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AbStrwt. In this paper a systematical approach is proposed to give the q-deformation of 
basicLiesuperalgebra(BLS)B(m, n),B(O,  n ) , C ( l + n ) a n d D ( m ,  n)intheirbason-fermion 
oscillator representation with special attention paid to the B(m, n )  series. 

1. Introduction 

Since the proposal of a q-deformed oscillator was made, some papers using it to get 
q-deformation of Lie algebras and Lie superalgebras have appeared [l-31. Among 
them is the more suggestive one, given in [4], in which the q-oscillator is constructed 
from the ordinary one and therefore the possibility of using it to quantize all algebras 
is implied. 

With the active interest in supermathematics, especially in the theory of Lie superal- 
gebras, it is natural to develop the q-deformation of Lie superalgebras despite a direct 
physical application of this q-deformation being still absent. In this paper, by develop- 
ing a so-called graded q-analogue of Clifford algebra, we construct a q-deformation 
of basic Lie superalgebra (BLS) B ( m ,  n ) ,  B (0 ,  n ) ,  C ( l + n )  and D(m, n). We briefly 
recall the main properties of BLS in section 2 from the point of view of the Cartan 
matrix and Kac-Dynkin diagram. Section 3 sketches the main approach we use to 
obtain the q-defonned Lie superalgebra by analysing some concrete examples. Section 
4 contributes to the boson-fermion representations of the BLS B, C, D in the general 
case, and the q-deformation of these algebras are discussed in section 5. 

2. The main properties of BSL 

The Lie bracket in a Lie superalgebra g =g,+g, is defined as 

(a ,  b ) = a b - ( ~ ~ ) d e % ~ " ~ d ' 8 ~ b ~ b a  for all a, b E g (2.1) 
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with the degree being zero for elements in the subalgebra go (even part) and 1 for 
those in the g,-representation g, (odd part). If dim go= n and dim g, = m, any element 
a E g can then be seen as an ( n  + m) x ( n  + m) matrix M:  
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M = ( A  C D  ") (2.2) 

where A (respectively D)  is an n x n (respectively m x m) matrix, and the supenrace 
of M is defined as 

S Tr M = Tr A-Tr D =Tr Mq (2.3) 

where Tr is the ordinary trace and 7 is similar to M with B = C =0, A = I., D = -I,,,. 
The classification of simple Lie superalgebras is given by Kac [SI. Now we just 

write here those relevant basic superalgebras with A, (A,) denoting the set of even 
(odd) roots. For the orthosymplectic series Osp(M[Zn), their even part go is a non- 
compact form of o(M)@sp(Zn), and their odd part g, (for M # 2) spans the (M, 2 n )  
g,-representation. With the help of the fermionic parameter E~ ( i  = 1,2, . . . , m) and 
the bosonic parameter Sk (k = 1,2, . . . , n )  satisfying 

( E .  E . )  J = -6.. 'I ( S k y  6,) = a k l  ( E ! .  S k ) = O  (2.4) 

the roots can be expressed in the following way: for B(m, n )  or Osp(2m f112n) with 
m#0:  

P , = { f ~ ~ f ~ , ; f ~ ~ ; f S ~ f S , ; f 2 S ~ )  (i#i) 
(2.5) 

A ,  ={+Si; * E (  f 8,) 

for B(0, n )  or Osp(l(2n): 

for D(m, n) or Osp(2m12n) with m f 1: 

A,= { f ~ ~  f E,; *St f 8,; f2Si) (i+i) 
(2.7) , ,  

A, = { f ~ ; f S , }  

while for C ( l + n )  or Osp(212n) the odd part g,  is twice the fundamental ( 2 n )  
representation of sp(2n), and the roots in terms of E, 8,. . . . , S. are 

For a BLS g of rank r, it is always possible to define an r x r Cartan matrix A = (a , )  
associated with a set of simple roots (a,,. . . , a,) with the following relations: 

[ h , ,  hJl = O  

[ h , ,  e.,,] = *a,e*,, (2.9) 

k,, e-$ = &,h, 

where h , ,  . . . , h, generate the corresponding Cartan subalgebra H. Once again the 
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so-called Kac-Dynkin diagram will be helpful, but a significant difference from the 
Lie algebras takes place at this point due to the unavoidable presence of odd roots 
together with even ones in the simple root systems. As a result, to a given superalgebra 
g will not in general be associated only one system of simple roots up to a transformation 
of the Weyl group, and therefore not only one Kac-Dynkin diagram. Here, a special 
simple root system with the characteristic of just containing the smallest number of 
odd roots is favoured [5,6]: 

6) B(m, n ) ,  ( m  > 0) 
U" -.+I U..tm--l an+- a, 

0 '  

0 

0 
-1 

2 ,  

and 
. .  

f 2 - 1  0 0 '  
-1  2 -1  

0 - 1  ' ' 

. .  

