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Abstract 
 

We proposed a new approach to compare profiles when 
the correlations among attributes can be represented as a 
tree. To account for these correlations, the profile is 
extended with new bits corresponding to the internal 
nodes of the tree, which encode the correlations. An ad 
hoc scoring scheme is adopted for measuring the 
similarity among these extended profiles, and the scores 
thus obtained are then provided to a classifier -- a 
support vector machine using a polynomial kernel 
function -- for classification. The effectiveness of the 
proposed scoring scheme is assessed by the classifier’s 
improved accuracy. As an application the method is used 
to classify proteins into their functional families based on 
the phylogenetic profiles It is shown that the performance 
is much improved than using simple hamming distances 
and is also better than using a Bayesian based tree kernel. 
 
 
1. Introduction 
 
Predicting protein functions remains a central task in 
computational biology. A vast number of computational 
tools [1,2,16] rely on sequence similarity to infer protein 
homology, which in turn leads to functional prediction: 
two homologous proteins evolved from a common 
ancestral protein are more likely to play the same 
functional role. Proteins that are remotely homologous to 
one another and therefore share less (below 30%) 
similarity pose as a major challenge to many functional 
prediction methods, which solely rely on sequence 
information for making prediction. To detect remote 
protein homologues, various techniques have been 
developed, for example, iterative search with refined 

profiles [1], sophisticated probabilistic models, powerful 
statistical learning [10], and some hybrid approaches [7], 
to name a few.  
 Some recent developments have attempted to 
utilize non-sequential information, either alone or in 
combination with sequence information, for protein 
functional prediction. For example, structural information 
was incorporated in profile hidden Markov models [5]. 
Some methods in comparative genomics went beyond 
homology for identifying proteins that are related to one 
another by participating in a common structural complex 
or metabolic pathways, or they are related because they 
fuse into a single gene in some genomes [3].  An 
important work on this line is the use of phylogenetic 
profiles for assigning gene functions based on 
evolutionary and/or co-evolutionary patterns across 
species [11, 12, 15]. The phylogenetic profile of a protein 
is represented as a vector, where each component 
corresponds to a specific genome and takes a value of 
either one or zero: with one (zero) indicating the presence 
(absence) of a significant homology of that protein in the 
corresponding genome.  Similar hierarchical profiles have 
also been constructed from whole genome metabolic 
pathways, and utilized for comparing genomes based on 
their physiological characteristics and for clustering 
pathways [8, 18]. While the simplistic approach by just 
counting the number of matches and mismatches between 
two profiles, more often in binary format, already turned 
out to be revealing, such approach apparently misses the 
information that are embedded in the profile, namely the 
hierarchical structure, and because of the correlations 
implied by the hierarchical structure not all matches 
(mismatches) are equal in telling how two genes are 
related. In [8], a methodology was suggested for 
incorporating the hierarchical structure in comparing 
profiles. A Bayesian based approach was developed 



recently in [17] to utilize the phylogenetic tree for 
constructing kernel function of support vector machines 
that are used for predicting functions of proteins based on 
their phylogenetic profiles.  
 In this paper, we proposed a novel approach to 
extracting information embedded in hierarchical, 
specifically phylogenetic, profiles, and demonstrated that 
the extracted information, in concatenation with the 
original profiles, enabled more efficient learning for 
support vector machines, leading to a significant 
improvement for functional predictions of genes than just 
by using the plain phylogenetic profiles. The method also 
compares favorably to the Bayesian based tree kernel 
method in [17]. 
 
2. Methods 
 
2.1. Tree encoded profiles 
 
The phylogenetic profile of a protein is represented as a 
vector, where each component corresponds to a specified 
genome and takes a value of either one or zero: with one 
(zero) indicating the presence (absence) of a significant 
homology of that protein in the corresponding genome.  
The similarity of these profiles can be used to detect 
protein homology; since proteins that tend to evolve in a 
coordinated way and thus have similar phylogenetic 
profiles.  In this study, a group of 24 complete genomes is 
used to construct phylogenetic profiles for all proteins in 
Yeast [13].   

