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New Concept:New Concept:
Arrangements of Lines

• L is a set of n lines in the plane.
• L induces a subdivision of the

plane that consists of vertices,
edges, and faces.

• This is called the arrangement
induced by L, denoted A(L)

• The complexity of an arrangement is the 
total number of vertices, edges, and faces.
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Arrangments
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• Number of vertices of A(L) ≤
– Vertices of A(L) are intersections of li,lj∈L
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• Number of edges of A(L) ≤ n2

– Number of edges on a single line in A(L) is one more 
than number of vertices on that line.

• Number of faces of A(L) ≤
• Inductive reasoning: add lines one by one
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Inductive reasoning: add lines one by one
Each edge of new line splits a face. 

• Total complexity of an arrangement is O(n2)
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Total complexity of an arrangement is O(n )



How Do We Store anHow Do We Store an 
Arrangement?

• Data Type: doubly-connected edge-list (DCEL)
– Vertex:

• Coordinates, Incident Edge

– Face:
• an Edge• an Edge

– Half-Edges
• Origin Vertex
• Twin Edge
• Incident Face
• Next Edge Prev Edge
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Next Edge, Prev Edge



Building the Arrangement

• Iterative algorithm: put one line in at a time.
• Start with the first edge e that li intersectsStart with the first edge e that li intersects.
• Split that edge, and move to Twin(e)
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ConstructArrangement Algorithm
Input: A set L of n lines in the plane
Output: DCEL for the subdivision induced by the part of A(L) p y p ( )

inside a bounding box
1. Compute a bounding box B(L) that contains all vertices 

f A(L) i it i t iof A(L) in its interior
2. Construct the DCEL for the subdivision induced by B(L)
3 for i=1 to n do3. for i 1 to n do
4. Find the edge e on B(L) that contains the leftmost 

intersection point of li and Aii i

5. f = the bounded face incident to e
6. while f is not the face outside B(L) do

Department of Computer and Information ScienceDepartment of Computer and Information Science

7. Split f, and set f to be the next intersected face



ConstructArrangement AlgorithmConstructArrangement Algorithm
-Running Time-

• We need to insert n lines.
• Each line splits O(n) edgesEach line splits O(n) edges.
• We may need to traverse O(n) Next(e) 

pointers to find the next edge to splitpointers to find the next edge to split.
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• The zone of a line l in an arrangement A(L)

Zones
• The zone of a line l in an arrangement A(L) 

is the set of faces of A(L) whose closure 
intersects l.intersects l.

l

• Note how this relates to the complexity of 
i ti li i t DCEL
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inserting a line into a DCEL…



Zone Complexity

• The complexity of a zone is defined as the 
total complexity of all the faces it consists p y
of, i.e. the sum of the number of edges and 
vertices of those faces.

• The time it takes to insert line li into a 
DCEL is linear in the complexity of theDCEL is linear in the complexity of the 
zone of li in A({l1,…,li-1}).
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Zone Theorem

• The complexity of the zone of a line in an 
arrangement of m lines on the plane is O(m)g p ( )

• We can insert a line into an arrangement in• We can insert a line into an arrangement in 
linear time.
W b ild i O( 2)• We can build an arrangement in O(n2) 
time.
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Proof of Zone Theorem
• Given an arrangement of m lines, A(L),

and a line l.
• Change coordinate system so l is the x-axis.
• Assume (for now) no horizontal linesAssume (for now) no horizontal lines

l
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Proof of Zone Theorem
• Each edge in the zone of l is a left bounding• Each edge in the zone of l is a left bounding 

edge and a right bounding edge.

• Claim: number of left bounding edges ≤ 5mClaim: number of left bounding edges ≤ 5m
• Same for number of right bounding edges

Total complexity of zone(l) is linear
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Total complexity of zone(l) is linear



Proof of Zone TheoremProof of Zone Theorem
-Base Case-

• When m=1, this is trivially true.
(1 left bounding edge ≤ 5)( g g )
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Proof of Zone TheoremProof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line lr:
i.e. Zone of l in A(L-{lr}) has at most 5(m-1) ( { r}) ( )
left bounding edges

• Assuming no other line intersects l at theAssuming no other line intersects l at the 
same point as lr , add lr 
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Proof of Zone TheoremProof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line lr:
i.e. Zone of l in A(L-{lr}) has at most 5(m-1) ( { r}) ( )
left bounding edges

• Assuming no other line intersects l at theAssuming no other line intersects l at the 
same point as lr , add lr 
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Proof of Zone TheoremProof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line lr:
i.e. Zone of l in A(L-{lr}) has at most 5(m-1) ( { r}) ( )
left bounding edges

• Assuming no other line intersects l at theAssuming no other line intersects l at the 
same point as lr , add lr 

l has one left bounding– lr has one left bounding
edge with l (+1)

+1
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Proof of Zone TheoremProof of Zone Theorem
-Inductive Case-

• Assume true for all but the rightmost line lr:
i.e. Zone of l in A(L-{lr}) has at most 5(m-1) 
left bounding edges

