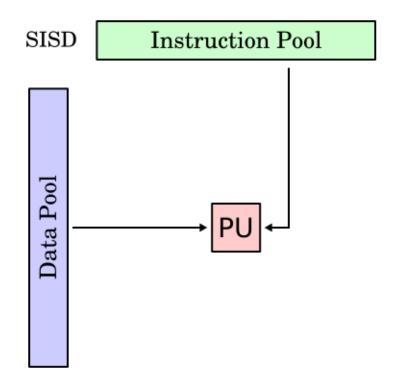
Lecture 2 A General Discussion on Parallelism

John Cavazos

Dept of Computer & Information Sciences

University of Delaware

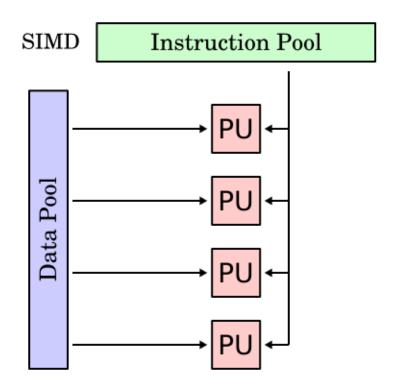
www.cis.udel.edu/~cavazos/cisc879


Lecture 2: Overview

- Flynn's Taxonomy of Architectures
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures

Flynn's Taxonomy of Arch.

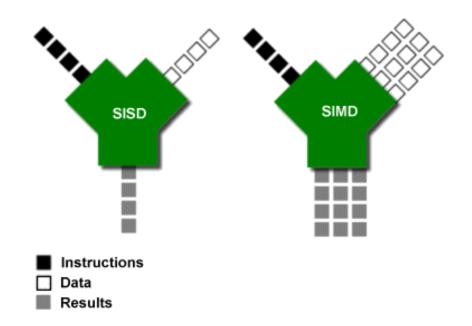
- SISD Single Instruction/Single Data
- SIMD Single Instruction/Multiple Data
- MISD Multiple Instruction/Single Data
- MIMD Multiple Instruction/Multiple Data


Single Instruction/Single Data

The typical machine you're used to (before multicores).

Slide Source: Wikipedia, Flynn's Taxonomy

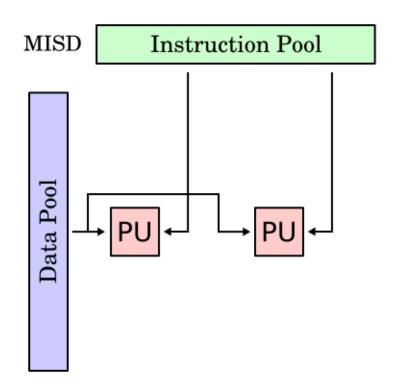
Single Instruction/Multiple Data


Processors that execute same instruction on multiple pieces of data.

Slide Source: Wikipedia, Flynn's Taxonomy

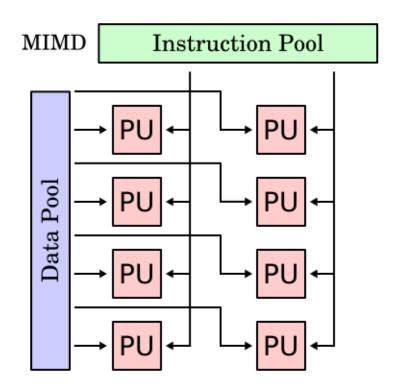
Single Instruction/Multiple Data

- Each core executes same instruction simultaneously
- Vector-style of programming
- Natural for graphics and scientific computing
- Good choice for massively multicore



SIMD very often requires compiler intervention.

Slide Source: ars technica, Peakstream article


Multiple Instruction/Single Data

Only Theoretical Machine. None ever implemented.

Slide Source: Wikipedia, Flynn's Taxonomy

Multiple Instruction/Multiple Data

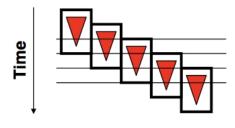
Many mainstream multicores fall into this category.

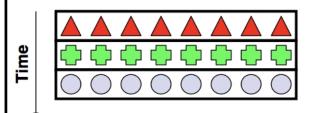
Slide Source: Wikipedia, Flynn's Taxonomy

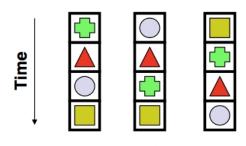
Multiple Instruction/Multiple Data

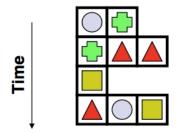
- Each core works independently, simultaneously executing different instructions on different data
- Unique upper levels of cache and may have lower level of shared cache
- Cores can have SIMD-extensions
- Programmed with a variety of models (OpenMP, MPI, pthreads, etc.)

