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Abstract

Most computational methods for transmembrane protein
topology prediction rely on compositional bias of amino
acids to locate those hydrophobic domains in transmem-
brane proteins. Because signal peptides also contain hy-
drophobic segments, these computational prediction meth-
ods often misidentify signal peptides as transmembrane pro-
teins. Here, we present a new approach that combines the
SVM-Fisher discrimination method and TMMOD - a hid-
den Markov model based predictor for transmembrane pro-
teins. While TMMOD alone has already outperformed most
existing methods in both identification and topology predic-
tion, this new approach further improves the ability of TM-
MOD to discriminate between transmembrane proteins and
signal peptide containing proteins, reducing mis-prediction
of signal peptides by more than 30% in our test data.

1. Introduction

Membrane proteins have diverse functional rolesin cellular
activity. In transport mechanism, they are active mediators
between the cell and its environment or the interior of an
organelle and the cytosol. As enzymes, they catalyze spe-
cific metabolites and ions across membrane barriers, con-
vert the energy of sunlight into chemical and electrical en-
ergy and couple the flow of electrons to the synthesis of
ATP. Furthermore, they serve as signal receptors and trans-
duce signals such as neurotransmitters, growth factors and
hormones across the membrane. On average, about 25% of
the proteome of an organism are membrane proteins[1, 3].
Because of their vast functiona roles, membrane proteins
are important targets of pharmacological agents.
Unfortunately, membrane proteins are hard to solubilize
and purify in their native conformation because of their hy-
drophobic nature. Thus, a very small number of them have
experimentally determined structure and topology. This has
motivated various computational methods for identification
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and topology prediction of membrane proteins. Most of
these computational approaches rely on the compositional
bias of amino acids at different regions of the sequence.

Recently, we have developed a hidden Markov model
based predictor (TMMOD) that has a more accurate treat-
ment of the loops structure at both cytoplasmic and non-
cytoplasmic sides of the membrane and utilizes a Bayesian
based optimization for effective training [1]. The perfor-
mance of TMMOD is shown to be superior to other existing
reference methods. For topology prediction, TMMOD has
asuccessrate at 89%, which is around 10% higher than that
of TMHMM[5, 3] — a state-of-the-art transmembrane pro-
tein predictor. For identification, TMMOD has generally
less false positives in comparison to TMHMM, especialy
in discriminating signal peptides from transmembrane pro-
teins. However, though to a lesser extent when compared to
TMHMM, TMMOD has an inherent problem in discrimi-
nating transmembrane proteins from signal peptides.

In this work, we propose to combine the SVM-Fisher
discrimination approach with TMMOD to further improve
its ability to identify integral membrane proteins from pro-
teins containing signal peptide. Using the SVM-Fisher dis-
crimination method, we are able to reduce mis-prediction of
signal peptides by more than 30% in awidely used dataset.
Moreover, we present results for topology prediction accu-
racy of TMMOD using a newly compiled datain compari-
son with other reference methods including Phobiug[2], the
most recent successor of TMHMM.

2. The TMMOD predictor

The architecture of the four submodels of TMMOD s il-
lustrated in Figure 1. The overall skeleton has kept that of
TMHMM, which reflects the three-component basic struc-
ture of transmembrane protein sequences: transmembrane
helix, cytoplasmic and non-cytoplasmic loops. The trans-
membrane region is modeled with two cap regions of 5
residues each surrounding a core region of variable length
5-25 residues (Figure 1A). Therefore, the tota length for



helices varies from 15 to 35 residues, covering the actual
size range observed for transmembrane domains. Although
the submodel contains two chains of transmembrane states
to model paths going inwards and outwards, all their param-
eters are estimated collectively.
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Figure 1: Architecture of the four submodels of TM-
MOD. The outgoing and incoming arrows from each
submodel show the interconnection between submod-
els.