• Assuming no other line intersects l at the 
same point as lr , add lr 
– lr has one left bounding

d ith l (+1)edge with l (+1)
– lr splits at most two left

bounding edges (+2) +1

+1
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bounding edges (+2)
+1



Proof of Zone TheoremProof of Zone Theorem
Loosening Assumptions

• What if lr intersects l at the same point as 
another line, li does? , i
– lr has two left bounding edges (+2)
– li is split into two left bounding edges (+1)li is split into two left bounding edges (+1)
– As in simpler case,

lr splits two other left +1r p
bounding edges (+2)

+2
+1

Department of Computer and Information ScienceDepartment of Computer and Information Science

+2
+1



Proof of Zone TheoremProof of Zone Theorem
Loosening Assumptions

• What if lr intersects l at the same point as 
another line, li does? (+5)

• What if >2 lines (li, lj, …) intersect l at the 
same point?
– Like above, but li, lj, …

are already split in two
(+4) +1(+4)

+2
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+2
+1



Proof of Zone TheoremProof of Zone Theorem
-Loosening Assumptions-

• What if there are horizontal lines in L?
• A horizontal line introduces less complexityA horizontal line introduces less complexity 

into A(L) than a non-horizontal line.
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Ray-Tracing

• Render a scene by shooting a ray from the 
viewer through each pixel in the scene, and g p ,
determining what object it hits.

• Straight lines will haveStraight lines will have
visible jaggies.

• We need to supersample• We need to supersample
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Supersampling

• We shoot many rays through each pixel and 
average the results.

• How should we distribute the rays over the 
pixel? Regularly?

• Distributing rays regularly isn’t such a good 
idea. Small per-pixel error, but regularity in 
error across rows and columns. (Human 
vision is sensitive to this.)
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Sample Point Set (4x zoom)Rendered Half-Plane
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Wow…that really makes a difference!



Supersampling

• We need to choose our sample points in a 
somewhat random fashion.

• Finding the ideal distribution of n sample points in 
the pixel is a very difficult mathematical problem.

• Instead we’ll generate several random samplings 
and measure which one is best.

• How do we measure how good a distribution is?
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Big Picture

• To ray-trace a pixel realistically, we need 
pick a good distribution of sample points in p g p p
the pixel.

• We need to be able to determine how goodWe need to be able to determine how good 
a distribution of sample points is.

How do we do this?
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Discrepancyp y
• We want to calculate the discrepancy of a 

distribution of sample points relative todistribution of sample points relative to 
possible scenes.

• Assume all objects project onto our screen• Assume all objects project onto our screen 
as polygons.

• We’re really only interested in the simplestWe re really only interested in the simplest 
case: more complex cases don’t exhibit 
regularity of error.g y
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Discrepancy

• Pixel: Unit square U = [0:1] x [0:1]

1

U

1
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Discrepancy

• Pixel: Unit square U = [0:1] x [0:1]
• Scene: H = (infinite) set of all possible half-Scene: H  (infinite) set of all possible half

planes h.

U hUUU
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Discrepancy

• Pixel: Unit square U = [0:1] x [0:1]
• Scene: H = set of all possible half-planes hScene: H  set of all possible half planes h.
• Distribution of sample points: set S

S
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Discrepancy

• Pixel: Unit square U = [0:1] x [0:1]
• Scene: H = set of all possible half-planes hScene: H  set of all possible half planes h.
• Distribution of sample points: set S

C i M (h) f h U• Continuous Measure: μ(h) = area of h ∩ U

μ(h)
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Discrepancy

• Pixel: Unit square U = [0:1] x [0:1]
• Scene: H = set of all possible half-planes hScene: H  set of all possible half planes h.
• Distribution of sample points: set S

C i M (h) f h U• Continuous Measure: μ(h) = area of h ∩ U
• Discrete Measure:

μS(h) = card(S ∩ h) / card(S)
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Discrepancy

• Pixel: Unit square U = [0:1] x [0:1]
• Scene: H = set of all possible half-planes h.p p
• Distribution of sample points: set S
• Continuous Measure: μ(h) = area of h ∩ UContinuous Measure: μ(h)  area of h ∩ U
• Discrete Measure:

μS(h) = card(S ∩ h) / card(S)μS(h)  card(S ∩ h) / card(S)
• Discrepancy of h wrt S:

ΔS(h) = | μ(h) - μS(h) |
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ΔS(h)  | μ(h) μS(h) |



Discrepancy

• Pixel: Unit square U = [0:1] x [0:1]
• Scene: H = set of all possible half-planes h.
• Distribution of sample points: set S
• Continuous Measure: μ(h) = area of h ∩ U

Di t M (h) d(S h) / d(S)• Discrete Measure: μS(h) = card(S ∩ h) / card(S)
• Discrepancy of h wrt S: ΔS(h) = | μ(h) - μS(h) |

• Half plane discrepancy of S :• Half-plane discrepancy of S :
)(max)(

all
hS ShH Δ=Δ
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all h



Big Picture

We’ve defined the discrepancy of a chosen set 
of sample points with respect to all possible p p p p
scenes as:

)(max)( hS SH Δ=Δ

W i k S i i i Δ (S)

)()(
 all ShH

We want to pick S to minimize ΔH(S)
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Computing the Discrepancy

• )(max)(
 all

hS ShH Δ=Δ

• There are an infinite number of possible 
half planes We can’t just loop over all ofhalf-planes…We can t just loop over all of 
them.
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Computing the Discrepancy

• )(max)(
 all

hS ShH Δ=Δ

• There are an infinite number of possible 
half-planes…We can’t just loop over all of 
them.

