
1

Fall 2008 Programming Development
Techniques

1

Topic 10
Example: Symbolic

Differentiation

Section 2.3.2

October 2008

Fall 2008 Programming Development
Techniques

2

Symbolic differentiation

• Polynomial a + bx + cx2 can be represented by the
list (+ a (+ (* b x) (* c (* x x))))

• Derivative with respect to x is b + 2cx, which can be
represented by (+ b (* 2 (* c x)))

• How can the derivative be computed?

Fall 2008 Programming Development
Techniques

3

Basic calculus (2 arguments only)

dy/dx = 0 if y is a constant or a variable other than x

dx/dx = 1

d(u+v)/dx = du/dx + dv/dx
(NOTE Recursive!)

d(u*v)/dx = u * dv/dx + v * du/dx
(NOTE Recursive!)

Fall 2008 Programming Development
Techniques

4

Want to build a procedure to do
differentiation

• Think of the first rules as base conditions, then other
rules can be used to decompose a problem into
something easier.

• What do we need to do to tell which rule is
applicable?
– Differentiate between a constant, variable (and what it is),

product, and sum
– Extract parts of an expression

Fall 2008 Programming Development
Techniques

5

Data abstraction to the rescue!

Some constructors, selectors and predicates:
(variable? x) (same-variable? x y)
(sum? x) (product? x)
(make-sum x y) (make-product x y)
(sum-arg1 x) (product-arg1 x)
(sum-arg2 x) (product-arg2 x)

Fall 2008 Programming Development
Techniques

6

Now we can compute
derivatives

; takes an expression and a variable and

; returns the derivitive of expr wrt var
(define (deriv expr var)

(cond ((number? expr) 0)
((variable? expr)
(if (same-variable? expr var)

1 0))
((sum? expr)
(make-sum
(deriv (sum-arg1 expr) var)

(deriv (sum-arg2 expr) var)))

2

Fall 2008 Programming Development
Techniques

7

(deriv continued)
((product? expr)

(make-sum

(make-product
(product-arg1 expr)
(deriv (product-arg2 expr)

var))
(make-product
(product-arg2 expr)
(deriv (product-arg1 expr)

var))))
(else (error "Unknown type“

expr))))

Fall 2008 Programming Development
Techniques

8

Implementation of lower layer
; takes an expression and returns #t
; if it is a variable
(define (variable? x) (symbol? x))

; takes two expressions and is #t if
; they are both the same variable
(define (same-variable? x y)
(and (variable? x)

(variable? y)
(eq? x y)))

Fall 2008 Programming Development
Techniques

9

Sums
; takes two expressions and creates a sum
; with them as the arguments -- sums are
; simply represented as lists
(define (make-sum x y)
(list '+ x y))

; returns #t if the argument is a sum
; a sum is a list whose first element is
; the symbol +
(define (sum? x)
(and (pair? x)

(eq? (car x) '+)))
Fall 2008 Programming Development

Techniques
10

Sum Selectors

; selectors for a sum retrieve
; the first and second arguments
; to be added
(define (sum-arg1 x) (cadr x))
(define (sum-arg2 x) (caddr x))

Fall 2008 Programming Development
Techniques

11

Products
; takes two expressions and creates a product
; with them as the arguments -- products are
; simply represented as lists
(define (make-product x y)
(list '* x y))

; returns #t if the argument is a product
; a product is a list whose first element is
; the symbol *
(define (product? x)
(and (pair? x)

(eq? (car x) '*)))
Fall 2008 Programming Development

Techniques
12

Product Selectors

; selectors for a product retrieve
; the first and second arguments
; to be multiplied
(define (product-arg1 x) (cadr x))
(define (product-arg2 x) (caddr x))

3

Fall 2008 Programming Development
Techniques

13

It works! (sort of)
(define expr (make-product 'x 'y))

expr --> (* x y)

(deriv expr 'x) -->
(+ (* x 0) (* y 1))

Should be y

Need to make simple reductions – use same
trick as was used to reduce rational
numbers – in the constructor

Fall 2008 Programming Development
Techniques

14

A better make-sum

; a new constructor that simplifies the sum a bit
(define (make-sum x y)
(cond ((and (number? x) (= x 0)) y)

((and (number? y) (= y 0)) x)
((and (number? x) (number? y))
(+ x y))
(else (list '+ x y))))

Fall 2008 Programming Development
Techniques

15

A better make-product

; a new constructor that simplifies the product a bit
(define (make-product x y)

(cond ((or (and (number? x) (= x 0))
(and (number? y) (= y 0)))

0)
((and (number? x) (= x 1)) y)
((and (number? y) (= y 1)) x)
((and (number? x) (number? y))
(* x y))

(else (list '* x y))))

Fall 2008 Programming Development
Techniques

16

Still room for improvement

(define expr (make-product 'x 'y))

expr --> (* x y)
(deriv expr 'x) --> y
but

(define expr (make-product 'x 'x))

expr --> (* x x)
(deriv expr 'x) --> (+ x x)

(* 2 x) would be better

Fall 2008 Programming Development
Techniques

17

Always room for improvement

More sophisticated simplifications are done in Reduce,
Macsyma, Mathematica

Theoretically, no matter how many simplifications we
build into the software, there are always more
simplifications that can be made

