

Representing sets

Another data abstraction - here the representation choice is no so obvious. Trade-offs of different choices can be seen.
Set - collection of distinct objects. How define? Set operations:

- union-set---union of two sets
- intersection-set---intersection of two sets
- element-of-set?---test membership in a set
- adjoin-set---add an element to a set

Programming Development Techniques

Adding an element to a set

```
; adds element to set
(define (adjoin-set element set)
    (if (element-of-set? element
                                    set)
set
(cons element set)))
```


(without repetition)

```
; takes an element and
(define (element-of-set? element set)
    (cond ((null? set) #f)
        ((equal? element (car set)) #t)
        (else
            (element-of-set? element
                        (cdr set)))))
Fall }200
(cdr set)))))
; takes an element and a set and is #t
```

 ,
 Intersection
 ; intersects set1 and set2
(define (intersection-set set1 set2)
(cond ((or (null? set1)
(null? set2)) ())
((element-of-set? (car set1)
set2)
(cons (car set1)
(intersection-set
(cdr set1)
set2)))
(else (intersection-set
(cdr set1)

Techniques

Union

; returns a set that is the union of set1 and set2
(define (union-set set1 set2)
(cond ((null? set1) set2)
((element-of-set? (car set1) set2)
(union-set (cdr set1) set2))
(else
(cons (car set1)
(union-set (cdr set1) set2)))))

Fall 2008
Programming Development
Techniques

Orders of growth for this representation

Sets as ordered lists (of

numbers, ascending order)

```
Advantage is that now this operation
```

can be written more efficiently
; returns \#t if element is in the
; ordered set of numbers

- adjoin-set --- $\theta(n)$
ordered set of numbers
- intersection-set --- $\theta\left(n^{2}\right)$
- union-set --- $\theta\left(n^{2}\right)$

Could speed some of these operations if we change the representation of set.
Try a representation where set elements listed in increasing order.
(cond ((null? set) \#f)
((= element (car set)) \#t)
($<$ element (car set)) \#f)
(else (element-of-set? element
(cdr set)))))

Test lopment Techniques
intersection-set (bigger speed-up)

; returns an order set that is the
; intersection of ordered set1 and set2
(define (intersection-set set1 set2)
(cond ((or (null? set1) (null? set2))
())
(() (car set1) (car set2))
(cons (car set1)
(intersection-set
(cdr set1)
(cdr set2))))

Fall 2008
Programming Developmen
Techniques
9

Orders of growth

- All four operations have order of growth equal to $\theta(\mathrm{n})$

We can do even better!

- Arrange set elements in the form of an ordered binary tree.
- Operations element-of-set? and adjoin-set have been speeded up by a factor of 2

Binary tree

- Entry - element at that spot
- Left subtree - all elements are smaller than entry
- Right subtree - all elements are greater than entry
ـــــــــــــ)

Notice: more than one representation for any list

- $\{1,2,4,5,6,8,10\}$
- (5 (2 (1 ())) (4 () ())) (8 (6()) (10 () ())
- (2 (1 ())) (4 () (8 (6 (5 ())) () (10 () ())))
- (4 (2 ())) (6 (5 () ()) (8 () 10)
- (4 (2 (1 () ())) (5 () (6 () (8 () (10 ())))))

Programming Development Techniques

Sets as (labeled) binary trees

```
; we can represent binary trees as lists
; make a tree from an entry and a left
; and right child
(define (make-tree entry
    left-child
                                    right-child)
    (list entry left-child right-child))
; selectors for a tree
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
Fall 2008 Programming Development
    Techniques
```


adjoin set

; takes an element and a set represented as
; a binary tree. Adds element into the set
(define (adjoin-set element set)
(cond ((null? set)
(make-tree element () ()))
(($=$ element (entry set)) set)
((< element (entry set))
(make-tree (entry set)
(adjoin-set
element
(left-branch set))
(right-branch set)))
Fall 2008
mming
Techniques

element of set

; takes an element and a set represented
; as a binary tree - returns \#t if element
; is in set
(define (element-of-set? element set)
(cond ((null? set) \#f)
((= element (entry set)) \#t)
((< element (entry set))
(element-of-set? element
(left-branch set)))
(else
(element-of-set?
element
(right-branch set)))))
Fall 200
Programming Developme
Techniques
15
,
Techniques

Properties of tree represention

- If the trees are kept balanced, order of growth of element-of-set? and adjoin-set is $\theta(\log n)$
- Operations intersection-set and union-set can be implemented to have order of growth $\theta(n)$, but the implementations are complicated

\section*{Comparison: orders of growth (θ)
 | Operation un | unordered | ordered | -ree |
| :---: | :---: | :---: | :---: |
| element-of-set? | ? n | n | log |
| adjoin-set | n | n | lo |
| intersection-set | t n^{2} | n | n |
| union-set | n^{2} | n | n |

