
CISC320, F05, Lec6, Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 6
Sorting in linear time

CISC320, F05, Lec6, Liao 2

A job interview question:
Given integers 1 to 100, but in an arbitrarily unsorted

order. How fast can these 100 integers be sorted
into the increasing order?

Given 10 integers valued between 1 and 100, and in
an arbitrarily unsorted order. How fast can these 10
integers be sorted into the increasing order?

Given 10,000 integers valued between 1 and 100,and
in an arbitrarily unsorted order. How fast can they be
sorted into the increasing order?

CISC320, F05, Lec6, Liao 3

Counting sort: ideas
Problem: to sort an array A of integers
Extra info: each of the n input elements of A is an
integer in the range [0, k].
One scan through A will find how many times each
integer i ∈[0,k] appears in A. The counts are stored
in an auxiliary array C[0..k].
Thus element C[i] is the number of times that
integer i appears in A. ∑j=0 to i C[i] gives the number
of elements of A that are less than i, and this tells
where to put i in a sorted array.

CISC320, F05, Lec6, Liao 4

Counting sort: algorithm

Counting-sort (A, B, k)
1. for (i=0; i<k; i++)
2. C[i] = 0; // initialize array C to store counts.
3. for (j=0; j<n; j++)
4. C[A[j]] = C[A[j]] + 1; // scan A and count.
5. for (I = 1, i<k, i++)
6. C[i] = C[i] + C[i-1]; // transform to cumulative counts

7. for (j = n; j > 1; j--)
8. B[C[A[j]]] = A[j]; // sort to the right place
9. C[A[j]] = C[A[j]] – 1; // update the count

CISC320, F05, Lec6, Liao 5

Counting sort: example

2 5 3 0 2 3 0 3
1 2 3 4 5 6 7 8

A

2 0 2 3 0 1
0 1 2 3 4 5

C

2 2 4 7 7 8 C
0 1 2 3 4 5

2 5 3 0 2 3 0 3
1 2 3 4 5 6 7 8

A

2 2 4 7 7 8
0 1 2 3 4 5

C

3
1 2 3 4 5 6 7 8

B 3

j

2 5 3 0 2 3 0 3
1 2 3 4 5 6 7 8

A

2 2 4 6 7 8
0 1 2 3 4 5

C

3
1 2 3 4 5 6 7 8

B 3

j

0

2 5 3 0 2 3 0 3
1 2 3 4 5 6 7 8

A

1 2 4 6 7 8
0 1 2 3 4 5

C

3
1 2 3 4 5 6 7 8

B 3

j

0 3

(a)

(b)

(c)

(d)

(e)

CISC320, F05, Lec6, Liao 6

Counting sort: complexity analysis

Time

Θ(k) + Θ(n) + Θ(k) + Θ(n) ∈ Θ(k + n)

Space: Θ(k+n) not in-place
Note:
1. Counting sort is not comparison based sorting. Instead, it uses the actual values

of the elements to index into an array. Thus, its linear performance breaks the
Ω(n log n) lower bound for comparison based sorting problems.

2. Stable sort

Initialize array C

Scan A and Count

Transform C

Scan A and sort

CISC320, F05, Lec6, Liao 7

Radix sort: ideas

Problem: to sort A, an array of n d-digit
numbers
Strategy: sort numbers based on their least
significant digit, then on their second least
significant digit, so on and so forth, until sort
on their most significant digit is done.

CISC320, F05, Lec6, Liao 8

Radix sort: an example

329
457
657
839
436
720
355

720
355
436
457
657
329
839

720
329
436
839
355
457
657

329
355
436
457
657
720
839

unsorted ones tens hundreds

Correctness: Induction on digit position

Assume numbers are sorted up to the i-th digit. When sort on (i+1) –th digit:

1) Two numbers that differ in the (i+1)-th digit are correctly sorted.

2) Two numbers having same (i+1)-th digit remain the same order up to

i-th digit, because sorting on each digit is stable.

CISC320, F05, Lec6, Liao 9

Radix sort:

Why not sort from most significant digits to
less significant digits?

1 3

4 2

4 2

1 3

CISC320, F05, Lec6, Liao 10

Radix sort: analysis
Time = (number of digits) x (time for sorting on each digit)

= d x Θ(10+n) ∈ O(n)

note: counting sort is utilized for sorting on each digit.

Exercise: Show how to sort n integers in the range 1 to
n2 -1 in O(n) time.

CISC320, F05, Lec6, Liao 11

Pancake sorting?
Bounds for sorting by prefix reversal.

Gates, William H. and Christos H. Papadimitriou.

Discrete Mathematics 27, 47--57, 1979

The authors study the problem of sorting a sequence of distinct
numbers by prefix reversal -- reversing a subsequence of adjacent
numbers which always contains the first number of the current
sequence. Let f(n) denote the smallest number of prefix reversals
which is sufficient to sort n numbers in any ordering. The authors
prove that f(n) <= (5n+5)/3 by demonstrating an algorithm which never
needs more prefix reversals. They also prove that f(n) >= 17n/16
whenever n is a multiple of 16. The sequences which achieve this bound
are periodic extensions of the basic sequence 1, 7, 5, 3, 6, 4, 2, 8,
16, 10, 12, 14, 11, 13, 15, 9. If, furthermore, each integer is
required to participate in an even number of prefix reversals, the
corresponding function g(n) is shown to satisfy 3n/2 - 1 <= g(n) <=
2n+3.

CISC320, F05, Lec6, Liao 12