The architecture of TMMOD differs from that of
TMHMM mainly by how the loopsare modeled (Figure 1B,
1C and 1D). The length distribution of the cytoplasmic and
non-cytoplasmic loops or the spacing between transmem-
brane domains in the training sequences has along tail. To
learn this distribution effectively, we modified the ladder-
like cytoplasmic and short non-cytoplasmic loop submod-
els of TMHMM by introducing additional chain of states
(T-states) that bypass the ladder arrangement. The idea be-
hind this modification is that, 90% of the sample contains
loops with lengths less than 40 amino acids with only 10%
representing all other lengths. For this reason, we want the
transition parameters of the ladder-like submodel to explic-
itly model the length distribution of those loopsthat are less
than 40 amino acids long while longer loops are directed
through the bypass.

Mode parameters were estimated using Bayesian ap-
proach (PME) with single component Dirichilet and sub-
stitution matrix mixture based regularizers [6]. The protein
topology was predicted from the state labeling of the se-
guence residues using the Viterbi algorithm (1-best). For
discrimination, the measure exp-no-aa [3] with a threshold
was used to determine whether a sequence is a transmem-
brane protein or not. The exp-no-aa measure is basically
the sum of posterior probabilities of the states in the trans-
membrane submodel for sequence positions in a predicted
TM helix.

3. The SYM-Fisher discrimination

A generative probability model such as a profile hidden
Markov model assigns a likelihood score to any given se-
guence. The model is supposed to assign higher likelihood
scoreto the set of sequencesitistryingto model. Thelikeli-
hood score for a sequence x is computed using the standard
forward-backward algorithm. In addition to the generative
likelihood score, the forward-backward algorithm gives suf-
ficient statistics for all parameters of the model. The suffi-
cient statistics for a parameter tells how the parameter was
involved when scoring the sequence. Therefore, the de-
pendence of the likelihood score on each model parameter
can be systematically represented by taking gradients of the
likelihood score with respect to each parameter. These gra
dients are components of the so called Fisher vector which
isgiven as,

-

Uy = Vg logP(z|0) (1)

In the SYM-Fisher discrimination method [4], sequences
are mapped into such Fisher vectors which are then used
for Support Vector Machine (SVM) based classification. As
reported in [4], such approach for membership discrimina-
tion gives better performance as compared to a generative
probability model. In this work, we modified the SVM-
Fisher method so that it can be combined in tandem with
TMMOD.

In TMMOD, unlike with the task of family membership
prediction using profile hidden Markov models, we are pri-
marily interested in finding the most probable path of hid-
den states or label s for agiven sequence z. Thus, our quan-
tity of interest is not the likelihood the model assigns to se-
quences P(x|0), but the conditional probability P(s|x,0)
of the label for a given observation sequence z [6, 8]. Us
ing Bayes rule, the Fisher vector in this case should be of
the form,

U;]m = Vg logP(s|z,0)
= Vg logP(s,z|0) — Vg logP(z|0) (2)

where the joint probability P(s, x|6) is calculated using the
forward-backward agorithm by summing over only those
valid paths that result in the given label s, whereas the to-
tal probability P(z|6) is found using the standard forward-
backward algorithm summing over all possible paths.

4. Calculation of Fisher gradients

To calculate the k" component of the Fisher vector or the
derivative with respect to the model parameter 64, let us
consider the second term in EQ(2) first. The probability
P(x]0) can be written as a sum over al possible paths



through the model
P(x]0) = ) P(,0) (3)

where P(z, 7|0) isthe probability from a single path = and
can be written as
N
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Thevauen;(m, z) isthe number of timesthe model param-
eter 0, is used in the path = for the observation sequence z,
and ), 0, = 1 isthedistribution 6; is drawn from. The
derivative of the likelihood score with respect to the k" pa-
rameter is then,
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where ny () is the expected number of times the k" pa-
rameter is used by the observation sequence x given as a
weighed average over al possible paths. This is basically
the posterior probability for the parameter and can be easily
computed from forward-backward matrices which are used
to find P(x|6) [6]. In the same manner, the first term in
Eq(2) is differentiated and the final expression is given by

dlog(P(s,x[6)) _ my(a)
o =TS m) (©)

Again, my () is the expected number of times the k*" pa-
rameter is used by the observation sequence = by consider-
ing only those paths that result in the correct label s. The
my(x) posterior probability values are computed using the
forward-backward matrices used to find P(s, z|0) [6]. Fi-
nally, the complete expression for our modified Fisher gra-
dient with respect to k" parameter is,

8log(1;és|a:, 0)) _ ni(x) _ mp(z) (@) —n() (7)

k k

This expression for the gradient is dlightly different from
what is reported in [8], but isin agreement with that of [4].

