Agents for the Grid: A comparison with Web Services
(part Il: Service Discovery)

Arturo Avila-Rosas, Luc Moreau, Vijay Dialani, Simon Miles, Xiaojian Liu
Intelligence, Agents, Multimedia
Deptartment of Electronics and Computer Science
University of Southampton, United Kingdom

{ara01r, L.Moreau, vkd0Or, sm, xl1}@ecs.soton.ac.uk

ABSTRACT

In order to build an open, large-scale and inter-operable
multi-agent system in the context of Grid computing, we
are looking at integrating agents technologies with Web Ser-
vices. In this paper, we address this concern for SOFAR, the
Southampton Framework for Agent Research. We focus on
all technical aspects of creating, deploying, and publishing
agents as Web Services. Not only have we been able to
translate SOFAR ontologies and agent behavioural descrip-
tions respectively into XML Schemas and WSDL, but also
we have reexpressed in terms of XML Schema validation a
pattern matching oriented query language used in discovery
mechanism. Using this approach, an agent in the SoFAR
framework can be deployed and advertised through a stan-
dard discovery mechanism such as UDDI.

1. INTRODUCTION

We are observing the convergence of three major technolo-
gies for distributed systems: Grid, Agents and Web Ser-
vices. The Grid problem is defined as flexible, secure, co-
ordinated resource sharing, among dynamic collections of
individuals, institutions and resources [5]. Grid Comput-
ing and eBusiness share a large number of requirements,
such as inter-operability, platform independence, dynamic
discovery, etc. In the eBusiness community, Web Services
have emerged as a set of open standards, defined by the
World Wide Web consortium, and ubiquitously supported
by IT suppliers and users. They rely on the syntactic frame-
work XML, the transport layer SOAP [3], the XML-based
language WSDL [2] to describe services, and the service di-
rectory UDDI [1].

The benefit of open standards has recently been acknowl-
edged by the Grid Community, as illustrated by three proj-

ects embracing Web Services in various ways: Geodise (www.geo~-

dise.org) is a Grid project for engineering optimisation,
which makes Grid services such as Condor available as Web

Services. MyGrid (www.mygrid.org.uk) is a Grid middle-
ware project in a biological setting, which adopts semantic
Web techniques to describe services and their coordination
through workflows. The Open Grid Service Architecture
(OGSA) [4] extends Web Services with support for Grid
Services lifetime management.

As far as large scale computing is concerned, the agent com-
munity is not at rest. The popularity of the AgentCities
initiative (www.agentcities.org) promises us a world-wide
multi-agent system infrastructure. Additionally, the notion
of agent has of late become popular in the Grid community,
as exemplified by several workshops and publications on the
use of agents in the Grid [6, 8].

In the myGrid project, we are concerned with designing a
future-proof middleware, and we are adopting agent-based
computing as its underlying paradigm; we are also looking
at its integration with Web Services technology in order to
promote its open-ness. In a previous publication, we have
shown how an agent system could integrate its transport
layer with Web Services [6] and we have successfully imple-
mented it in SoFAR, the Southampton Agent Framework
for Agent Research [7].

While the transport layer essentially addresses syntactic is-
sues, further semantical considerations are required to pro-
vide proper inter-operability. In this extended abstract, we
show how agent behaviour can be described, advertised and
discovered using Web Services technologies. WSDL is used
to describe agent behaviour, which can then be advertised
in UDDI registries as regular services. Additionally, we pro-
vide an extended UDDI registry, able to support advanced
queries used for discovering in agent system.

The rest of this paper is as follows. In Section 2, we de-
scribe Web Services, their architecture, and three standards
adopted. In Section 3, we present the schemas associated
with SoFAR ontologies and explain our implementation of
the agent service description. In Section 4, we motivate and
introduce mechanisms to deploy and discover agent services
through ontology-based query language. Finally, in Section
5 we summarize our discussion.

2. WEB SERVICES

A Web Service interacts with its environment through a
collection of operations that are network-accessible through



standardized XML messaging. A Web Service is described
by an XML-based service description that covers all the de-
tails necessary to interact with the service, including mes-
sage formats, transport protocols and location.

For an application to take advantage of Web Services, three
operations have to take place: publishing service descrip-
tions, looking up service descriptions, and binding (or in-
voking services) using such service descriptions.

2.1 Web Service Architecture

Three fundamental layers are required to provide or use Web
Service. First, Web Services must be network-accessible
to be invoked, HTTP is the de-facto network protocol for
Internet-available Web Services (SMTP and FTP can also
be supported). Second, Web Services should use XML-based
messaging for exchanging information, and SOAP is the cho-
sen protocol. Finally, it is through a service description that
all the specifications for invoking a Web Service are made
available; WSDL is the de-facto standard for XML-based
service description.

