Computational Geometry Lecture 7

Jingyi Yu

Computer and Information Science
University of Delaware

New Concept: Arrangements of Lines

- L is a set of n lines in the plane.
- L induces a subdivision of the plane that consists of vertices, edges, and faces.
- This is called the arrangement induced by L, denoted $A(L)$

- The complexity of an arrangement is the total number of vertices, edges, and faces.

Arrangments

- Number of vertices of $A(L) \leq\binom{ n}{2}$
- Vertices of $A(L)$ are intersections of $l_{i}, l_{j} \in L$
- Number of edges of $A(L) \leq n^{2}$
- Number of edges on a single line in $A(L)$ is one more than number of vertices on that line.
- Number of faces of $A(L) \leq \frac{n^{2}}{2}+\frac{n}{2}+1$
- Inductive reasoning: add lines one by one Each edge of new line splits a face. $\rightarrow 1+\sum_{i=1}^{n} i$
- Total complexity of an arrangement is $O\left(n^{2}\right)$

How Do We Store an Arrangement?

- Data Type: doubly-connected edge-list (DCEL)
- Vertex:
- Coordinates, Incident Edge
- Face:
- an Edge
- Half-Edges
- Origin Vertex
- Twin Edge
- Incident Face
- Next Edge, Prev Edge

Building the Arrangement

- Iterative algorithm: put one line in at a time.
- Start with the first edge e that l_{i} intersects.
- Split that edge, and move to Twin(e)

ConstructArrangement Algorithm

Input: A set L of n lines in the plane
Output: DCEL for the subdivision induced by the part of $A(L)$ inside a bounding box

1. Compute a bounding box $B(L)$ that contains all vertices of $A(L)$ in its interior
2. Construct the DCEL for the subdivision induced by $B(L)$
3. \quad for $i=1$ to n do
4. Find the edge e on $B(L)$ that contains the leftmost intersection point of l_{i} and A_{i}
5. $\quad \mathrm{f}=$ the bounded face incident to e
6. while f is not the face outside $B(L)$ do
7. \quad Split f, and set f to be the next intersected face

ConstructArrangement Algorithm -Running Time-

- We need to insert n lines.
- Each line splits $O(n)$ edges.
- We may need to traverse $O(n) \operatorname{Next}(e)$ pointers to find the next edge to split.

Zones

- The zone of a line l in an arrangement $A(L)$ is the set of faces of $A(L)$ whose closure intersects l.

- Note how this relates to the complexity of inserting a line into a DCEL...

Zone Complexity

- The complexity of a zone is defined as the total complexity of all the faces it consists of, i.e. the sum of the number of edges and vertices of those faces.
- The time it takes to insert line l_{i} into a DCEL is linear in the complexity of the zone of l_{i} in $\mathrm{A}\left(\left\{l_{1}, \ldots, l_{i-1}\right\}\right)$.

Zone Theorem

- The complexity of the zone of a line in an arrangement of m lines on the plane is $O(m)$
- We can insert a line into an arrangement in linear time.
- We can build an arrangement in $O\left(n^{2}\right)$ time.

Proof of Zone Theorem

- Given an arrangement of m lines, $A(L)$, and a line l.
- Change coordinate system so l is the x-axis.
- Assume (for now) no horizontal lines

Proof of Zone Theorem

- Each edge in the zone of l is a left bounding edge and a right bounding edge.

- Claim: number of left bounding edges $\leq 5 \mathrm{~m}$
- Same for number of right bounding edges
\rightarrow Total complexity of zone(l) is linear

Proof of Zone Theorem -Base Case-

- When $m=1$, this is trivially true. (1 left bounding edge ≤ 5)

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line l_{r} : i.e. Zone of l in $A\left(L-\left\{l_{r}\right\}\right)$ has at most 5(m-1) left bounding edges
- Assuming no other line intersects l at the same point as l_{r}, add l_{r}

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line l_{r} : i.e. Zone of l in $A\left(L-\left\{l_{r}\right\}\right)$ has at most 5(m-1) left bounding edges
- Assuming no other line intersects l at the same point as l_{r}, add l_{r}

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line l_{r} : i.e. Zone of l in $A\left(L-\left\{l_{r}\right\}\right)$ has at most 5(m-1) left bounding edges
- Assuming no other line intersects l at the same point as l_{r}, add l_{r}
$-l_{r}$ has one left bounding edge with $l(+1)$