2 -1  
0 -1 0 1 

-1 2 

' 0  \ o .  . .  

A =  

0 '  

0 
-1  

2 ,  

A= 

-1  

f 2 - 1  o . . .  . 
-1 2 -1  

0 -1  " 

. . .  
. . . .  

. .  
' -1 

-1 2 
0 -2 . . . .  , o  ' 

' -1  

-1 2 
0 -2 

(ii) B(0,  n) 

S,-S,  a,-& 8..,-8. S . - q  

and the corresponding Cartan matrix 

(2.10) 

(2.11) 
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Here for both the B(m, n )  and B(0,  n )  cases we have introduced an auxiliary 
fermionic null vector parameter with 

( E ~ , E O ) = O = ( E O , E , ) = ( E O . S ~ ) .  (2.12) 

Evidently, it has no essential influence on parameter calculation and is introduced just 
for convenience at this step: roots given by difference of two bosonic vectors (8 ,  6) or 
fermionic vectors ( E ,  E )  are even, while roots given by difference of one bosonic and 
one fermionic vector are odd. However, in the following section we will see that E~ is 
deeply related to some feature of o(2m -k 1). 

(iii) D(m, n) 

U.+m-l 

an*,,-2 %+' a, a 2  m"-l a. 

o-o--c--@-u 
s t - &  S z - &  S..,-S. S . - -E ,  E , - E >  E ~ - ~ - E , , - &  

% . , + E ,  

and the corresponding Cartan matrix 

A =  

2 -1 0 
-1 2 -1 
0 -1 ' 

0 0 

. . .  
2 -1 

0 -1 0 1  
- 1  2 -1 

0 0 

0 

(iv) C ( l + n )  

'0 
. - 1  -1 

-1 2 0 
0 - 1  0 2 

. .  

(2.13) 
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' 0 - 1  0 0 
-1 2 -1 

0 - 1  ' ' 

. . .  
. . .  

. .  . 
. . -1 0 

-1 2 -2 
0 -1 2 . . . .  
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and the corresponding Cartan matrix 

A =  (2.14) 

In the above, an open circle 0 denotes a simple even root, an open circle with a dot 
0 the simple odd root a, with a,, # 0 and an open circle with a cross 0 the odd root 
with a,, = 0. 

3. Examples 

In this section we will consider some concrete examples to illustrate how to bring the 
orthosymplectic superalgebras into the oscillator form and then to deform them into 
their quantum version. h 

3.1. Osp(l12) = B(0, 1)  

For the simplest rank-one orthosymplectic superalgebra Osp( 112) [3], only one bosonic 
parameter 6 is needed. Another fermionic null vector parameter E, is also introduced 
for convenience: 

(8,s) = 1 ( E o . E o ) = O = ( S ,  E O ) .  

Besides one zero root we have two bosonic roots, 
p* = *2s ( P + , P + ) = 4  (3.10) 

together with two fermionic roots, 
a, = *(a - Eo)  (a+, a+)= 1. (3 . lb)  

Correspondingly, we have five generators: one h from Cartan subalgebra and four 
e,,, eip from non-zero roots. Three even generators form an angular momentum J 
(describing sp(2)) and two odd generators form f-rank irreducible tensor operators of J: 

h =4J0 e,@ = aJ, e,, =Jzv,. (3.2) 
They satisfy the following commutation and anticommutation relations: 

[ Jo ,  J*l= * J+ (3.30) 

[ J o ,  VSl=sV, [ J * ,  V,l = J ( f +  s)($* s + 1) V,,, (s = *$) (3.36) 

Introducing the classical bosonic oscillators b, bt  with [ b, bt] = 1 and another auxiliary 
fermionic operator a: = a,, a i  = 1, we can make the identifications 

[ J+ , J-] = 25, 

{ V * ,  V d = r 2 J ,  { V , ,  V_)=2Jo. (3.3c) 