2.2 Web Service Description

The Web Services Description Language (WSDL) is an XML-
based language to describe Web Services and how to access
them. A Web Service is seen as a set of end points oper-
ating on messages containing either document-oriented or
procedure-oriented data. The operations and messages are
described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. Re-
lated concrete set of operations are bundled into abstract
endpoints (services). WSDL can be extended in such a way
that different message formats and network protocols can be
used to describe endpoints and their messages.

A WSDL description is typically composed of an implemen-
tation - independent part and an implementation-dependent
part. The implementation-independent part of a service
definition contains WSDL elements that can be reusable
and referenced by multiple service implementations, such
as: <binding>, <portType>, <message> and <types> ele-
ments. The implementation-dependent part contains WSDL
elements that describe how a particular service is imple-
mented: <service> and <port>. We will illustrate them in
detail in Section 3.

The W3C XML Schema Definition Language (XSD), uses
a uniform XML syntax for describing and constraining the
content of XML documents. XML Schemas structure con-
tains datatypes, elements and their content, and attributes
and their values. XSD also supports derivation of document
types (similar to sub-classing in object-oriented languages),
and provides atomic data types (such as integers, floating
point, dates) in addition to character data.

2.3 Web Service Publishing and Discovery

The Universal Description, Discovery, and Integration UDDI
Project, provides a standardized method for publishing and
discovering information about Web Services. Conceptually,
three types of information about a service can be registered
into a UDDI registry: White pages (basic contact informa-
tion), Yellow pages (Web Service categorization), and Green

pages (behaviours and supported functions of a Web Service
in other words, service descriptions).

UDDI defines a complex data structure to store the latter in-
formation, including categorization data, such as references
to service description documents, that can be used by richer
search facilities.

3. MAPPING SOFAR TO WEB SERVICES
To illustrate our point on how Agent-Based Computing may
be integrated with Web Services, we consider SOFAR, the
Southampton Agent Framework for Agent Research. So-
FAR provides an abstract communication model based on an
agent communication language (ACL). In particular, SoFAR
communication model can be instantiated over the XML
protocol SOAP [6]. This communication mechanism consti-
tutes two of the three basic layers (Network, XML-Based
messaging, and Service description) required to provide or
use Web Service. In this section, we will continue with the
construction of this inter-operable base stack, but we now
focus on the service description layer.

We define an Agent Service as a service that conforms to the
set of conventions for Web Services, that is, agent ontologies
are defined using XML Schema components, and the agent
behaviour is described as a WSDL interface. The benefit
is that by publishing agents as service descriptions, other
Web Services may make an effective binding and dynamic
invocation of the agent seen as a Web Service, regardless
of whether it is an agent-based computing functionality be-
hind.

3.1 SoFAR Overview

SoFAR considers a small set of performatives which allows
any agent to support common primitive interactions such as
querying, notifying, requesting, subscribing, and advertis-
ing. Let us note that SOFAR supports not only asynchronous
performatives, but also synchronous performatives, which
are useful for querying databases and knowledge bases. The
following interface taken from [7] describes all the performa-
tives supported by SoFAR agents.

interface Agent {
boolean query_if(Predicate p, Envelope e);
Predicate[] query_ref(Predicate p, Envelope e);
void inform(Predicate p, Envelope e);
void uninform(Predicate p, Envelope e);
Contract register(Action a, Envelope e);
void unregister(Contract c, Envelope e);
Contract subscribe(Predicate p, Envelope e);
void unsubscribe(Contract c, Envelope e);
void request(Action e, Envelope e);

In SoFAR, performatives arguments must be defined in an
ontology. Ontologies are organised along a hierarchy based
on single inheritance. Terms of ontologies are defined by
the unique parent they extend and a (possible empty) set
of typed fields they contain. For instance, a Person can be
defined as an entity composed of three fields.



<term name="Person" extends="Term">
<field type="String" name="title"/>
<field type="String" name="forename"/>
<field type="String" name="surname"/>
</term>

SoFAR has its own mechanism to advertise and discover
agents called the RegistryAgent, which is a matchmaker that
matches agents’ need for services against agents’ ability to
provide such services. An agent has to advertise its capabil-
ities by sending the RegistryAgent a message that contains
the performatives to handle.

SoFAR ontologies specify not only the types of data struc-
tures, but also they provide the basis for a query language
over sets of such data structures. The query language ex-
tends pattern-matching with subsumption and constraints
over variables.

3.2 SoFAR Ontologies Schemas

In this Section, we show how to express SoFAR ontology
concepts as XML Schemas. The features of XML Schemas
we employ are atomic datatypes, simple and complex type
definitions, subtyping by extension and restriction, and ab-
stract type definitions.

In Figure 1, we model two concepts Term and Person. The
concept Term is root of the hierarchy (any concept or rela-
tion in SOFAR ontology is an extension of Term) and is also
abstract (for which there cannot be any instance).

