

Computational Geometry Lecture 7

Jingyi Yu Computer and Information Science University of Delaware

New Concept: Arrangements of Lines

- *L* is a set of *n* lines in the plane.
- *L* induces a subdivision of the plane that consists of vertices, edges, and faces.
- This is called the *arrangement* induced by *L*, denoted *A*(*L*)
- The *complexity* of an arrangement is the total number of vertices, edges, and faces.

Arrangments

- Number of vertices of $A(L) \le \binom{n}{2}$ Vertices of A(L) are intersections of $l_i, l_j \in L$
- Number of edges of $A(L) \le n^2$
 - Number of edges on a single line in A(L) is one more than number of vertices on that line.
- Number of faces of $A(L) \le \frac{n^2}{2} + \frac{n}{2} + 1$
- Inductive reasoning: add lines one by one Each edge of new line splits a face. $\rightarrow 1 + \sum_{i=1}^{n} i$
- Total complexity of an arrangement is $O(n^2)$

How Do We Store an Arrangement?

- Data Type: doubly-connected edge-list (DCEL)
 - Vertex:
 - Coordinates, Incident Edge
 - Face:
 - an Edge
 - Half-Edges
 - Origin Vertex
 - Twin Edge
 - Incident Face
 - Next Edge, Prev Edge

Building the Arrangement

- Iterative algorithm: put one line in at a time.
- Start with the first edge e that l_i intersects.
- Split that edge, and move to *Twin(e)*

ConstructArrangement Algorithm

Input: A set L of n lines in the plane

- *Output*: DCEL for the subdivision induced by the part of A(L) inside a bounding box
- 1. Compute a bounding box B(L) that contains all vertices of A(L) in its interior
- 2. Construct the DCEL for the subdivision induced by B(L)
- 3. **for** *i*-1 to *n* **do**
- 4. Find the edge e on B(L) that contains the leftmost intersection point of l_i and A_i
- 5. f = the bounded face incident to e
- 6. while f is not the face outside B(L) do

Split *f*, and set *f* to be the next intersected face

ConstructArrangement Algorithm -Running Time-

- We need to insert *n* lines.
- Each line splits O(n) edges.
- We may need to traverse O(n) Next(e) pointers to find the next edge to split.

Zones

• The *zone* of a line *l* in an arrangement *A*(*L*) is the set of faces of *A*(*L*) whose closure intersects *l*.

• Note how this relates to the complexity of inserting a line into a DCEL...

Zone Complexity

- The complexity of a zone is defined as the total complexity of all the faces it consists of, i.e. the sum of the number of edges and vertices of those faces.
- The time it takes to insert line l_i into a DCEL is linear in the complexity of the zone of l_i in A({l₁,...,l_{i-1}}).

Zone Theorem

- The complexity of the zone of a line in an arrangement of *m* lines on the plane is *O*(*m*)
- We can insert a line into an arrangement in linear time.
- We can build an arrangement in *O*(*n*²) time.

Proof of Zone Theorem

- Given an arrangement of *m* lines, *A*(*L*), and a line *l*.
- Change coordinate system so *l* is the x-axis.
- Assume (for now) no horizontal lines

Proof of Zone Theorem

• Each edge in the zone of *l* is a *left bounding edge* and a *right bounding edge*.

- Claim: number of left bounding edges $\leq 5m$
- Same for number of right bounding edges
 → Total complexity of *zone(l)* is linear

Proof of Zone Theorem -Base Case-

When *m*=1, this is trivially true.
 (1 left bounding edge ≤ 5)

- Assume true for all but the rightmost line l_r:
 i.e. Zone of l in A(L-{l_r}) has at most 5(m-1)
 left bounding edges
- Assuming no other line intersects l at the same point as l_r , add l_r

- Assume true for all but the rightmost line l_r:
 i.e. Zone of l in A(L-{l_r}) has at most 5(m-1)
 left bounding edges
- Assuming no other line intersects l at the same point as l_r , add l_r

- Assume true for all but the rightmost line l_r:
 i.e. Zone of l in A(L-{l_r}) has at most 5(m-1)
 left bounding edges
- Assuming no other line intersects l at the same point as l_r , add l_r
 - $-l_r$ has one left bounding edge with l(+1)