Proof of Zone Theorem -Inductive Case-

- Assume true for all but the rightmost line l_{r} : i.e. Zone of l in $A\left(L-\left\{l_{r}\right\}\right)$ has at most $5(m-1)$ left bounding edges
- Assuming no other line intersects l at the same point as l_{r}, add l_{r}
$-l_{r}$ has one left bounding edge with $l(+1)$
$-l_{r}$ splits at most two left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if l_{r} intersects l at the same point as another line, l_{i} does?
$-l_{r}$ has two left bounding edges (+2)
$-l_{i}$ is split into two left bounding edges (+1)
- As in simpler case, l_{r} splits two other left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if l_{r} intersects l at the same point as another line, l_{i} does? (+5)
- What if >2 lines $\left(l_{i}, l_{j}, \ldots\right)$ intersect l at the same point?
- Like above, but l_{i}, l_{j}, \ldots are already split in two (+4)

Proof of Zone Theorem -Loosening Assumptions-

- What if there are horizontal lines in L ?
- A horizontal line introduces less complexity into $\mathrm{A}(\mathrm{L})$ than a non-horizontal line.

Done proving the Zone Theorem

Ray-Tracing

- Render a scene by shooting a ray from the viewer through each pixel in the scene, and determining what object it hits.
- Straight lines will have visible jaggies.
- We need to supersample

Supersampling

- We shoot many rays through each pixel and average the results.
- How should we distribute the rays over the pixel? Regularly?
- Distributing rays regularly isn't such a good idea. Small per-pixel error, but regularity in error across rows and columns. (Human vision is sensitive to this.)

Sample Point Set Rendered Half-Plane

(4x zoom)

Supersampling

- We need to choose our sample points in a somewhat random fashion.
- Finding the ideal distribution of n sample points in the pixel is a very difficult mathematical problem.
- Instead we'll generate several random samplings and measure which one is best.
- How do we measure how good a distribution is?

Big Picture

- To ray-trace a pixel realistically, we need pick a good distribution of sample points in the pixel.
- We need to be able to determine how good a distribution of sample points is.

> How do we do this?

Discrepancy

- We want to calculate the discrepancy of a distribution of sample points relative to possible scenes.
- Assume all objects project onto our screen as polygons.
- We're really only interested in the simplest case: more complex cases don't exhibit regularity of error.

Discrepancy

- Pixel: Unit square $U=[0: 1] \times[0: 1]$

Discrepancy

- Pixel: Unit square $U=[0: 1] \times[0: 1]$
- Scene: $H=$ (infinite) set of all possible halfplanes h.

Discrepancy

- Pixel: Unit square $U=[0: 1] \times[0: 1]$
- Scene: $H=$ set of all possible half-planes h.
- Distribution of sample points: set S

Discrepancy

- Pixel: Unit square $U=[0: 1] \times[0: 1]$
- Scene: $H=$ set of all possible half-planes h.
- Distribution of sample points: set S
- Continuous Measure: $\mu(h)=$ area of $h \cap U$

Discrepancy

- Pixel: Unit square $U=[0: 1] \times[0: 1]$
- Scene: $H=$ set of all possible half-planes h.
- Distribution of sample points: set S
- Continuous Measure: $\mu(h)=$ area of $h \cap U$
- Discrete Measure:

$$
\mu_{S}(h)=\operatorname{card}(S \cap h) / \operatorname{card}(S)
$$

Discrepancy

- Pixel: Unit square $U=[0: 1] \times[0: 1]$
- Scene: $H=$ set of all possible half-planes h.
- Distribution of sample points: set S
- Continuous Measure: $\mu(h)=$ area of $h \cap U$
- Discrete Measure:

$$
\mu_{S}(h)=\operatorname{card}(S \cap h) / \operatorname{card}(S)
$$

- Discrepancy of h wrt S :

$$
\Delta_{\mathrm{S}}(h)=\left|\mu(h)-\mu_{\mathrm{S}}(h)\right|
$$

Discrepancy

- Pixel: Unit square $U=[0: 1] \times[0: 1]$
- Scene: $H=$ set of all possible half-planes h.
- Distribution of sample points: set S
- Continuous Measure: $\mu(h)=$ area of $h \cap U$
- Discrete Measure: $\mu_{s}(h)=\operatorname{card}(S \cap h) / \operatorname{card}(S)$
- Discrepancy of h wrt $S: \Delta_{S}(h)=\left|\mu(h)-\mu_{S}(h)\right|$
- Half-plane discrepancy of S :

$$
\Delta_{H}(S)=\max _{\text {all } h} \Delta_{S}(h)
$$

Big Picture

We've defined the discrepancy of a chosen set of sample points with respect to all possible scenes as:

$$
\Delta_{H}(S)=\max _{\text {all } h} \Delta_{S}(h)
$$

We want to pick S to minimize $\Delta_{H}(S)$

Computing the Discrepancy

- $\Delta_{H}(S)=\max \Delta_{S}(h)$
allh
K
- There are an infinite number of possible half-planes...We can't just loop over all of them.

