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Cells & PortalsCells & Portals

•• An example:An example:
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Cells & PortalsCells & Portals
•• Idea: Idea: 

Cells form the basic unit of PVSCells form the basic unit of PVS––Cells form the basic unit of PVSCells form the basic unit of PVS

––Create an Create an adjacency graphadjacency graph of cells

––Starting with cell containing eyepointStarting with cell containing eyepointStarting with cell containing eyepoint, Starting with cell containing eyepoint, 
traverse graph, rendering visible cells traverse graph, rendering visible cells 

––A cell is only visible if it can be seen A cell is only visible if it can be seen yy
through a sequence of portalsthrough a sequence of portals
•• So cell visibility reduces to testing portal So cell visibility reduces to testing portal 
sequences for asequences for a line of sight…line of sight…sequences for a sequences for a line of sight…line of sight…
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Motivation for BSP Trees:
Th Vi ibilit P blThe Visibility Problem

We have a set of objects (either 2d or 3d) in space.

We have an “eye” at some point in this space, looking 
at the objects from a particular direction. 
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Drawing the Visible Objects

W t t t th i th t thWe want to generate the image that the eye 
would see, given the objects in our 
spacespace.

How do we draw the correct object at each 
i l i th t bj tpixel, given that some objects may 

obscure others in the scene?
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Pixel-Level Visibilityy
Thus far, we’ve considered visibility at the level 
of primitives. Now we will turn our attention to a p
class of algorithms that consider visibility at each 
pixel.
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Depth Bufferingp g
Algorithm:

Cast a ray from the viewpoint through each pixel to find the closest 
surfacesurface 

Rendering Loop:

set depth of all pixels to ZMAX
foreach primitive in scene 

determine pixels touched 
foreach pixel in primitiveforeach pixel in primitive

compute z at pixel
if (z < depth) then

pixel = object color
d hdepth = z

endif
endfor

endfor
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Depth Bufferingp g
• Advantages

– Primitives can be processed immediately (Hence: Immediate mode 
graphics API's)graphics API s)

– Primitives can be processed in any order (Exception: primitives at 
same depth)

– Well suited to H/W implementation simple control of low-level (perWell suited to H/W implementation simple control of low level (per 
pixel) operations

– Spatial coherence

• Incremental evaluation of loops

• Good memory access pattern 

• Disadvantages
Visibility determination is coupled to sampling (Subject to– Visibility determination is coupled to sampling (Subject to 
aliasing)

– Requires a Raster-sized arrray to store depth

– Read-Modify-Write (Hard to make fast)
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Read Modify Write (Hard to make fast)

– Excessive over-drawing 



Backface Culling for General 
VisibilityVisibility
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1+     
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Well almost it would work if there were noWell almost... it would work if there were no 
overlapping faces. However, notice how the 
overlapping facets partition each other. Suppose we 
b ild f h i i
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A Painter's Algorithmg
•The painter's algorithm, sometimes called depth-sorting, gets 
its name from the process which an artist renders a scene using 
oil paints. First, the artist will paint the background colors of 
h k d d h d b dthe sky and ground. Next, the most distant objects are painted, 

then the nearer objects, and so forth. Note that oil paints are 
basically opaque, thus each sequential layer completely obscures 
the layer that its coversthe layer that its covers.   
A very similar technique can be used for rendering objects in a 
three-dimensional scene. First, the list of surfaces are sorted 
according to their distance from the viewpoint The objects areaccording to their distance from the viewpoint. The objects are 
then painted from back-to-front. 
While this algorithm seems simple there are many subtleties. The 
first issue is which depth-value do you sort by? In general a p y y g
primitive is not entirely at a single depth. Therefore, we must 

choose some point on the primitive to sort by.
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Implementationp
•The algorithm can be implemented very easily. First we extend 
the drawable interface so that any object that might be drawn is 

bl l lcapable of supplying a z value for sorting. 

import Raster; 
public abstract interface Drawable { 

public abstract void Draw(Raster r); 
public abstract float zCentroid();

} 

•Next, we add the required method to our triangle routine:

public final float zCentroid() {public final float zCentroid() { 
return (1f/3f) * (vlist[v[0]].z + vlist[v[1]].z + vlist[v[2]].z);

}  
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Rendering Codeg
Here is a painter’s method that we can add to any 
rendering applet:g pp

void DrawScene() { 
view.transform(vertList, tranList, vertices); ( , , )
((FlatTri) riList[0]).setVertexList(tranList);
raster.fill(getBackground());
sort(0, triangles-1); ( , g );
for (int i = triangles-1; i >= 0; i--) {

triList[i].Draw(raster); 
} }

}
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Problems with Painters
•The painter's algorithm works great... unless one of 
the following happens:

Big triangles and little triangles ThisBig triangles and little triangles. This 
problem can usually be resolved using 
further tests.  Suggest some.