J t -  --4btb+ Jo = f(b+b -+) J _  = fbb 

V --b a, 
1 

V~.=-ba,  1 .  
Jz + - A  

(3.4) 
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to reproduce the relations in equations (3.3). For the time being a, is only introduced 
for convenience, to indicate that V, are fermionic operators, 

The simple root is the fermionic one a+, and the whole B(0, l )  algebra can be 
generated by h and e,,, with 

(3.5) 

[h,  e J =  *2e,, { em,  ecm} = h. (3.6) 
To pass over to the quantum enveloping algebra, one needs the q-deformed oscillator 
operators 
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+ h = 2 N + 1  e, = b a. e- ,  = aob 

where N is the number operator N = b+b. We see immediately that 

6 6 =  [ NI 66' = [ 1 +  N ]  (3.7) 

e?m = i t a ,  Em = llJ. (3.8) 

and choose 

Then one gets 

[ h ,  Le] = +2&= {e?=, Lm) = [ N+f]/[f] = [h],m (3.9) 
just as expected, since the root a is shorter compared with other roots in other algebras 
(cf the example in section 3.3). A similar result has also been reported by Chaichian 
et a1 [ 3 ] .  . 
3.2. Osp(212) = C(1 + 1 )  

This superalgebra [3] has rank 2, and is isomorphic to A(1,O). Two parameters, one 

Two simple roots are chosen to be 

h -"-- ---I --oCe--:..-:- < - \  ---:-*--A...-oA ... :ah I P  * \ - 4 -  - / -  - \  I S  -\-a 
UUIULLIL \U, P I L U  UIlCi , ~ L L , . , U , L , ~  ,e,, 'a,= l l i L l U Y Y C C U  **,U1 (",U,- L - - , c ,  G , ,  (U, " I - " .  

a, ,=&-S a ,=26  (3.10) 

with the first one fermionic and the second one bosonic. Another positive root is also 
fennionic, a, + a2= E + 6. Of the four even generators, a triplet forms an angular 
momentum J describing sp(2) and the fourth L generates 0(2)=g1(1). The odd part 
is constructed as the (2,2) representation of 0(2)0sp(2), which reduces to two sets 
of spinor operators of J, Vr ' ,  r = i, s = ki -  *. The fundamental definition relations 
are given as follows: 

[ J o ,  J*I=*J* [ J ,  , J-] = 2J0 [ L, J ]  = 0 (3.11a) 

(3.11b) 

{ vs", v!:)) = 0 

(VL+', Vi-))  = -ZJ+ { V?', VY-') = 2J- ( 3 . 1 1 ~ )  

{ Vy', V?') = 25, - ( L - i )  ( VL", VL-') = 2J0+ (L-f) 

This algebra can be put into the oscillator form by introducing a pair of bosonic 
operators, [b, b'] = 1,  corresponding to the parameter 6, and a pair of fermionic 
operators, {a, a+] = 1 ,  a 2 =  at2=0,  corresponding to E. Then the identification 

J+ = - fb+b+ 2J0=  N+$= b + b + f  J_=fbb L =  a+a = M 
V!+' = b+a+ VL+' = bat VL-'= abt VL-) = ab 

(3.12) 
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will reproduce the relations (3.11). Again,when we replace the operators a, b in the 
step generator with the deformed ones ci, h, 

(j2=0=(i')2 6+i = [MI &i+ = [l - MI 
(3.13) 

and keep the Cartan generators unchanged, we will get the q-deformation of the 
superalgebra C(I+ 1). Then the anticommutations (3.11~)  now take the form 

6+6 = [ N] 66+ = [1+ N] 

and 

Here 

Therefore 

(3.14a) 

(3.14b) 

(3.14~) 

(3.14d) 

(3.15) 

(3.16) 

Other commutators in equations (3.11a) and (3.11b) remain unchanged. 

as 
e =a+b=VL+' e-ml = b a = VL-' 

In the standard notation we define the generators corresponding to the simple roots 

h, = M + N = 2Jo+ (L -4) + 
(3.17) = I  

e- = f h b = J _  h, = N + f = 2J0. er.>= - fb+b+=J+ m1 

Then the fundamental commutation of Osp(212) can be written as 

[h, ,  e,,] = a&, 
( e m , ,  e-->) = V, 

[h,, e-,,] = 

where a, is the Cartan matrix, which for Osp(212) has the form 

(3.18) 

