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New Concept:
Arrangements of Lines

e Lisasetofnlines in the plane.

L induces a subdivision of the
plane that consists of vertices,
edges, and faces.

* This Is called the arrangement
Induced by L, denoted A(L)

* The complexity of an arrangement is the
total number of vertices, edges, and faces.
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Arrangments

e Number of vertices of A(L) < @
— Vertices of A(L) are intersections of |;,l;eL

e Number of edges of A(L) < n?

— Number of edges on a single line in A(L) Is one more
than number of vertices on that line.

» Number of faces of A(L) < n—22+g+1

* Inductive reasoning: add lines one by one_
Each edge of new line splits a face. 2 1+Z'

« Total complexity of an arrangement Is O(n2)

[TYor
%m Department of Computer and Information Science



How Do We Store an
Arrangement?

o Data Type: doubly-connected edge-list (DCEL)

— Vertex:
» Coordinates, Incident Edge

— Face:
e an Edge
— Half-Edges
» Origin Vertex
* Twin Edge
* Incident Face
» Next Edge, Prev Edge

IncidentFace(é)
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Building the Arrangement

e |terative algorithm: put one line in at a time.
« Start with the first edge e that |; intersects.
 Split that edge, and move to Twin(e)
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Input: A set L of n lines in the plane

Output: DCEL for the subdivision induced by the part of A(L)
Inside a bounding box

1. Compute a bounding box B(L) that contains all vertices
of A(L) In its interior

2. Construct the DCEL for the subdivision induced by B(L)

3. fori=ltondo

4. Find the edge e on B(L) that contains the leftmost
Intersection point of |, and A,

b. f = the bounded face incident to e

6. while f is not the face outside B(L) do

7 Split f, and set f to be the next intersected face
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e
ConstructArrangement Algorithm

-Running Time-
e \We need to insert n lines.
« Each line splits O(n) edges.

* \We may need to traverse O(n) Next(e)
pointers to find the next edge to split.
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Zones

e The zone of a line | in an arrangement A(L)

IS the set of faces of A(L) whose closure
Intersects .

* Note how this relates to the complexity of
Inserting a line into a DCEL...
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Zone Complexity

e The complexity of a zone is defined as the
total complexity of all the faces it consists
of, 1.e. the sum of the number of edges and
vertices of those faces.

* The time it takes to insert line I, Into a
DCEL is linear in the complexity of the
zone of I, in A({l,....1i1}).
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Zone Theorem

e The complexity of the zone of a line in an
arrangement of m lines on the plane is O(m)

* \We can insert a line into an arrangement in
linear time.

e We can build an arrangement in O(n?)
time.
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Proof of Zone Theorem

e Given an arrangement of m lines, A(L),
and a line I.

e Change coordinate system so | is the x-axis.
e Assume (for now) no horizontal lines
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Proof of Zone Theorem

e Each edge in the zone of | is a left bounding
edge and a right bounding edge.

o Claim: number of left bounding edges < 5m

e Same for number of right bounding edges
—> Total complexity of zone(l) is linear
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-Base Case-

e \When m=1, this is trivially true.
(1 left bounding edge < 5)
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Proof of Zone Theorem
-Inductive Case-

» Assume true for all but the rightmost line I.:
l.e. Zone of | in A(L-{l,}) has at most 5(m-1)

left bounding edges

e Assuming no other line intersects | at the

same pointas |, , add |,
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Proof of Zone Theorem
-Inductive Case-

» Assume true for all but the rightmost line I.:
l.e. Zone of | in A(L-{l,}) has at most 5(m-1)

left bounding edges

e Assuming no other line intersects | at the

same pointas |, , add |,
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Proof of Zone Theorem
-Inductive Case-

» Assume true for all but the rightmost line I.:
l.e. Zone of | in A(L-{l,}) has at most 5(m-1)
left bounding edges

e Assuming no other line intersects | at the
same pointas |, , add |,
— |, has one left bounding
edge with | (+1)
+1
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Proof of Zone Theorem

-Inductive Case-

» Assume true for all but the rightmost line I.:
l.e. Zone of | in A(L-{l,}) has at most 5(m-1)
left bounding edges

e Assuming no other line intersects | at the
same pointas |, , add I
— |, has one left bounding
edge with | (+1) )
— |, splits at most two left ol
bounding edges (+2)
IVERSITYor -
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Proof of Zone Theorem
Loosening Assumptions

 What if | intersects | at the same point as
another line, |, does?