The Hamming distance between a pair of 
phylogenetic profiles is perhaps the most straightforward 
way to measure the similarity. Yet, when correlation 
exists among the components in a vector, the Hamming 
distance becomes inadequate. For example, shown in 
Figure1 are a phylogenetic tree of five species and three 
derived profiles x = (0, 1, 1, 1, 1), y = (1, 1, 1, 1, 1), z = (1, 
1, 1, 1, 0). The Hamming distance d(x, y) = -1+1+1+1+1 
= 3, where the minus one is contributed from the 
mismatch between x and y at the first position. Similarly, 
the Hamming distance d(y, z) = 1+1+1+1-1 = 3.  
However, by biological intuition, one would suspect that 
y and z should be farther apart since they mismatch at the 
fifth position, which corresponds to an attribute directly 
descendent from the root and should be weighted more. 

 
Figure 1. A phylogenetic tree of five species and 
three phylogenetic profiles derived from this tree. 

 
In this work, we propose a novel method to compare 
hierarchical profiles, which addresses both knowledge 
representation and efficient learning. To capture the 
information encoded in the hierarchical structure (a 
phylogenetic tree in this case) of a profile, a two-step 
procedure is adopted: 1) a score is assigned at each 
internal tree node; 2) the score labeled tree is then flatten 
into an extended vector. For an internal tree node in a 
phylogenetic tree, as it is interpreted as ancestor of the 
nodes underneath it, one way to assign a score for it is to 
take the average of the scores from its children nodes. 
This scoring scheme works top-down recursively until the 
leaves are reached: the score at a leaf is just the value of 
the corresponding component in the hierarchical profile. 
The same scoring scheme was first suggested in [8] to 
compare two phylogenetic trees by the thus obtained 
scores at the root of each tree. Unlike [8], where only the 
score at the root node was used, naturally suffering from 
certain information loss, here we instead retain the scores 
at all internal nodes: mapping them into a vector via a 
post-order tree traversal and concatenating this vector 
with the original profile vector to form an extended vector, 
which we call tree-encoded profile. For example, there is 
a two-component vector <a, b>, where a and b correspond 
to two genomes and have a parent node c. Our two-step 
procedure will first assign a score (a+b)/2 for node c., and 
then generate as extended vector as <a, b, (a+b)/2>. The 
newly added component will help enhance the similarity 
among the two-component vectors where (a+b)/2 is equal. 
For example, <0.3, 0.7>, <0.4, 0.6> and <0.2, 0.8> are 
extended and become <0.3, 0.7, 0.5>, <0.4, 0.6, 0.5> and 

X  =       0              1             1              1             1 
Y  =       1              1             1              1             1 
Z   =      1              1             1              1             0 

T 



<0.2, 0.8, 0.5> respectively. Note that the values for the 
expanded components are real number in the range [0, 1].  
 
2.2. Kernel function 
 
With the tree-encoded profiles as input, a support vector 
machine using a polynomial kernel is utilized to learn and 
test protein classification. The polynomial kernel is 
defined as 
 

K(a, b) = [1+ s D(a, b)]d 
 
where s and d are two parameters adjustable in the 
software package SVM Light used in this work [7]. 
Unlike ordinary polynomial kernels, D(a, b) is not the dot 
product of vectors a and b, but rather, a generalized 
Hamming distance for real value vectors:  
 

D(a, b) = Σi=1 to n (S(|ai-bi|) 
 
where the ad hoc function S has value 7 for a match , 5 
for a mismatch by a difference less then 0.1, 3 for a 
mismatch by a difference less than 0.3,  and 1 for a 
mismatch by a difference less than 0.5.  

To test our method, we compared it with two 
variations: 1) instead of encoding the tree, we simply 
extend the original profile by adding randomly assigned 
values, in the range of [0,1] into each extended bit; 2) 
with tree encoded profiles, but skip our ad hoc function S 
in the polynomial kernel. We also compared our method 
with a linear kernel and a tree kernel reported in [17]. 
 