Lecture 2: Overview


- Flynn's Taxonomy of Architecture
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures


Types of Parallelism




Pipelining

Data-Level Parallelism (DLP)

Thread-Level Parallelism (TLP)

Instruction-Level Parallelism (ILP)

Slide Source: S. Amarasinghe, MIT 6189 IAP 2007

IF: Instruction fetch ID: In

EX: Execution

ID: Instruction decode

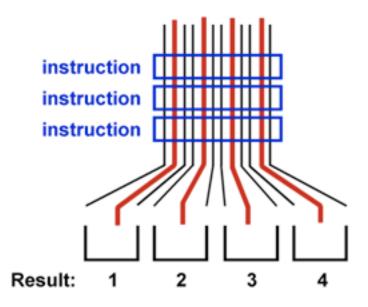
WB: Write back

	Cycles								
Instruction #	1	2	3	4	5	6	7	8	_
Instruction i	IF	ID	EX	WB					
Instruction i+1		IF	ID	EX	WB				
Instruction i+2			IF	ID	EX	WB			
Instruction i+3				IF	ID	EX	WB		
Instruction i+4					IF	ID	EX	WB	

Corresponds to SISD architecture.

Slide Source: S. Amarasinghe, MIT 6189 IAP 2007

Instruction-Level Parallelism


	Cycles						
Instruction type	1	2	3	4	5	6	7
Integer	IF	ID	EX	WB			
Floating point	IF	ID	EX	WB			
Integer		IF	ID	EX	WB		
Floating point		IF	ID	EX	WB		_
Integer			IF	ID	EX	WB	
Floating point			IF	ID	EX	WB	
Integer			_	IF	ID	EX	WB
Floating point				IF	ID	EX	WB

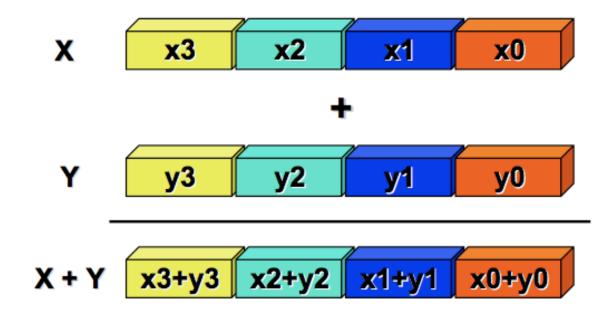
Dual instruction issue superscalar model. Again, corresponds to SISD architecture.

Slide Source: S. Amarasinghe, MIT 6189 IAP 2007

Data Stream or Array Elements

What architecture model from Flynn's Taxonomy does this correspond to?

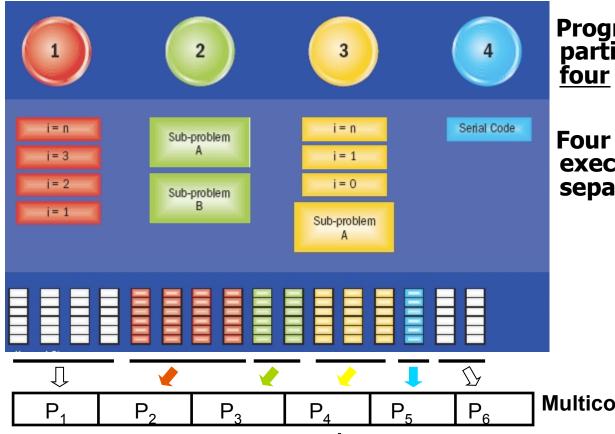
Slide Source: Arch. of a Real-time Ray-Tracer, Intel


Data Stream or Array Elements

Corresponds to SIMD architecture.

Slide Source: Arch. of a Real-time Ray-Tracer, Intel

Data-Level Parallelism



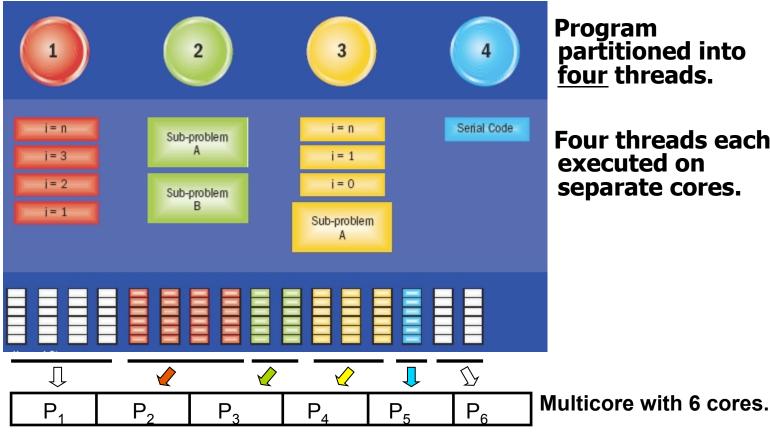
One operation (e.g., +) produces multiple results. X, Y, and result are arrays.

Slide Source: Klimovitski & Macri, Intel

Thread-Level Parallelism

Program partitioned into four threads.

Four threads each executed on separate cores.


Multicore with 6 cores.

What architecture from Flynn's Taxonomy does this correspond to?

Slide Source: SciDAC Review, Threadstorm pic.

Thread-Level Parallelism

Program partitioned into four threads.