— |, has two left bounding edges (+2)
— |; 1s split into two left bounding edges

— As In simpler case,
| splits two other left +1
bounding edges (+2) o
/Al
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Proof of Zone Theorem

Loosening Assumptions

 What if | intersects | at the same point as
another line, |; does? (+5)

« What if >2 lines (I;, I;, ...) intersect | at the
same point?

— Like above, but I, ;, ...
are already split in two
(+4)
Al
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Proof of Zone Theorem
-Loosening Assumptions-

 \What If there are horizontal lines in L?

* A horizontal line introduces less complexity
Into A(L) than a non-horizontal line.
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Ray-Tracing

* Render a scene by shooting a ray from the
viewer through each pixel in the scene, and
determining what object It hits.

o Straight lines will have
visible jaggies.

* \We need to supersample
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T
Supersampling

e \We shoot many rays through each pixel and
average the results.

 How should we distribute the rays over the
pixel? Regularly?

 Distributing rays regularly isn’t such a good
Idea. Small per-pixel error, but regularity in
error across rows and columns. (Human
vision IS sensitive to this.)
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Sample Point Set Rendered Half-Plane (4x zoom)
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T
Supersampling

* We need to choose our sample points in a
somewhat random fashion.

* Finding the ideal distribution of n sample points In
the pixel is a very difficult mathematical problem.

 Instead we’ll generate several random samplings
and measure which one is best.

 How do we measure how good a distribution 1s?
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Big Picture

* To ray-trace a pixel realistically, we need
pick a good distribution of sample points in
the pixel.

* \We need to be able to determine how good
a distribution of sample points Is.

How do we do this?
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Blscrepancy

* \We want to calculate the discrepancy of a
distribution of sample points relative to
possible scenes.

« Assume all objects project onto our screen
as polygons.

« \We’re really only interested In the simplest
case: more complex cases don’t exhibit
regularity of error.
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Discrepancy

e Pixel: Unit square U =[0:1] x [0:1]
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Discrepancy

e Pixel: Unit square U =[0:1] x [0:1]
o Scene: H = (infinite) set of all possible half-
planes h.
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Discrepancy

e Pixel: Unit square U =[0:1] x [0:1]
« Scene: H = set of all possible half-planes h.
 Distribution of sample points: set S
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Discrepancy

e Pixel: Unit square U =[0:1] x [0:1]
« Scene: H = set of all possible half-planes h.
 Distribution of sample points: set S
e Continuous Measure: u(h) =areaof h n U

w(h)
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Discrepancy

e Pixel: Unit square U =[0:1] x [0:1]
« Scene: H = set of all possible half-planes h.
 Distribution of sample points: set S
e Continuous Measure: u(h) =areaof h n U

e Discrete Measure:
Ls(h) = card(S m h) / card(S) .o L7
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Discrepancy

e Pixel: Unit square U =[0:1] x [0:1]
« Scene: H = set of all possible half-planes h.
 Distribution of sample points: set S
e Continuous Measure: u(h) =areaof h n U

e Discrete Measure:

Ls(h) = card(S m h) / card(S)
* Discrepancy of h wrt S:

Ag(h) = | p(h) - ps(h) |
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Discrepancy

e Pixel: Unit square U = [0:1] x [0:1]

o Scene: H = set of all possible half-planes h.
 Distribution of sample points: set S

e Continuous Measure: g(h) =areaof h» U
 Discrete Measure: ug(h) = card(S m h) / card(S)
 Discrepancy of hwrt S: Ag(h) = | g(h) - z5(h) |

« Half-plane discrepancy of S :
A (S)=maxA;(h)

allh

ITYor
WE]%%SVARE Department of Computer and Information Science



Big Picture

We’ve defined the discrepancy of a chosen set
of sample points with respect to all possible
scenes as:

A, (S) =maxA.(h)

all h

We want to pick S to minimize A,(S)
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Computing the Discrepancy

e A, (S)=maxA;(h)

all h

N

* There are an infinite number of possible
half-planes...We can’t just loop over all of
them.
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Computing the Discrepancy

* AL (S)= mlﬁ]XAs (h)
* There are an infinite number of possible

half-planes...We can’t just loop over all of
them.