5. Feature selection

Once the sequences are mapped into the Fisher score vec-
tors, the next step is to use these vectors to train an SVM

classifier which can be used to classify other sequences. To
avoid overfitting when training an SVM classifier, it is de-
sirable to train the SVM classifier using only those feature
values that vary considerably between membrane proteins
and signal peptides. In other words, we need to reduce the
dimension of our Fisher vectors by selecting those discrim-
inative components, i.e., the parameters that are believed
to be used differently by TM proteins and signal peptides.
For example, we know that signal peptides start in the cy-
toplasmic side and traverse the membrane just once with
the cleavage site being located in the non-cytoplasmic side.
This means we should look at Fisher gradients with respect
to transition parameters for effective SVM based discrimi-
nation between the two classes of proteins.

To do this selection, Fisher gradientswith respect to tran-
sition parameters in the loop submodels of TMMOD were
computed for a set of 247 TM proteins and a set of 1275
proteins containing signal peptides which were compiledin
[2]. The components of the normalized resultant Fisher vec-
tor for each class of proteinsis shownin Figure 2. For each
resultant gradient value, the corresponding state transition
in TMMOD is shown on the x-axis.
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Figure 2: Normalized resultant vectors. Fisher vectors
that correspond to the 247 TM proteins are added and
theresultant is normalized. The same thing is done for
vector sthat correspond to the 1275 signal peptides. The
first panel is for gradients w.r.t transitions in the cyto-
plasmic loop submodel while the second is for gradients
w.r.t transitionsin the non-cytoplasmic loop submodel.

As expected, the resultant vectors vary in the compo-
nents corresponding to transitions that are used differently
by the two sets of proteins. For the cytoplasmic loops,



Method False SP/TrueTM  False TM/True SP Method Dataset  1-best 5-best
exp-no-aa 15/247 (6.1%) 185/1275 (14.5%) TMMOD set-all 178 (72.1%) 201 (81.4%)
SV M-Fisher 15/247 (6.1%) 117/1275 (9.2%) Phobius 157 (63.6%)
TMHMM2.0 161 (65.2%)
Phobius 19 /247 (7.7%) 45/1275 (3.5%) HMMTOP2.1 165 (66.8%)
SignalP-NN 106/247 (42.9%)  29/1275 (2.3%)
SignaP-HMM 47 /247 (19.0%) 18/1275 (1.4%) TMMOD set-new  75(58.6%) 90 (69.7%)
Phobius 69 (53.9%)
Table 1: The second column reports the fraction (and TMHMM2.0 57 (44.5%)
percentage) of the 247 TM proteins falsely identified as HMMTOP2.1 65 (50.8%)

signal peptides. The third column reports the fraction
(and per centage) of the 1275 signal peptidesfalsely iden-
tifiesasTM proteins. Resultsfor the reference methods
arefrom[2].

these components correspond to outgoing transitions from
the LC5 state and the L1}, — LI transitions. These tran-
sitions are much less used by signal peptides because signal
peptides begin in the G or U1 states and do not use those
transitions. For non-cytoplasmic loops, the LSy, — LSi+1
transitions for k& greater than 3 and the UX 5 — L L, tran-
sition are more frequently used by signal peptides since
signal peptides tend to have longer non-cytoplasmic loops.
Only these parameters, therefore, will be used for generat-
ing Fisher vectorsin our SVM-Fisher based discrimination.