2.3. Data 
 
The data set used in this work is the same data set as in 
[14, 17]. Genes with accurate functional classifications 
were selected from the budding yeast Saccharomyces 
cerevisiae genome. To ensure adequate training and 
testing examples, only the functional classes that contain 
at least 10 genes were extracted from the several hundred 
classes in the Munich Information Center for Protein 
Sequences Comprehensive Yeast Genome Databases [13]. 
The resulting dataset contains 2465 genes in 133 classes.  

The binary profiles of these genes were built by BLAST 
search against each of the 24 genomes. Each bit in the 
profile for a gene was set to 0 or 1 if the E-value of the 
BLAST search for the gene against the corresponding 
organism was larger or smaller than 1 respectively. The 
phylogenetic tree of these 24 genomes is the same as in 

[17], and is used to obtain tree-encoded profiles, which 
are 38 bit vectors, with the last 14 bits corresponding to 
the internal nodes.  

 

 

 

Figure 2. The 24 genomes and a phylogenetic 
tree of these genomes. 

 
A 3-fold cross validation was adopted for the 

experiments. For each functional class, two third of its 
members are randomly selected as positive training 
examples, and the rest one third as positive testing 
examples. Genes not belonging in that class were 
randomly split into two thirds as negative training and one 
third as negative testing examples.  
 
3. Results 
 
The results of the experiments are summarized in Figures 
3 and 4. The function prediction for each 
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Figure 3. Histograms of ROC50 scores for various methods on 133 functional 
classes. TEAHP kernel refers to the method presented in this paper, and Linear 
kernel  and Tree kernel refer to two methods reported in [17]. 

 

 
Figure 4. Histograms of ROC50 scores, where “ rand14_teahp”  refers to 
extending the phylogenetic profiles by 14 random bits. 

 
class is measured by its receiver operating characteristic 
(ROC) score. ROC score is the normalized area under a 
curve that plots the true positives as a function of false 
positives for varying classification thresholds [4]. ROC50 
scores are ROC scores that are calculated by integrating 
the area up to the first 50 false positives. A curve in 
Figures 3 and 4 is a histogram of ROC50 scores averaged 
over 50 random runs for a function prediction method: it 

shows the number of classes (Y-axis) that the specified 
method performs better than a given ROC50 score (X-
axis). Therefore, a higher curve indicates more accurate 
prediction performance. By this standard, our method 
using the tree-encoded profile and generalized polynomial 
kernel has the best performance among the various 
methods tested here. In particular, it is worth noting that 
our method outperformed the tree kernel method reported 



in [17], not only with a slightly better prediction accuracy, 
but also significantly faster.  The better performance of 
our method is believed to derive mainly from our better 
way of capturing and representing the correlations existed 
among bits of the original profile. To validate this, we had 
just randomly extended the original profile by 14 bits, and 
then trained on the same dataset using the generalized 
polynomial kernel SVM. The results were reported in 
Figure 4 and it is easy to notice that the histogram curve 
of ROC scores is much worse than our method’s.  
 
4. Discussion 
 
A novel approach was proposed in this work for 
extracting information that is embedded in hierarchical, 
specifically phylogenetic, profiles. It was demonstrated 
that the extracted information, in concatenation with the 
original profiles, enabled more efficient learning for 
support vector machines, leading to a significant 
improvement for functional predictions of genes than just 
by using the plain phylogenetic profiles.  

Our method also performed slightly better than a 
tree kernel method that involved more sophisticated 
Bayesian analysis and probabilistic assumptions, which 
are ad hoc and sometimes causing some type of data 
unusable. For example, while it is intuitive to assign prior 
probabilities for ones and zeros in a binary profile when 
they are interpreted respectively as presence and absence 
of some events, it would be very difficult to do so for real 
value profiles, e.g., profiles that contain e-values directly 
from BLAST search. Our method, without resorting to 
assigning prior probabilities, can be readily applied to real 
value profiles. It is worth noting that although our method 
has an ad hoc Hamming distance incorporated in the 
polynomial kernel, this ad hoc function does not preclude 
us from using real value profiles, and only affect the 
performance of our method in the experiments slightly. 

Our method can be further refined by introducing 
weights in calculating the average score for an internal 
tree node. The weights can take into account the 
frequency of matches and mismatches occurring in 
different tree branches. Details will be addressed in future 
work elsewhere. 
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