*=( - 1  O 2) 2 

For the quantum case U,(Osp(2(2)) we have 

The subscript q2  in [h2Iq*  is an indication of the fact that the length square of the 
second root m2 is twice that of the first one, a,. Some of these results are also given 
by Deguchi er al [3]. 
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3.3. Osp(312) = B(1, 1) 

Now we discuss another rank-2 orthosymplectic algebra, Osp(312). The Kac-Dynkin 
diagram and Cartan matrix of B(1, 1 )  are 

Li Lino and Xing-Chang Song 

*I  -2  

6 - r  r - r 0  
O * O  *=( -2  O 2 1). (3 .20)  

( 3 . 2 1 ~ )  

As before, generators J can be put into the oscillator form with the help of a pair 
of bosonic operators b and b': 

,, 11, 
,J.LL, 

r - I L L  
J - - z U " .  

1 r - L+L I I 
L J 0 - u  U T .  

, - ?I.+'+ 
J + - - - j u  " 

The key point is how to deal the operators Land  Vm,s. For this purpose let us consider 
the two-dimensional spinor space, on which the Clifford algebra is defined as 

{ r A ,  r B i  = 28AB A, B =  1 , 2 , 3 .  (3 .23)  

It is well known that the matrices 

(3.24) 

have the o ( 3 )  commutation relations and, furthermore, the rs are a set of tensors 
transforming according to the three-dimensional vector representation of o(3): 

1 ~ , , = ~ [ r ~ , r ~ i  

[~,,,r,i= i(SABrC-aBCrA). (3 .25)  

In a recent paper [ 7 ]  we have pointed out that with the help of a pair of fermionic 
operators a and at, {a, at) = 1, a 2 =  at2=0, the combinations 

r ,=  a + a +  I'_' - i(a - a + )  
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meet the requirement of the first two Ts: 

From the definition of the number operator M = a+a one sees immediately that 

from which follows the properties of the operator a,= 

This means that a, can be chosen as r3. Notice that the product 

is indeed proportional to the identity. The fact that the operator a,, although being 
bosonic itself, anticommutates with fermionic operators a, a+ and commutates with 
bosonic operators b, b t ,  causes us to consider a, as an auxiliary fermionic operator 
with aT=a,,, a i =  1. Now having fixed the set of operators r,, r2 and r3, one can 
construct the o ( 3 )  generators as in equations (3.23). By an appropriate diagonalization, 
one gets 

L + =  a+a, 2Lo = 2 M  - 1 L_ = a,a. (3.28) 
And the set of operators (a', a,/&, - a )  forms the vector representation [7]. Therefore 
the combinations 

r:=r:= 1 {r,, r,) = 0. 

M a + = a + ( l - M )  ( 1  - M ) a  = a M  (3.26) 

a:=a, a i=1 a,a = -aao noat=-a+a,. (3.27) 

T,T,r,= i 

" ,,+- - + +  b a V,,+= b t a , / d  V-,,+ = -bta 
V,,- = bo+ Vo,- = ba, f V_,,_= -ba (3.29) 

do transform as the (3,2) representation under 0(3)@sp(2) .  Equations (3.221, (3.28) 
and (3.29) complete the oscillator expression of Osp(312). It is not difficult to check 
that all the relations in equations (3.21) are completely satisfied. 

In the standard notation, the generators corresponding to the simple roots can be 
chosen as follows: 

e-, = bta e-ml = a t b  h , = N + M  
e,,=a a ,  e-*> = aoa (3.30) h, = 2 M  - 1.  + 

Then the fundamental relations can be expressed as 

(3.31) 

with aq being the Cartan matrix. Other generators can be obtained by suitable commuta- 
tion, e.g. corresponding to the root a, + a2 one has 

[ e m , ,  em.,] =[b+a ,  a'a,]= b+{a, a+)a,= btao. 
Again, the quantum enveloping algebra of Osp(312) can be obtained simply by 

changing the oscillaiors a, a t ,  b, b+ in the step generators into their q-deformed 
counterparts I;, 6+, b, 6+, as given in  equation (3.13). Then 
{t-,, Cm,)= {6+6, 6+6] = [ I f  N ] [ M ] + [ N ] [ I  - MI = [ M  + N ] =  [ h , ]  (3.32a) 
[ C m 2 ,  C-,J = [I;+a,, a,;] = [ M ] + [ l -  M I  = [ M - f ] / [ f ]  = [ h 2 ] p .  (3.326) 
The subscript q ' I 2  indicates that the root a2 is shorter than a(. 