- Assume true for all but the rightmost line l_r:
 i.e. Zone of l in A(L-{l_r}) has at most 5(m-1) left bounding edges
- Assuming no other line intersects l at the same point as l_r , add l_r
 - $-l_r$ has one left bounding edge with l(+1)
 - $-l_r$ splits at most two left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if l_r intersects l at the same point as another line, l_i does?
 - $-l_r$ has two left bounding edges (+2)
 - $-l_i$ is split into two left bounding edges (+1)
 - As in simpler case, l_r splits two other left bounding edges (+2)

Proof of Zone Theorem Loosening Assumptions

- What if l_r intersects l at the same point as another line, l_i does? (+5)
- What if >2 lines ($l_i, l_j, ...$) intersect l at the same point?
 - Like above, but l_i, l_j, ...
 are already split in two (+4)

Proof of Zone Theorem -Loosening Assumptions-

- What if there are horizontal lines in *L*?
- A horizontal line introduces *less* complexity into A(L) than a non-horizontal line.

Department of Computer and Information Science

Done proving the Zone Theorem

Ray-Tracing

- Render a scene by shooting a ray from the viewer through each pixel in the scene, and determining what object it hits.
- Straight lines will have visible jaggies.
- We need to supersample

Supersampling

- We shoot many rays through each pixel and average the results.
- How should we distribute the rays over the pixel? Regularly?
- Distributing rays regularly isn't such a good idea. Small per-pixel error, but regularity in error across rows and columns. (Human vision is sensitive to this.)

Wow...that really makes a difference! Department of Computer and Information Science

Supersampling

- We need to choose our sample points in a somewhat random fashion.
- Finding the ideal distribution of *n* sample points in the pixel is a very difficult mathematical problem.
- Instead we'll generate several random samplings and measure which one is best.
- How do we measure how good a distribution is?

Big Picture

- To ray-trace a pixel realistically, we need pick a good distribution of sample points in the pixel.
- We need to be able to determine how good a distribution of sample points is.

How do we do this?

- We want to calculate the discrepancy of a distribution of sample points relative to possible scenes.
- Assume all objects project onto our screen as polygons.
- We're really only interested in the simplest case: more complex cases don't exhibit regularity of error.

• Pixel: Unit square $U = [0:1] \times [0:1]$

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: H (infinite) set of all possible halfplanes h.

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: H set of all possible half-planes h.
- Distribution of sample points: set *S*

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: H set of all possible half-planes h.
- Distribution of sample points: set *S*
- Continuous Measure: $\mu(h)$ = area of $h \cap U$

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: H set of all possible half-planes h.
- Distribution of sample points: set *S*
- Continuous Measure: $\mu(h)$ = area of $h \cap U$
- Discrete Measure:

 $\mu_{S}(h) = \operatorname{card}(S \cap h) / \operatorname{card}(S)$

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: H = set of all possible half-planes h.
- Distribution of sample points: set *S*
- Continuous Measure: $\mu(h)$ area of $h \cap U$
- Discrete Measure:

 $\mu_S(h) = \operatorname{card}(S \cap h) / \operatorname{card}(S)$

• Discrepancy of *h* wrt *S*: $\Delta_{S}(h) = | \mu(h) - \mu_{S}(h) |$

- Pixel: Unit square $U = [0:1] \times [0:1]$
- Scene: H = set of all possible half-planes h.
- Distribution of sample points: set *S*
- Continuous Measure: $\mu(h) = \text{area of } h \cap U$
- Discrete Measure: $\mu_S(h) = \operatorname{card}(S \cap h) / \operatorname{card}(S)$
- Discrepancy of *h* wrt *S*: $\Delta_{S}(h) = |\mu(h) \mu_{S}(h)|$
- Half-plane discrepancy of *S* :

$$\Delta_H(S) = \max_{\text{all } h} \Delta_S(h)$$

Big Picture

We've defined the discrepancy of a chosen set of sample points with respect to all possible scenes as:

$$\Delta_H(S) = \max_{\text{all } h} \Delta_S(h)$$

We want to pick S to minimize $\Delta_H(S)$

Computing the Discrepancy

- $\Delta_H(S) = \max_{\text{all } h} \Delta_S(h)$
- There are an infinite number of possible half-planes...We can't just loop over all of them.