• But…the half-plane of maximum 
discrepancy must pass through one
of the sample points. 
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Computing the Discrepancy

• The half-plane of maximum discrepancy 
must pass through at least one sample point.

• It may pass through exactly one point
– The maximum discrepancy must be at a local 

extremum of the continuous measure.
– There are an infinite number of h through point 

b t l O(1) f th l l tp, but only O(1) of them are local extrema.
– We can calculate the discrepancies of all n

points vs O(1) h each in O(n2) time
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points vs O(1) h each, in O(n ) time.



Computing the Discrepancy

• The half-plane of maximum discrepancy 
must pass through at least one sample point.p g p p

• It may pass through exactly one point
• Or it may pass through two points• Or it may pass through two points

– There are O(n2) possible point pairs.
W d h i if b– We need some new techniques if we want to be 
able to compute the discrepancy in O(n2) time.
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Big Picture

We’ve defined the discrepancy of a chosen set 
of sample points with respect to all possible 
scenes, ΔH(S).
We want to pick S to minimize ΔH(S).

We need a way to compute O(n2) discrete y p ( )
measures to find values of ΔS(h).
We want to do this in O(n2) time.
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New Concept: Duality

• The concept: we can map between different 
ways of interpreting 2D values.y p g

• Points (x,y) can be mapped in a one-to-one 
manner to lines (slope intercept) in amanner to lines (slope,intercept) in a 
different space.

• There are different ways to do this called• There are different ways to do this, called 
duality transforms. 
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Duality Transforms

• A duality transform is a mapping which 
takes an element e in the primal plane to p p
element e* in the dual plane.

• One possible duality transform:
point p: (p p ) line p*: y = p x ppoint p: (px,py) line p*: y = px x – py
line l: y = mx + b point l*: (m, -b)
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Duality Transforms

• This duality transform takes
– points to lines, lines to pointspoints to lines, lines to points
– line segments to double wedges

• This duality transform preserves order• This duality transform preserves order
– Point p lies above line l point l* lies above 

line p*line p
p

l*
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Back to the Discrepancy problem

To determine our discrete measure, we need to:

Determine how many sample points lie below a 
given line (in the primal plane).
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Back to the Discrepancy problem

To determine our discrete measure, we need to:
Determine how many sample points lie below a y p p
given line (in the primal plane).

dualizes to
Given a point in the dual plane we want to 
determine how many sample lines lie above it.

Is this easier to compute?
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Duality

• The dualized version of a problem is no 
easier or harder to compute than the original p g
problem.

• But the dualized version may be easier to 
think aboutthink about.
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Back to Discrepancy (Again)Back to Discrepancy (Again)
• For every line between two sample points, we 

want to determine how many sample points lie 
below that line.

-or--or-
• For every vertex in the dual plane, we want to 

determine how many sample lines lie above it.y p
• We build the arrangement A(S*) and

use that to determine, for each vertex,
h li li b ihow many lines lie above it.
Call this the level of a vertex.
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Levels and DiscrepancyLevels and Discrepancy
• For each line l in S*For each line l in S

– Compute the level of the leftmost vertex. O(n)
• Check, for all other lines li,whether li is above that i i

vertex
– Walk along l from left to right to visit the other 

vertices on l using the DCELvertices on l, using the DCEL.
• Walk along l, maintaining the level as we go (by 

inspecting the edges incident to each vertex we 
encounter).

– O(n) per line
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What did we just do?

• Given the level of a vertex in the (dualized) 
arrangement, we can compute the discrete 
measure of S wrt the h that vertex 
corresponds to in O(1) time.

• We can compute all the interesting 
discrete measures in O(n2) time.

• Thus we can compute all ΔS(h), and hence 
ΔH(S), in O(n2) time.
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Summary

• Problem regarding points S in ray-tracing
• Dualize to a problem of lines L.p
• Compute arrangement of lines A(L).
• Compute level of each vertex in A(L)Compute level of each vertex in A(L).
• Use this to compute discrete measures in 

primal spaceprimal space.
• We can determine how good a distribution 

of sample points is in O(n2) time
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of sample points is in O(n ) time.



Further

• Zone Theorem has an analog in higher 
dimensions
– Zone of a hyperplane in an arrangement of n 

hyperplanes in d-dimensional space has yp p p
complexity O(nd-1)
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