A h bl h h i lAnother problem occurs when the triangle 
from a model interpenetrate as shown 
below. This problem is a lot more difficult to 
handle generally it requires that primitivehandle. generally it requires that primitive 
be subdivided (which requires clipping). 

Cycles among primitives 
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BSP Trees
Having a pre-built BSP tree will allow us 
to get a correct depth order ofto get a correct depth order of 
polygons in our scene for any point in 
space.space.

We will build a data structure based onWe will build a data structure based on 
the polygons in our scene, that can be 
queried with any point input to returnqueried with any point input to return 
an ordering of those polygons.
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The Big Pictureg

Assume that no objects in our space 
overlap.p

Use planes to 
recursively split ourrecursively split our 
object space, keeping a 
tree structure of thesetree structure of these 
recursive splits.
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Choose a Splitting Linep g

Choose a splitting plane, dividing our 
objects into three sets – those on each 
side of the plane, and those fully 
contained on the plane.
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Choose More Splitting Linesp g

What do we do when an object (like objectWhat do we do when an object (like object 
1) is divided by a splitting plane?  

It is divided into two objects one onIt is divided into two objects, one on 
each side of the plane.
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Split Recursively Until Donep y

When we reach a convex space containing 
tl bj t th t iexactly zero or one objects, that is a 

leaf node.
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Continue
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Continue
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Finished

Once the tree is constructed, every root-
t l f th d ib i lto-leaf path describes a single convex 
subspace. 
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Querying the TreeQ y g

If a point is in the positive half-
space of a plane, then everything 
in the negative half-space is 
farther away -- so draw it first, 
using this algorithm recursively.

Then draw objects on the splitting 
plane, and recurse into the 
positive half-space.
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What Order Is Generated From 
Thi E P i t?This Eye Point?

How much time does it take to query the 
BSP t t ti ll ?
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Structure of a BSP Tree
• Each internal node has a +half space, a -half 
space, and a list of objects containedspace, and a list of objects contained 
entirely within that plane (if any exist).

• Each leaf has a list of zero or one objects 
inside it, and no subtrees.

• The size of a BSP tree is the total number of 
objects stored in the leaves & nodes of theobjects stored in the leaves & nodes of the 
tree.

• This can be larger than the number of objectsThis can be larger than the number of objects 
in our scene because of splitting.
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Recap for line segmentsp g
A Binary Space Partition (BSP) tree is a 

simple spatial data structure:

1 S l t titi i l /f1. Select a partitioning plane/face. 

2. Partition the remaining planes/faces 
according to the side of the 
partitioning plane that they fall 

( )on (+ or -). 

3. Repeat with each of the two new sets. 

Partitioning facets:Partitioning facets:
Partitioning requires testing all 
facets in the active set to find if 
they 1) lie entirely on the positive 
side of the partition plane, 2) lie 
entirely on the negative side, or 3) if 
they cross it. In the 3rd case of a 
crossing face we clip the offending
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crossing face we clip the offending 
face into two halves (using our plane-
at-a-time clipping algorithm). 



Computing Visibility with BSP 
ttrees

Starting at the root of the tree. 

1. Classify viewpoint as being in the positive 
or negative halfspace of our plane 

2. Call this routine with the negative child 
(if it exists) 

3 D th t titi i l3. Draw the current partitioning plane 

4. Call this routine with the positive child 
(if it exists)

Intuitively, at each partition, we first draw
the stuff further away than the current
plane then we draw the current planeplane, then we draw the current plane, 
and then we draw the closer stuff. BSP 
traversal is called a "hidden surface elimination" 
algorithm, but it doesn’t really "eliminate" anything; it

Lecture 13

algorithm, but it doesn t really eliminate  anything; it 
simply orders the drawing of primitive in a back-to-front 
order.



BSP Tree Examplep
Computing visibility or depth-sorting
with BSP trees is both simple and fast. 

It resolves visibility at the primitive level. 

Visibility computation is independent ofVisibility computation is independent of 
screen size 

Requires considerable preprocessing ofRequires considerable preprocessing of
the scene primitives 

Primitives must be easy to subdividey
along planes 

Supports Constructive Solid Geometry
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How Small Is the BSP From 
Thi Al ith ?

• Different orderings result in different 
trees

This Algorithm?

trees

• Greedy approach doesn't always work --
sometimes it does very badly, and it is 
costly to find
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Random Approach Works Wellpp

If we randomly order segments before 
b ildi th t th d ll ibuilding the tree, then we do well in 
the average case.
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Expected Number of Fragments: 
O( L )O(n Log n)
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Expected Running Time: 
O( 2l )O(n2log n)

The time taken at any particular node is 
linear in the number of fragments in 
its input

Each call to the algorithm thus takes 
O(n) time, and the number of recursive 
calls is bounded by O(nlogn)

The total expected running time is then 
O(n2log n)
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