<xsd:complexType name="Term" abstract="true"/>

<xsd:complexType name="Person">
<xsd:complexContent>
<xsd:extension base="Term">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="forename" type="xsd:string"/>
<xsd:element name="surname" type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Figure 1: Ontology as XML Schema

3.3 Agent Service Description

The next layer in our abstract architecture is the agent ser-
vice description layer, for which we use WSDL. Let us con-
sider an agent called PersonAgent which possesses the abil-
ity to support queries about persons through a query_ref
performative; such a performative returns all the elements
that match the argument of the query.

The first element in a WSDL document, after the root el-
ement (<definitions>), is the <types> element. A com-
plete WSDL description of PersonAgent can be found in Ap-
pendix. Although the <types> element encloses data type
definitions used to describe the messages exchanged, we pre-
fer defining all terms involved in PersonAgent description in

a separated document. So, our WSDL document contains
an <import> element that contains a reference to a schemas
file where all the types used are defined.

<import namespace= "http://sofar.ecs.soton.ac.uk/schemas"
location= "http://sofar.ecs.soton.ac.uk/Person.xsd"/>

The performative query_ref is considered as an operation
with request-response messages; it means that the endpoint
receives a message, and sends a correlated message as a re-
sponse. So, there are two <message> elements for such a
performative. Each <message> contains zero or more <part>
elements. A <part> corresponds to an argument or a re-
turned value in the respective method call. Each <part>
must have the same name and data type as the argument
or return value it represents. Input and output parameters
of the method with signature:

Predicate[] query_ref(Person person,
Envelope envelope);

have been modelled as follows:

<message name="query_refRequest">
<part name="person" type="Person'"/>
<part name="envelope" type="Envelope"/>
</message>

<message name='"query_refResponse">
<part name="result" type="ArrayOfPredicates"/>
</message>

In this definition, an Envelope denotes a data-structure that
contains meta-information about the message (similarly to
a message header).

An <operation> element in WSDL is the equivalent of a
method signature. An operation specifies which <message>
element is the input and which <message> is the output.
The collection of all operations exposed by the service are
grouped into a <portType> element.

<portType name="PersonAgentPortType">
<operation name="query_refOperation">
<input message="tns:query_refRequest"/>
<output message="tns:query_refResponse"/>
</operation>
</portType>

So far, we have defined operations and messages in an ab-
stract way, the next step is to provide a reference to the
external SoOFAR framework in order to define how a SOAP
client will reach the implementation of our Agent Services.
In WSDL, such a reference is referred to as a binding be-
tween abstract definitions and their implementation. An
element <binding> defines the message format and protocol
details for operations and messages supported by a particu-
lar portType.



<binding name="PersonAgentSoapBinding"
type="tns:PersonAgentPortType">
<soap:binding style="document"
transport="http://.../soap/http/"/>
<operation name="query_refOperation">
<soap:operation soapAction="" />
<input><soap:body use="literal"/></input>
<output><soap:body use="literal"/></input>
</output>
</operation>
</binding>

Finally, we identify the Agent Service logically, and attach
the port with the physical location of the agent, here an http
server running at port 50000 on the machine sofar.ecs.so-
ton.ac.uk.

<service name="PersonAgentService">
<port binding="tns:PersonAgentSoapBinding"
name="PersonAgentPort">
<soap:address
location="http://sofar.ecs.soton.ac.uk:50000
/soap/servlet/rpcrouter" />
</port>
</service>

4. PUBLISHING AND DISCOVERING
AGENT SERVICES

We are now capable of publishing our Agent Service De-
scription into a UDDI registry. But just a minimal part
of our WSDL description can be published into the UDDI
structure. UDDI structure provides a taxonomy to cate-
gorize the service and only keeps references to our WSDL
description. We use an extension of UDDI registry where we
be able to store additional information (meta-data) about
agents and an ontology-based pattern-matching in order to
accommodate the kind of searching that is required to locate
an agent service according to the performative it supports.
In this extended abstract, we focus on the ontology-based
query language.

In Section 3.1, we have introduced the matchmaker as a
mechanism to advertise and discover agents in SOFAR.. Now,
we bring those ideas to Web Services, by using pattern-
matching among type definition schemas (ontological terms).
Let us consider an instance of Person defined in the previous
Section, which is modelled in figure 2.

Person("Dr",7String,?String)

If we regard the latter term as a query to an agent, it has the
following meaning: tell me the set of Persons with the title
of Dr. In order to decide if PersonAgent is capable to han-
dle queries of this type, such a term must match the Person
schema that it is associated with the PersonAgent descrip-
tion. This operation is similar to schema validation, that
is defined as the process of parsing an XML document in
order to determine whether it is well-formed and follows the
constraints of some schema. Deciding if a pattern matches

<Person>
<title>Dr</title>
<forename>
<String variable=’true’/>
</forename>
<surname>
<String variable=’true’/>
</surname>
</Person>

Figure 2: Ontology-based Query as XML Schema

a term can be implemented by checking that the pattern is
validated by the XML Schema specifying that term. Ongo-
ing work focuses on extending this matching algorithm to
support constraint resolution.