Computing the Discrepancy

- $\Delta_{H}(S)=\max _{\text {all }} \Delta_{S}(h)$
all h
- There are an infinite number of possible half-planes...We can't just loop over all of them.
- But...the half-plane of maximum discrepancy must pass through one of the sample points.

Computing the Discrepancy

- The half-plane of maximum discrepancy must pass through at least one sample point.
- It may pass through exactly one point
- The maximum discrepancy must be at a local extremum of the continuous measure.
- There are an infinite number of h through point p, but only $O(1)$ of them are local extrema.
- We can calculate the discrepancies of all n points vs $O(1) h$ each, in $O\left(n^{2}\right)$ time.

Computing the Discrepancy

- The half-plane of maximum discrepancy must pass through at least one sample point.
- It may pass through exactly one point
- Or it may pass through two points
- There are $O\left(n^{2}\right)$ possible point pairs.
- We need some new techniques if we want to be able to compute the discrepancy in $O\left(n^{2}\right)$ time.

Big Picture

We've defined the discrepancy of a chosen set of sample points with respect to all possible scenes, $\Delta_{H}(S)$.
We want to pick S to minimize $\Delta_{H}(S)$.

We need a way to compute $O\left(n^{2}\right)$ discrete measures to find values of $\Delta_{S}(h)$.
We want to do this in $O\left(n^{2}\right)$ time.

New Concept: Duality

- The concept: we can map between different ways of interpreting 2D values.
- Points (x,y) can be mapped in a one-to-one manner to lines (slope,intercept) in a different space.
- There are different ways to do this, called duality transforms.

Duality Transforms

- A duality transform is a mapping which takes an element e in the primal plane to element e^{*} in the dual plane.
- One possible duality transform: point $p:\left(p_{x}, p_{y}\right) \Leftrightarrow$ line $p^{*}: y=p_{x} x-p_{y}$ line $l: y=m x+b \Leftrightarrow$ point $l^{*}:(m,-b)$

Duality Transforms

- This duality transform takes
- points to lines, lines to points
- line segments to double wedges
- This duality transform preserves order
- Point p lies above line $l \Leftrightarrow$ point l^{*} lies above line p^{*}

Back to the Discrepancy problem

To determine our discrete measure, we need to:

Determine how many sample points lie below a given line (in the primal plane).

Back to the Discrepancy problem

To determine our discrete measure, we need to:
Determine how many sample points lie below a given line (in the primal plane).

$$
\hat{今} \text { dualizes to 令 }
$$

Given a point in the dual plane we want to determine how many sample lines lie above it.

Is this easier to compute?

Duality

- The dualized version of a problem is no easier or harder to compute than the original problem.
- But the dualized version may be easier to think about.

Back to Discrepancy (Again)

- For every line between two sample points, we want to determine how many sample points lie below that line.
-Or-
- For every vertex in the dual plane, we want to determine how many sample lines lie above it.
- We build the arrangement $A\left(S^{*}\right)$ and use that to determine, for each vertex, how many lines lie above it. Call this the level of a vertex.

Levels and Discrepancy

- For each line l in S^{*}
- Compute the level of the leftmost vertex. $O(n)$
- Check, for all other lines l_{i}, whether l_{i} is above that vertex
- Walk along l from left to right to visit the other vertices on l, using the DCEL.
- Walk along l, maintaining the level as we go (by inspecting the edges incident to each vertex we encounter).
- $O(n)$ per line

What did we just do?

- Given the level of a vertex in the (dualized) arrangement, we can compute the discrete measure of S wrt the h that vertex corresponds to in $O(1)$ time.
- We can compute all the interesting discrete measures in $O\left(n^{2}\right)$ time.
- Thus we can compute all $\Delta_{S}(h)$, and hence $\Delta_{\mathrm{H}}(S)$, in $O\left(n^{2}\right)$ time.

Summary

- Problem regarding points S in ray-tracing
- Dualize to a problem of lines L.
- Compute arrangement of lines $A(L)$.
- Compute level of each vertex in $A(L)$.
- Use this to compute discrete measures in primal space.
- We can determine how good a distribution of sample points is in $O\left(n^{2}\right)$ time.

Further

- Zone Theorem has an analog in higher dimensions
- Zone of a hyperplane in an arrangement of n hyperplanes in d-dimensional space has complexity $O\left(n^{d-1}\right)$