Four threads each executed on separate cores.

Corresponds to MIMD architecture.

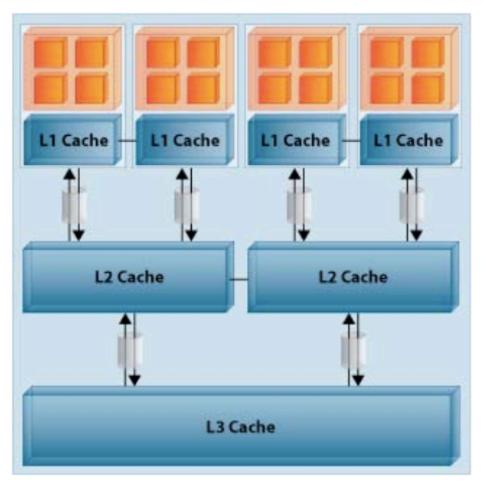
Slide Source: SciDAC Review, Threadstorm pic.

Lecture 2: Overview

- Flynn's Taxonomy of Architecture
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures

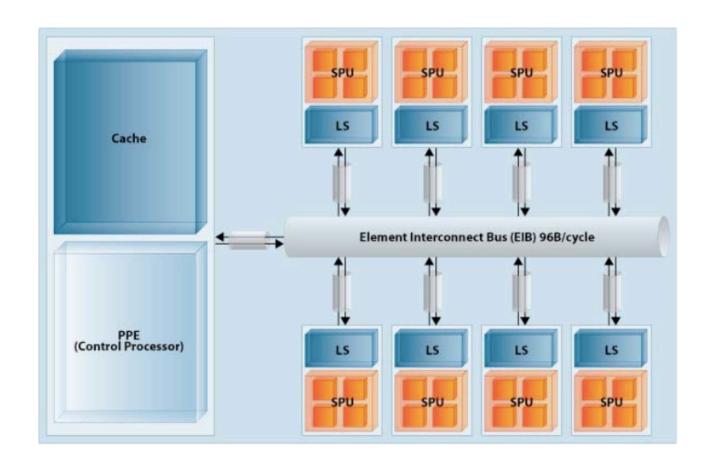
Multicore Programming Models

- Message Passing Interface (MPI)
- OpenMP
- Threads
 - Pthreads
 - Cell threads
- Parallel Libraries
 - Intel's Thread Building Blocks (TBB)
 - Microsoft's Task Parallel Library
 - SWARM (GTech)
 - Charm++ (UIUC)
 - STAPL (Texas A&M)

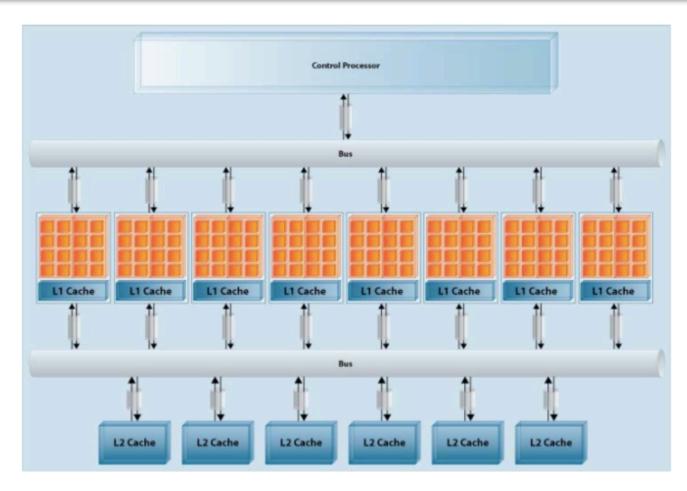

GPU Programming Models

- CUDA (Nvidia)
 - C/C++ extensions
- Brook+ (AMD/ATI)
 - AMD-enhanced implementation of Brook
- Brook (Stanford)
 - Language extensions
- RapidMind platform
 - Library and language extensions
 - Works on multicores
 - Commercialization of Sh (Waterloo)

Lecture 2: Overview


- Flynn's Taxonomy of Architecture
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures

Generalized Multicore


Slide Source: Michael McCool, Rapid Mind, SuperComputing, 2007

Cell B.E. Architecture

Slide Source: Michael McCool, Rapid Mind, SuperComputing, 2007

NVIDIA GPU Architecture G80

Slide Source: Michael McCool, Rapid Mind, SuperComputing, 2007

Name	Clovertwn	Opteron	Cell	Niagara 2	
Chips*Cores	2*4 = 8	2*2 = 4	1*8 = 8	1*8 = 8	
Architecture	4-/3-issu 000, d		2-VLIW, SIMD,RAM	1-issue, MT,cache	
Clock Rate	2.3 GHz	2.2 GHz	3.2 GHz	1.4 GHz	
Peak MemBW	21 GB/s	21 GB/s	26 GB/s	41 GB/s	
Peak GFLOPS	74.6 GF	17.6 GF	14.6 GF	11.2 GF	

Slide Source: Dave Patterson, Manycore and Multicore Computing Workshop, 2007