We are proposing an extension of UDDI which contains
WSDL descriptions of all agents that have been registered.
It enables us discovery of agents supporting a specific capa-
bility using the ontology-based pattern matching described.

5. DISCUSSION AND CONCLUSION

Our paper has shown that the concept of agents can be
closely aligned with that of a Web Service, in that an agent
can be described as a Web Service and discovered using an
standard mechanism as UDDI.

We have demonstrated that XSD is expressive enough to
describe SoFAR ontologies; and through validation process,
ontology-based pattern-matching can be implemented in or-
der to adapt UDDI to the sort of searching that is required
to find an agent service.

Using WSDL gives the agent the ability to describe and
to advertise its capabilities. Our agent Web Service de-
scriptions and its terms, that are expressed using ontologies
as a semantic enhancement to WSDL and UDDI, enable
dynamic discovery and invocation of services by software
through common terminology and shared meaning. This is
a vital property in an open systems such as the Grid.

In the future, we plan to look at the orchestration of agent
services, based on workflow languages such as WSFL and
XLANG. This will allow us to study the suitability of WSDL
for describing semantically-composable agent services. Such
an orchestration activity can make heavy usage of ontology-
based metadata about the quality of service offered by agents,
for which we consider formalisms such as OIL, DAML+OIL,
and RDF.

6. ACKNOWLEDGEMENTS

This research is funded in part by EPSRC myGrid project
(reference GR/R67743/01) and EPSRC comb-e-chem (ref-
erence GR/R67729/01).

The first author acknowledges the funding of the Mexican
Petroleum Institute (IMP).



7. REFERENCES

[1] Uddi standards. http://www.uddi.org.

[2] W3c wsdl spec. http://www.w3c.org/TR/wsdl.

[3] Xml protocol working group. http://www.w3c.org/2000/xp/Group/.

[4] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of the Grid — An Open Grid Services

Architecture for Distributed Systems Integration. Technical report, Argonne National Laboratory, 2002.

[5] Ian Foster, Carl Kesselman, and Steve Tuecke. The anatomy of the grid. enabling scalable virtual organizations. International
Jounral of Supercomputer Applications, 2001.

[6] Luc Moreau. Agents for the Grid: A Comparison for Web Services (Part 1: the transport layer). In IEEE International Symposium
on Cluster Computing and the Grid, Berlin, Germany, May 2002.

[7] Luc Moreau, Nick Gibbins, David DeRoure, Samhaa El-Beltagy, Wendy Hall, Gareth Hughes, Dan Joyce, Sanghee Kim, Danius
Michaelides, Dave Millard, Sigi Reich, Robert Tansley, and Mark Weal. SoOFAR with DIM Agents: An Agent Framework for
Distributed Information Management. In The Fifth International Conference and Ezhibition on The Practical Application of
Intelligent Agents and Multi-Agents, pages 369-388, Manchester, UK, April 2000.

[8] Omer F. Rana and Luc Moreau. Issues in Building Agent based Computational Grids. In Third Workshop of the UK Special
Interest Group on Multi-Agent Systems (UKMAS’2000), Oxford, UK, December 2000.

APPENDI X

<?xml version="1.0" encoding="UTF-8"7>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl" xmlns:xsd1l="http://sofar.ecs.soton.ac.uk/schemas"
xmlns:tns="http://sofar.ecs.soton.ac.uk/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
name="PersonAgent" targetNamespace="http://sofar.ecs.soton.ac.uk/PersonAgent.wsdl">

<import namespace="http://sofar.ecs.soton.ac.uk/schemas"
location="http://sofar.ecs.soton.ac.uk/Person.xsd"/>

<message name="query_refRequest">
<part name="person" type="Person"/>
<part name="envelope" type="Envelope"/>
</message>

<message name='"query_refResult'">
<part name="result" type="ArrayOfPredicates"/>
</message>

<portType name="PersonAgentPortType">
<operation name="query_refOperation">
<input message="tns:query_refRequest"/>
<output message="tns:query_refResult"/>
</operation>
</portType>

<binding name="PersonAgentSoapBinding" type="PersonAgentPortType'">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http/"/>
<operation name="query_refOperation">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="PersonAgentService">
<port binding="tns:PersonAgentSoapBinding" name="PersonAgentPort">
<soap:address location="http://sofar.ecs.soton.ac.uk:50000/soap/servlet/rpcrouter"/>
</port>
</service>

</definitions>



