Visibilicy

=Portal-—portal
mBSP Trees

REDOEHEHD

Lecture 10
CISC 829
Spring 2008

i Department of Computer and Information Science

Cells & Portals

An example:

Cells & Portals

dea.
Cells form the basic unit of PVS
Create an adjacency graph of cells

Starting with cell containing eyepoint,
traverse graph, rendering visible cells

A cell is only visible if it can be seen
through a sequence of portals

* So cell visibility reduces to testing portal
sequences for a /ine of sight--

: $ Lecture 13

Motivation for BSP Trees:
The Visibility Problem

2 have a set of objects (either 2d or 3d) in space.

2 have an “eye” at some point in this space, looking
he objects from a particular direction.

L& . g
N
8 Lecture 13

)rawing the Visible Objects

e want to generate the image that the eye
would see, given the objects in our
space.

ow do we draw the correct object at each
pixel, given that some objects may
obscure ¢ | ‘ ‘

Only object 1 is seen
along this ray

7 » Lecture 13

Pixel-Level Visibility

Thus far, we’ ve considered visibility at the level
of primitives. Now we will turn our attention to a
class of algorithms that consider visibility at each

* SOOI BBOBRBBRRONI . fEg0000PBDROeS
plXel. soeoeeNOOORIRORON e RRe®
coPOOOROERBRRDREN e /o0 BBRRRERLS
SRR BRReES A hbw I I TR R

" E IR R X R T L s L 2 2 i 2231)).

LN N e

cseo® L N

o8e
080
reee
‘AN N
LE X N
aaew

eSO BRRSRIERS
LR
(]

L2 1 LR
EEER IR
L E RN ¥]
'R T I
‘eeN
een
2 B

® o

-
.
-
i
L
L
]
)
-

Sl B LY 1 LR

R
COPrLTER 2 _
GRryrnos

Lecture 13

Depth Buffering

ithm:
st a ray from the viewpoint through each pixel to find the closest
face

dering Loop:

depth of all pixels to Zy
each primitive in scene
determine pixels touched
foreach pixel in primitive
compute z at pixel
if (z < depth) then
pixel = object color
depth = z
endif
endfor

7 » Lecture 13

Depth Buffering

lvantages

Primitives can be processed immediately (Hence: Immediate mode
graphics API’ s)

Primitives can be processed in any order (Exception: primitives at
same depth)

Well suited to H/W implementation simple control of low—level (per
pixel) operations

Spatial coherence

* Incremental evaluation of loops

* Good memory access pattern

sadvantages

Visibility determination is coupled to sampling (Subject to
aliasing)

Requires a Raster—sized arrray to store depth
Read-Modify-Write (Hard to make fast)

essive over—drawing

Lecture 13

ckface Culling for General

almost... it would work if there were no
rlapping faces. However, notice how the
rlapping facets partition each other. Suppose we
1ld a tree of these partitions.

Lecture 13

A Painter s Algorithm

> painter’ s algorithm, sometimes called depth-sorting, gets
name from the process which an artist renders a scene using
paints. First, the artist will paint the background colors of
sky and ground. Next, the most distant objects are painted,

1 the nearer objects, and so forth. Note that oil paints are
cally opaque, thus each sequential layer completely obscures
layer that its covers.

ry similar technique can be used for rendering objects in a
se—dimensional scene. First, the list of surfaces are sorted
yrding to their distance from the viewpoint. The objects are
) painted from back—to—front.

e this algorithm seems simple there are many subtleties. The
5t issue is which depth—-value do you sort by? In general a

itive is not entirely at a single der:}.j‘.‘.‘ ? » €, we must
o I!-;

)Se some point on the primitive to sorg

PRS2
I Lecture 13

[Implementation

algorithm can be implemented very easily. First we extend
rawable interface so that any object that might be drawn is
le of supplying a z value for sorting.

Raster;

abstract interface Drawable {
)lic abstract void Draw(Raster r);
)lic abstract float zCentroid();

, we add the required method to our triangle routine:

final float zCentroid() {
urn (1f/3f) * (vlist[v[0]]-z + vlist][v][1]]-z + vlist[Vv][2]]-2);

Lecture 13

Rendering Code

is a painter’ s method that we can add to any
ering applet:

DrawScene() {

ew.transform(vertList, tranList, vertices);
FlatTri) riList[0]).setVertexList(tranList);
aster . Till (getBackground());

ort (0, triangles-1);

or (int i = triangles-1; i >= 0; i--) {
triList[i1].Draw(raster);

Lecture 13

Problems with Painters

he painter’ s algorithm works great... unless one of

e following happens: z

31g triangles and little triangles. This
)roblem can usually be resolved using
urther tests. Suggest some.

=4

\nother problem occurs when the triangle
rom a model interpenetrate as shown
)elow. This problem is a lot more difficult to
andle. generally it requires that primitive
)e subdivided (which requires clipping).