6. Discrimination results

The performance of this SVM-Fisher discrimination ap-
proach was measured using 10-fold cross validation experi-
ments. Each of the positive and negative datasets described
earlier was partitioned into ten groups in such a way that
the maximum sequence similarity between subsets is 40%
[2]. A model istrained using nine subsets of the positive set
and is used to transform these nine positive subsets and the
remaining positive subset into positive training vectors and
positivetest vectorsrespectively. The same model isused to
transform the nine negative subsets and the remaining neg-
ative subset into negative training vectors and negative test
vectors respectively. These vectors are then used as input
to an SVM classifier with a polynomial kernel. The train-
ing and testing of the SVM classifier is conducted using the
SVM-Light package [7] with the package default setting.
The whole procedure was repeated 10 times by rotating the
testing subset among the 10 subsets. The discrimination
performance results in comparison to our old discrimina-
tion method using the exp-no-aa measure and other refer-
ence methods are givenin Table 1.

The performance of discriminating between signal pep-
tides and transmembrane proteins has increased by iden-
tifying 68 signal peptides which were otherwise classified
as membrane proteins by the exp-no-aa measure. We aso

Table 2: Topology prediction accuracy. The third col-
umn gives the number (and percentage) of proteins
whose topology is correctly predicted, by TMMOD us-
ing 1-best scheme and by other methods. The last col-
umn gives the results when TMMOD is used with the
5-best scheme.

compare the results for our SVM-Fisher approach with that
of Phobius[2], the most recent successor of TMHMM, that
is based on a hybrid hidden Markov model specialized to
discriminatesignal peptidesfrom TM proteins. Asshownin
Table 1, Phobiushaswrongly classified 4 more TM proteins
as signal peptides and our SVM-Fisher has wrongly classi-
fied 72 more signal peptides as TM proteins. Although this
combibination of TMMOD and SVM-Fisher is not as dis-
criminative as Phobius, as shown in next section, TMMOD
is till superior to Phobius and other methods for topology
prediction.

7. On topology prediction accuracy

Recently, Phobiug[2], a combined transmembrane topology
and signal peptide predictor has been reported. The trans-
membrane topology prediction accuracy of Phobius and
other reference methods was validated using two data sets:
set-all consisting 247 TM proteins and its subset set-new
which excludes those sequences from set-160 in [5]. A pre-
diction was counted as correct when al predicted TM he-
lices overlap al annotated TM helices by at least 5 residues
and the predicted locations of the loops are correct. We per-
formed a 10-fold cross validation experiment for TMMOD
using the same data and the resulted accuracy along with
those of Phobius and other reference methods is given in
Table 2. As shown in the table, in both validation datasets,
TMMOD is the most accurate topology predictor.

In TMMOD, topology is predicted using the Viterbi al-
gorithm which finds the label or path of hidden states 7 *
that maximizes the probability P(z,|0) of the observa-
tion sequence z. For a model architecture such as that of
TMMOD in which many states are labeled with the same
symboal, it is very probable that many paths different from



«* would give probabilities that are close to the maximum
P(x,7*|0). Thus, the correct path we are looking for might
be one of these highly probable pathsinstead of the optimal
path 7*. To seeif thisisthe case, our Viterbi algorithm was
modified to give the 5 best decoded paths (5-best). So, if we
were to be given five chances to predict the topology, the
corresponding prediction accuracy results would improve,
and thisis shown in the last column of Table 2.

8. Conclusions

We have presented an application of the SVM-Fisher
discrimination approach in combination with our hidden
Markov model based predictor (TMMOD) to further im-
prove the accuracy of discriminating integral membrane
proteins from signal peptides. Using the SVM-Fisher dis-
crimination method, we are able to reduce mis-prediction
of signal peptides by more than 30%. Although a recent
method Phobius has better performance in discriminating
signal peptidesfrom transmembrane proteins, TMMOD has
better results for topology prediction accuracy, and our ap-
proach of combining TMMOD and SVM-Fisher offers a
good tradeoff between the two.
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