« But...the half-plane of maximum
discrepancy must pass through one |,
of the sample points.
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Computing the Discrepancy

* The half-plane of maximum discrepancy
must pass through at least one sample point.

* |t may pass through exactly one point

— The maximum discrepancy must be at a local
extremum of the continuous measure.

— There are an infinite number of h through point
p, but only O(1) of them are local extrema.

— We can calculate the discrepancies of all n
points vs O(1) h each, in O(n?) time.
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T
Computing the Discrepancy

* The half-plane of maximum discrepancy
must pass through at least one sample point.

* |t may pass through exactly one point

« Or it may pass through two points
— There are O(n?) possible point pairs.

— We need some new techniques if we want to be
able to compute the discrepancy in O(n?) time.
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T
Big Picture

We’ve defined the discrepancy of a chosen set
of sample points with respect to all possible
scenes, A, (S).

We want to pick S to minimize A,(S).

We need a way to compute O(n?) discrete
measures to find values of A;(h).

We want to do this in O(n?) time.
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T
New Concept: Duality

* The concept: we can map between different
ways of interpreting 2D values.

 Points (X,y) can be mapped In a one-to-one
manner to lines (slope,intercept) in a
different space.

* There are different ways to do this, called
duality transforms.

[TYor
%m Department of Computer and Information Science




Duality Transforms

A duality transform is a mapping which
takes an element e in the primal plane to
element e* in the dual plane.

e One possible duality transform:

point p: (p,,p,) & line p*:y=p,x-p,
linel:y=mx+ b & point I*: (m, -b)
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Duality Transforms

e This duality transform takes
— points to lines, lines to points
— line segments to double wedges

 This duality transform preserves order

— Point p lies above line | < point I* lies above
line p*
P

I*

1 ©
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Back to the Discrepancy problem

To determine our discrete measure, we need to:

Determine how many sample points lie below a /
given line (in the primal plane). -
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Back to the Discrepancy problem

To determine our discrete measure, we need to: /

Determine how many sample points lie below a
given line (in the primal plane).

3 dualizesto

Given a point in the dual plane we want to
determine how many sample lines lie above it. %

s this easier to compute? %%
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Duality

e The dualized version of a problem is no

easler or harder to compute than the original
problem.

 But the dualized version may be easier to
think about.

ITYor
W‘E%ARE Department of Computer and Information Science



T
Back to Discrepancy (Again)

* For every line between two sample points, we
want to determine how many sample points lie
below that line.

_Or_

* For every vertex in the dual plane, we want to

determine how many sample lines lie above it.

* We build the arrangement A(S*) and
use that to determine, for each vertex,
how many lines lie above it.

Call this the level of a vertex.

IVERSITY or
EIAWARE Department of Computer and Information Science




Levels and Discrepancy

e Foreach linel in S*

— Compute the level of the leftmost vertex. O(n)

» Check, for all other lines |;,whether I, is above that
vertex
— Walk along | from left to right to visit the other
vertices on |, using the DCEL.

« Walk along I, maintaining the level as we go (by
Inspecting the edges incident to each vertex we
encounter).

— O(n) per line

level = 1
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What did we just do?

e Glven the level of a vertex in the (dualized)
arrangement, we can compute the discrete
measure of S wrt the h that vertex
corresponds to in O(1) time.

* \WWe can compute all the interesting
discrete measures in O(n?) time.

* Thus we can compute all Ag(h), and hence
Ay(S), in O(n?) time.
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Summary

* Problem regarding points S in ray-tracing
e Dualize to a problem of lines L.

e Compute arrangement of lines A(L).

« Compute level of each vertex in A(L).

» Use this to compute discrete measures Iin
primal space.

* \We can determine how good a distribution
of sample points is in O(n?) time.
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Further

e Zone Theorem has an analog in higher
dimensions
— Zone of a hyperplane in an arrangement of n

hyperplanes in d-dimensional space has
complexity O(nd-1)
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