Computing the Discrepancy

•
$$\Delta_H(S) = \max_{\text{all } h} \Delta_S(h)$$

- There are an infinite number of possible half-planes...We can't just loop over all of them.
- But...the half-plane of maximum discrepancy must pass through one of the sample points.

Computing the Discrepancy

- The half-plane of maximum discrepancy must pass through at least one sample point.
- It may pass through exactly one point
 - The maximum discrepancy must be at a local extremum of the continuous measure.
 - There are an infinite number of h through point p, but only O(1) of them are local extrema.
 - We can calculate the discrepancies of all n points vs O(1) h each, in $O(n^2)$ time.

Computing the Discrepancy

- The half-plane of maximum discrepancy must pass through at least one sample point.
- It may pass through exactly one point
- Or it may pass through two points
 - There are $O(n^2)$ possible point pairs.
 - We need some new techniques if we want to be able to compute the discrepancy in $O(n^2)$ time.

Big Picture

We've defined the discrepancy of a chosen set of sample points with respect to all possible scenes, $\Delta_H(S)$.

We want to pick S to minimize $\Delta_H(S)$.

We need a way to compute $O(n^2)$ discrete measures to find values of $\Delta_S(h)$. We want to do this in $O(n^2)$ time.

New Concept: Duality

- The concept: we can map between different ways of interpreting 2D values.
- Points (x,y) can be mapped in a one-to-one manner to lines (slope,intercept) in a different space.
- There are different ways to do this, called *duality transforms*.

Duality Transforms

- A *duality transform* is a mapping which takes an element *e* in the *primal plane* to element *e** in the *dual plane*.
- One possible duality transform: point $p: (p_x, p_y) \iff \text{line } p^*: y = p_x x - p_y$ line $l: y = mx + b \iff \text{point } l^*: (m, -b)$

Department of Computer and Information Science

Duality Transforms

- This duality transform takes
 - points to lines, lines to points
 - line segments to double wedges
- This duality transform preserves order
 - Point *p* lies above line $l \Leftrightarrow$ point l^* lies above line p^*

Back to the Discrepancy problem

To determine our discrete measure, we need to:

Determine how many sample points lie below a given line (in the primal plane).

Back to the Discrepancy problem

To determine our discrete measure, we need to: Determine how many sample points lie below a given line (in the primal plane).

dualizes to i

Given a point in the dual plane we want to determine how many sample lines lie above it.

Is this easier to compute?

Department of Computer and Information Science

Duality

- The dualized version of a problem is no easier or harder to compute than the original problem.
- But the dualized version may be easier to think about.

Back to Discrepancy (Again)

• For every line between two sample points, we want to determine how many sample points lie below that line.

-01-

- For every vertex in the dual plane, we want to determine how many sample lines lie above it.
- We build the arrangement A(S*) and use that to determine, for each vertex, how many lines lie above it. Call this the *level* of a vertex.

Department of Computer and Information Science

Levels and Discrepancy

- For each line *l* in *S**
 - Compute the level of the leftmost vertex. O(n)
 - Check, for all other lines l_i , whether l_i is above that vertex
 - Walk along *l* from left to right to visit the other vertices on *l*, using the DCEL.
 - Walk along *l*, maintaining the level as we go (by inspecting the edges incident to each vertex we encounter).
 - O(n) per line

What did we just do?

- Given the level of a vertex in the (dualized) arrangement, we can compute the discrete measure of *S* wrt the *h* that vertex corresponds to in *O*(1) time.
- We can compute all the interesting discrete measures in $O(n^2)$ time.
- Thus we can compute all $\Delta_{\rm S}(h)$, and hence $\Delta_{\rm H}(S)$, in $O(n^2)$ time.

Summary

- Problem regarding points S in ray-tracing
- Dualize to a problem of lines *L*.
- Compute arrangement of lines A(L).
- Compute level of each vertex in A(L).
- Use this to compute discrete measures in primal space.
- We can determine how good a distribution of sample points is in $O(n^2)$ time.

Further

- Zone Theorem has an analog in higher dimensions
 - Zone of a hyperplane in an arrangement of n hyperplanes in d-dimensional space has complexity $O(n^{d-1})$

