
VisibilityVisibilityVisibilityVisibility

Portal-portal
BSP TreesBSP Trees

Lecture 10

CISC 829

Spring 2008

Department of Computer and Information Science

Spring 2008

Cells & PortalsCells & Portals

•• An example:An example:

Lecture 13

Cells & PortalsCells & Portals
•• Idea: Idea:

Cells form the basic unit of PVSCells form the basic unit of PVS––Cells form the basic unit of PVSCells form the basic unit of PVS

––Create an Create an adjacency graphadjacency graph of cells

––Starting with cell containing eyepointStarting with cell containing eyepointStarting with cell containing eyepoint, Starting with cell containing eyepoint,
traverse graph, rendering visible cells traverse graph, rendering visible cells

––A cell is only visible if it can be seen A cell is only visible if it can be seen yy
through a sequence of portalsthrough a sequence of portals
•• So cell visibility reduces to testing portal So cell visibility reduces to testing portal
sequences for asequences for a line of sight…line of sight…sequences for a sequences for a line of sight…line of sight…

Lecture 13

Motivation for BSP Trees:
Th Vi ibilit P blThe Visibility Problem

We have a set of objects (either 2d or 3d) in space.

We have an “eye” at some point in this space, looking
at the objects from a particular direction.

Lecture 13

Drawing the Visible Objects

W t t t th i th t thWe want to generate the image that the eye
would see, given the objects in our
spacespace.

How do we draw the correct object at each
i l i th t bj tpixel, given that some objects may

obscure others in the scene?

Lecture 13

Pixel-Level Visibilityy
Thus far, we’ve considered visibility at the level
of primitives. Now we will turn our attention to a p
class of algorithms that consider visibility at each
pixel.

Lecture 13

Depth Bufferingp g
Algorithm:

Cast a ray from the viewpoint through each pixel to find the closest
surfacesurface

Rendering Loop:

set depth of all pixels to ZMAX
foreach primitive in scene

determine pixels touched
foreach pixel in primitiveforeach pixel in primitive

compute z at pixel
if (z < depth) then

pixel = object color
d hdepth = z

endif
endfor

endfor

Lecture 13

e d o

Depth Bufferingp g
• Advantages

– Primitives can be processed immediately (Hence: Immediate mode
graphics API's)graphics API s)

– Primitives can be processed in any order (Exception: primitives at
same depth)

– Well suited to H/W implementation simple control of low-level (perWell suited to H/W implementation simple control of low level (per
pixel) operations

– Spatial coherence

• Incremental evaluation of loops

• Good memory access pattern

• Disadvantages
Visibility determination is coupled to sampling (Subject to– Visibility determination is coupled to sampling (Subject to
aliasing)

– Requires a Raster-sized arrray to store depth

– Read-Modify-Write (Hard to make fast)

Lecture 13

Read Modify Write (Hard to make fast)

– Excessive over-drawing

Backface Culling for General
VisibilityVisibility

1+ -

2

+ -
1+

+
3

+ -

Well almost it would work if there were noWell almost... it would work if there were no
overlapping faces. However, notice how the
overlapping facets partition each other. Suppose we
b ild f h i i

Lecture 13

build a tree of these partitions.

A Painter's Algorithmg
•The painter's algorithm, sometimes called depth-sorting, gets
its name from the process which an artist renders a scene using
oil paints. First, the artist will paint the background colors of
h k d d h d b dthe sky and ground. Next, the most distant objects are painted,

then the nearer objects, and so forth. Note that oil paints are
basically opaque, thus each sequential layer completely obscures
the layer that its coversthe layer that its covers.
A very similar technique can be used for rendering objects in a
three-dimensional scene. First, the list of surfaces are sorted
according to their distance from the viewpoint The objects areaccording to their distance from the viewpoint. The objects are
then painted from back-to-front.
While this algorithm seems simple there are many subtleties. The
first issue is which depth-value do you sort by? In general a p y y g
primitive is not entirely at a single depth. Therefore, we must

choose some point on the primitive to sort by.

Lecture 13

Implementationp
•The algorithm can be implemented very easily. First we extend
the drawable interface so that any object that might be drawn is

bl l lcapable of supplying a z value for sorting.

import Raster;
public abstract interface Drawable {

public abstract void Draw(Raster r);
public abstract float zCentroid();

}

•Next, we add the required method to our triangle routine:

public final float zCentroid() {public final float zCentroid() {
return (1f/3f) * (vlist[v[0]].z + vlist[v[1]].z + vlist[v[2]].z);

}

Lecture 13

Rendering Codeg
Here is a painter’s method that we can add to any
rendering applet:g pp

void DrawScene() {
view.transform(vertList, tranList, vertices); (, ,)
((FlatTri) riList[0]).setVertexList(tranList);
raster.fill(getBackground());
sort(0, triangles-1); (, g);
for (int i = triangles-1; i >= 0; i--) {

triList[i].Draw(raster);
} }

}

Lecture 13

Problems with Painters
•The painter's algorithm works great... unless one of
the following happens:

Big triangles and little triangles ThisBig triangles and little triangles. This
problem can usually be resolved using
further tests. Suggest some.