>N

ycles among primitives

X
€ o ml:$ g

BRI AR CS

({14 Lecture 13

BSP Trees

ing a pre—built BSP tree will allow us
o get a correct depth order of
yolygons in our scene for any point in
space.

will build a data structure based on
he polygons in our scene, that can be
ueried with any point input to return
in ordering of those polygons.

Conerr :ll$
Gine vz o
i : Lecture 13

The Big Picture

ssume that no objects in our space
overlap.

se planes to
cursively split our
bject space, keeping a
ee structure of these
cursive splits.

: $ Lecture 13

Choose a Splitting Line

oose a splitting plane, dividing our
objects into three sets - those on each
side of the plane, and those fully

Arntainnd An +tha nlann

/
+

Lecture 13

oose More Splitting Lines

at do we do when an object (like object
1) is divided by a splitting plane?

1s divided into two objects, one on
cach side of the plane.

¢ | @

Lecture 13

)it Recursively Until Done

we reach a convex space containing
actly zero or one objects, that is a
af node.

01| |03

Lecture 13

Continue

Lecture 13

02

0]

0]

03

Lecture 13

t1nue

02

0]

0]

03

Finished

the tree i1s constructed, every root-—
—]leaf path describes a single convex
bspace.

04 le ls {4

05! |04 02| |01} |O]] |03

Lecture 13

Querying the Tree

f a point is in the positive half-
space of a plane, then everything
in the negative half—space 1is

farther away — so draw it first,
using this algorithm recursively.

hen draw objects on the splitting
plane, and recurse into the
positive half—space.

Lecture 13

at Order Is Generated From
his Eye Point?

04 5?6 fs €4

How much time does it take to query the
BSP tree, asymptotically?

: $ Lecture 13

Structure of a BSP Tree

ach internal node has a +half space, a —half
space, and a list of objects contained
ntirely within that plane (if any exist).

ach leaf has a list of zero or one objects
nside it, and no subtrees.

he size of a BSP tree is the total number of
)b jects stored in the leaves & nodes of the

ree.

his can be larger than the number of objects
n our scene because of splitting.

Conerr :ll$
-"._ - : o -=“‘
: Lecture 13

Recap for line segments

ary Space Partition (BSP) tree is a
mple spatial data structure:

Select a partitioning plane/face.

Partition the remaining planes/faces
according to the side of the
partitioning plane that they fall

on (+ or -).

Repeat with each of the two new sets.

rtitioning facets: =
rtitioning requires testing all \
cets in the active set to find if

ey 1) lie entirely on the positive

de of the partition plane, 2) lie
tirely on the negative side, or 3) if
ey cross it. In the 3' case of a

ossing face we clip the offending

nto two halves (using our plane-
it me clipping algorithm).

Lecture 13

i
i
i

omputing Visibility with BSP
trees

ting at the root of the tree.

1. Classify viewpoint as being in the positive
or negative halfspace of our plane

2. Call this routine with the negative child
(if it exists) +Gen

3. Draw the current partitioning plane

4, Call this routine with the positive
(if it exists)

1itively, at each partition, we first
he stuff further away than the current
lane, then we draw the current plane,
nd then we draw the closer stuff. BSP
raversal is called a “hidden surface elimination”
lgorithm, but it doesn’ t really “eliminate” anything; it
1n$orders the drawing of primitive in a back—-to—front
3

//«\}\

Lecture 13

BSP Tree Example

puting visibility or depth—sortir
BSP trees is both simple and fe

resolves visibility at the primit

ibility computation is independer
cen size

ires considerable preprocessing
scene primitives

itives must be easy to subdivide
g planes

ports Constructive Solid Geometry
modeling

Lecture 13

How Small Is the BSP From
This Algorithm?

ifferent orderings result in different
ees

(a) 53 (b)

57 51 53

\)
$1 2

eedy approach doesn’ t always work ——
ometimes 1t does very badly, and it is
ostly to find

Lecture 13

andom Approach Works Well

e randomly order segments before
11ding the tree, then we do well in
e average case.

Lecture 13

pected Number of Fragments:
0(n Log n)

Let Dist_(s]) = The # of segments mtersecting line(s1)
between s1 and sj, if line(s1) intersects s,

or +infinity otherwise

dist= 0 _
’H_J

l _F-———--____._,___-~""-I

) euts 5] <
Pr[f(gi) cuts SJ'] = diSt.S;‘ (SJ) -|-2

1
dists. (s;) +2

E[number of cuts generated by s;] < Y
J#

n—2 1
< .

= k+2
< 2lnn.

Thus, the expected number of fragments = O(n + n log n).

Lecture 13

Expected Running Time:
0(n%log n)

o time taken at any particular node 1is
inear in the number of fragments in
ts 1nput

h call to the algorithm thus takes

)(n) time, and the number of recursive
alls is bounded by 0O(nlogn)

e total expected running time i1s then
)(n2log n)

Coszevr Ill$