The approach used here in this example can be generalized to high-rank super- 
algebra B ( m ,  n )  without any difficulties. For D(m, n )  things become much simpler 
since the orthogonal subalgebra is defined on even-dimensional space, so that no 
parameter E,, (operator a,) is needed. 
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4. The general case 

The even part of Osp(MIZn), as mentioned above, is a direct sum of o(M)Osp(Zn) 
and the odd part of Osp(M12n) reduces for M # 2 to the (M, 2 n )  representation of 
o(M)Osp(Zn). In a recent paper C71, we have successfully put the symplectic algebra 
sp(2n) into the operator form by using the q-deformed bosonic oscillators. The same 
applies to the case of the orthogonal algebra o(M) by putting the Clifford algebra into 
the operator form and deforming fermionic oscillators in an appropriate way. Also 
given are the operator forms of the fundamental vector representations for both 
symplectic and orthogonal algebras. So we can now construct the BLS Osp(MI2n) in 
its entirety, with both fermionic and bosonic operators. As stressed above, special 
attention must be paid to the case for M = 2m + 1, where an auxiliary fermionic operator 
a, (a:=a, )  is introduced [ 7 ]  to simulate the effect of 'ys. 

To realize the BLS B ( m ,  n), B ( 0 ,  n ) ,  D(m,  n )  and C ( l + n )  in a somewhat uniform 
way, we put the fermionic and bosonic operators together to set up a graded Clifford 
algebra C. The single fermion operator a,, now denoted as co, will play the role of 
the 'centre' (commutating with all bosonic operators, while anticommutating with all 
fermionic ones) in the algebra C. 

Algebra C is comprised as follows. For any orthosymplectic Lie superalgebra 
Osp(MIZn), to each bosonic parameter ax we introduce a pair of bosonic operators 
( b k ,  bl),  and to each fermionic parameter E; ,  a pair of fermionic operators ( a j ,  a t ) .  
(For B, z0 is assumed to associate with a,, a :=  a,, a;= I.) Collecting {b,}  and { U ; }  

together, we get a set of graded operators {CJ and {c t } ,  which satisfy 
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(C<, c:, = a, i , j E I  

i, j E I n  [O] (4.1) + +  (ct, c,) = ( C < ,  c, ) = 0 

CO= c; c;= 1 deg( e,) = 1 I = I o n  I, 
where (a ,  b ) =  ab-(- l )d'g'")dFg(b)ba for all a, b E C with deg(a), deg(b) being zero or 
1 when their corresponding indices belong to I ,  or I,; Io and I ,  are, thereafter, two 
specified sets of positive natural numbers. Algebra C is generated by 1, ci and c t .  

It is then easy to check that the relations (1.9), with Cartan matrix ( a s ) ,  given in 
equations (2.10), (2.11), (2.13) and (2.14), are reproduced by the following 
identifications: 

(i) For B(m,  n )  
+ + 

e,, = ci c < + ~  e-,< = c,+,cj 
(4.2) 
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(iii) For C (  1 + n) 

hn+,= c;+icn+i+f (4.4d) 

w i t h I = I o n I , .  10=[2  ,..., n+l] ,I ,=[ i ] .  
Here we notice that the statistical property of the simple roots is automatically 

guaranteed by our construction, since for X = ab we have deg(X)=deg(a)+deg(b) 
as used commonly. 

5. q-deformation of BLS 

A q-deformation of BLS is defined as follows: 

[ C ,  h, l=O 
[e.., e 4  = SJh,lq,  

( k ,  e+,)=*a,e,., 
where for given x, [XI, is defined as 

and q is a quantum parameter. 
In equations (5.1) the subscript qi is defined as 

q; = q("'.4 (5.3) 
with (q, ailE = (aj, ?ai) called the Euclidean length of the roots a;, i.e. for the inner 
product (,)E we recover the Euclidean metric in the simple root system by sandwiching 
the ?-matrix defined in section 2, which equals +1 for bosonic bases and -1 for 
fermionic bases: 

( E , .  E , ) E =  8, ( i , j  = I , .  . . , m) 
(5.4) 

( E O ,  4 E = O  ( € 0 ,  E j ) ~ = o  (%. & ) B = o  

and 

( 8 k ,  Skl (i, j =  1 , .  . . , m )  

(Ei. ad,= 0. 
( 5 . 5 )  