A h bl h h i lAnother problem occurs when the triangle
from a model interpenetrate as shown
below. This problem is a lot more difficult to
handle generally it requires that primitivehandle. generally it requires that primitive
be subdivided (which requires clipping).

Cycles among primitives

Lecture 13

BSP Trees
Having a pre-built BSP tree will allow us
to get a correct depth order ofto get a correct depth order of
polygons in our scene for any point in
space.space.

We will build a data structure based onWe will build a data structure based on
the polygons in our scene, that can be
queried with any point input to returnqueried with any point input to return
an ordering of those polygons.

Lecture 13

The Big Pictureg

Assume that no objects in our space
overlap.p

Use planes to
recursively split ourrecursively split our
object space, keeping a
tree structure of thesetree structure of these
recursive splits.

Lecture 13

Choose a Splitting Linep g

Choose a splitting plane, dividing our
objects into three sets – those on each
side of the plane, and those fully
contained on the plane.

Lecture 13

Choose More Splitting Linesp g

What do we do when an object (like objectWhat do we do when an object (like object
1) is divided by a splitting plane?

It is divided into two objects one onIt is divided into two objects, one on
each side of the plane.

Lecture 13

Split Recursively Until Donep y

When we reach a convex space containing
tl bj t th t iexactly zero or one objects, that is a

leaf node.

Lecture 13

Continue

Lecture 13

Continue

Lecture 13

Finished

Once the tree is constructed, every root-
t l f th d ib i lto-leaf path describes a single convex
subspace.

Lecture 13

Querying the TreeQ y g

If a point is in the positive half-
space of a plane, then everything
in the negative half-space is
farther away -- so draw it first,
using this algorithm recursively.

Then draw objects on the splitting
plane, and recurse into the
positive half-space.

Lecture 13

What Order Is Generated From
Thi E P i t?This Eye Point?

How much time does it take to query the
BSP t t ti ll ?

Lecture 13

BSP tree, asymptotically?

Structure of a BSP Tree
• Each internal node has a +half space, a -half
space, and a list of objects containedspace, and a list of objects contained
entirely within that plane (if any exist).

• Each leaf has a list of zero or one objects
inside it, and no subtrees.

• The size of a BSP tree is the total number of
objects stored in the leaves & nodes of theobjects stored in the leaves & nodes of the
tree.

• This can be larger than the number of objectsThis can be larger than the number of objects
in our scene because of splitting.

Lecture 13

Recap for line segmentsp g
A Binary Space Partition (BSP) tree is a

simple spatial data structure:

1 S l t titi i l /f1. Select a partitioning plane/face.

2. Partition the remaining planes/faces
according to the side of the
partitioning plane that they fall

()on (+ or -).

3. Repeat with each of the two new sets.

Partitioning facets:Partitioning facets:
Partitioning requires testing all
facets in the active set to find if
they 1) lie entirely on the positive
side of the partition plane, 2) lie
entirely on the negative side, or 3) if
they cross it. In the 3rd case of a
crossing face we clip the offending

Lecture 13

crossing face we clip the offending
face into two halves (using our plane-
at-a-time clipping algorithm).

Computing Visibility with BSP
ttrees

Starting at the root of the tree.

1. Classify viewpoint as being in the positive
or negative halfspace of our plane

2. Call this routine with the negative child
(if it exists)

3 D th t titi i l3. Draw the current partitioning plane

4. Call this routine with the positive child
(if it exists)

Intuitively, at each partition, we first draw
the stuff further away than the current
plane then we draw the current planeplane, then we draw the current plane,
and then we draw the closer stuff. BSP
traversal is called a "hidden surface elimination"
algorithm, but it doesn’t really "eliminate" anything; it

Lecture 13

algorithm, but it doesn t really eliminate anything; it
simply orders the drawing of primitive in a back-to-front
order.

BSP Tree Examplep
Computing visibility or depth-sorting
with BSP trees is both simple and fast.

It resolves visibility at the primitive level.

Visibility computation is independent ofVisibility computation is independent of
screen size

Requires considerable preprocessing ofRequires considerable preprocessing of
the scene primitives

Primitives must be easy to subdividey
along planes

Supports Constructive Solid Geometry

Lecture 13

(CSG) modeling

How Small Is the BSP From
Thi Al ith ?

• Different orderings result in different
trees

This Algorithm?

trees

• Greedy approach doesn't always work --
sometimes it does very badly, and it is
costly to find

Lecture 13

Random Approach Works Wellpp

If we randomly order segments before
b ildi th t th d ll ibuilding the tree, then we do well in
the average case.

Lecture 13

Expected Number of Fragments:
O(L)O(n Log n)

Lecture 13

Expected Running Time:
O(2l)O(n2log n)

The time taken at any particular node is
linear in the number of fragments in
its input

Each call to the algorithm thus takes
O(n) time, and the number of recursive
calls is bounded by O(nlogn)

The total expected running time is then
O(n2log n)

Lecture 13

(g)