We introduce q-deformed algebra C, with a set of operators E,  Et satisfying the 

E T E ,  = [ N ; ]  E,;' = [ 1 + (- l)d'Z(" N .  c1 i # O  (5.6~1) 

following conditions: 

[ N;,  ;;I = S,E' 
(E,, c, ) = 0 

[ N , , E , ] = - S . . f .  'J 

-+ 
(5.66) 

( 5 . 6 ~ )  
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A direct consequence of the definition is 

( c y  = ( E , ) 2  = 0 for deg E, = 1 .  (5.7) 
Now, as has been repeatedly used before [ l ,  4,7], by keeping the generators in the 

Cartan subalgebra unaltered and replacing the operators c,, c: in step generators by 
their deformed counterparts 6 ,  E:, we go from classical BLS$ to the corresponding 
quantum algebras. Here we only list the main results: 

(i) B(m,n) - - -+- -+ - ea, = c ,  cZt l  e-m, = c,+,c,  ( r = 1  to n + m )  

(5.10) 

hn+i= N.+I+& 

We now discuss the Serre relations [8]. We emphasize that in our approach, as 
illustrated in section 3, the whole set of generators of the algebras, including those of 
the non-simple roots, can be presented. Therefore, the closure of the algebras indeed 
implies the Serre relations. As is well known, the Serre relations for the q-deformed 
classical Lie algebras have been discussed by Jimbo [9] and can also be shown to be 
satisfied naturally in the oscillator representation. For instance, let us consider a case 
where two adjacent simple roots (which are both bosonic), say ai and a,+,, are 
connected by a single line in the Dynkin diagrams. The corresponding Serre relations 
read 

(5.11) ca,c*m,*,  - ( 4 +  q-l)L,z*m,*,z:,, + Z*=,* ,ZL = 0. 

em, = ci cj+, e*,+, = ci+lci+l 

In the oscillator representation (equations (5.8)-(5.10)) we have 

(5.12) 

with the oscillators at i, i +  1, i+2 having the same degree, i.e. all three oscillators are 
of the same kind, either bosonic or fermionic. As an illustration, we may take the 
bosonic one. Then we have 

- -,.- -+ - 

(5.13) - -  [ e m , ,  e=,*, ] 4 = 6:6j+,6:+16i+2- q6:+,6j+,6;6(+, = 6:6j+lq-Nl*~ 
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and then 

[z-,, [C=,, ~ e , , , I , I , - ~ =  bTbj+,btbj+,q-Ni*l - q- bi b ,+,q-N~+lb~bj+,  = 0 
- -  

(5.14) 

which is, indeed, equation (5.11) with plus sign. 
The feature for the Lie superalgebras is that, besides the case presented above, 

there exists a fermionic simple root in the Dynkin diagrams. In the case of one fermionic 
root simply connected with one bosonic root, things become a little complicated. 
However, we can show, by a straightforward calculation, that 

(5.15~1) 

I -+ - - -  - _  

2 -  Ce(;+m,+l - q e+e,*,&, = O  
if deg ai = 1, deg ai+, = 0, and 

~ ~ ~ , ~ * ~ , * , - ( q + q - ' ) ; * ~ , ~ * ~ , * , ~ ~ ~ , + ; * ~ , * , ; ~ ~ , = o  (5.156) 

All these relations can be considered as the super-form of the Serre relations similar 

As for the doubly-laced case, a similar consideration gives the following relations: 

- ( q + q ~ ' ) ~ * , , ~ * , ~ + ~ ~ : , , +  ;*,,,,;:,. = o  (5.16a) 

if deg CY, =0, deg ai+l = 1. 

to the ones given by Kulish et a/ [3]. 

if (ac, (ai+l.  and 

if(CYi.ai)E<(ai+l,ai+l)E. 

-3 .. e-,@*,+, - (1 + q2+ q P ) ( C , ~ , , + , ~ , ,  - & , Z - , + , C , )  - &+,C = o (5.166) 

Equations (5.11), (5.15) and (5.16) exhaust the possible connection of two adjacent 
siciple roots in the Dynkin diagrams listed above in equations (2.10)-(2.14) respectively, 
and thus together with equations (5.8)-(5.10) complete the definitions of q-deformation 
of BLS B(m, n), B(0,  n ) ,  C ( l + n )  and D(m, n ) .  

The application of these quantum Lie superalgebras will be discussed elsewhere. 
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