
1

Fall 2008 Programming Development
Techniques

1

Topic 12
Multiple Representations of Abstract

Data – Complex Numbers

Section 2.4.1

Fall 2008 Programming Development
Techniques

2

Multiple representations for
abstract data

• Implementation of complex numbers as an example
• Illustrates how one representation can be better for

one operation, but another representation might be
better for another operation

• (Scheme already has complex numbers, but we'll
pretend that it doesn't)

Fall 2008 Programming Development
Techniques

3

Complex numbers (math view)

z = x + i y (rectangular form)
= r eiα (polar form)

x: real part of z
y: imaginary part of z
r: magnitude of z
a: angle of z

x
Real

y

Imaginary

r

a

Z

Fall 2008 Programming Development
Techniques

4

Complex number arithmetic

Addition – addition of coordinates – add real
parts and imaginary parts

z1 + z2 = x1 + iy1 + x2 + iy2

= (x1 + x2) + i(y1 +y2)

Multiplication – easier to think of in polar form
z1 * z2 = r1eiα¹ * r2eiα²

=(r1 * r2)ei(α¹ + α²)

Fall 2008 Programming Development
Techniques

5

SO?
• There are two different representations of complex

numbers.
• Some operations on complex numbers are easier to

think of in terms of one operation and others in terms
of the other representation.

• Yet all operations for manipulating complex numbers
should be available no matter which representation is
chosen.

• Want to have access to each part: real, imaginary,
magnitude, angle no matter which representation is
chosen.

Fall 2008 Programming Development
Techniques

6

Two representations

• Rectangular
make-from-real-imag - constructor
real-part – selector
imag-part – selector

• Polar
make-from-mag-ang – constructor
magnitude – selector
angle – selector

Two different representations possible for
the same number.

2

Fall 2008 Programming Development
Techniques

7

Addition

; adds together two complex numbers
; uses the representation of addition of coordinates
; in terms of real and imaginary parts
(define (add-complex z1 z2)
(make-from-real-imag
(+ (real-part z1) (real-part z2))
(+ (imag-part z1) (imag-part z2))))

Fall 2008 Programming Development
Techniques

8

Subtraction

; subtract one complex number from another
; uses the representation of subtraction of
; coordinates in terms of real and
; imaginary parts
(define (sub-complex z1 z2)
(make-from-real-imag
(- (real-part z1) (real-part z2))
(- (imag-part z1) (imag-part z2))))

Fall 2008 Programming Development
Techniques

9

Multiplication

; multiplies two complex numbers
; uses the representation as polar form
; in terms of magnitude and angle
(define (mul-complex z1 z2)
(make-from-mag-ang
(* (magnitude z1) (magnitude z2))
(+ (angle z1) (angle z2))))

Fall 2008 Programming Development
Techniques

10

Division

; divides one complex number from another
; uses the representation as polar form
; in terms of magnitude and angle
(define (div-complex z1 z2)
(make-from-mag-ang
(/ (magnitude z1) (magnitude z2))
(- (angle z1) (angle z2))))

Fall 2008 Programming Development
Techniques

11

Choose a representation
• We must implement constructors and selectors in

terms of primitive numbers and primitive list structure.

Which representation should we use??
• Rectangular form (real part, imaginary part – good for

addition and subtraction)
• Polar form (magnitude and angle – good for

multiplication and division)

• Either representation OK as long as we can select
out all of the pieces we need – real, imaginary,
magnitude, angle

Fall 2008 Programming Development
Techniques

12

Rectangular Representation

;; lower level implementation
; RECTANGULAR FORM REPRESENTATION

; takes a real and imaginary part and
; creates a complex number represented
; in rectangular form
(define (make-from-real-imag x y)
(cons x y))

3

Fall 2008 Programming Development
Techniques

13

Rectangular Representation (cont)
; given an imaginary number in
; rectangular form
; returns the real part
(define (real-part z) (car z))

; given an imaginary number in
; rectangular form
; returns the imaginary part
(define (imag-part z) (cdr z))

Fall 2008 Programming Development
Techniques

14

Rectangular Representation (cont)
; given an imaginary number in rectangular form
; return the magnitude (using trigonomic rels)
(define (magnitude z)
(sqrt (+ (square (real-part z))

(square (imag-part z)))))

; given an imaginary number in rectangular form
; return the angle (using trigonomic rels)
(define (angle z)
(atan (imag-part z) (real-part z)))

Fall 2008 Programming Development
Techniques

15

Rectangular Representation (cont)

; takes a magnigude and an angle and
; creates a complex number
; represented in rectangular form
(define (make-from-mag-ang r a)
(make-from-real-mag

(* r (cos a))
(* r (sin a))))

Fall 2008 Programming Development
Techniques

16

Polar representation

;; lower level implementation
; POLAR FORM REPRESENTATION

; takes a magnigude and an angle and
; creates a complex number represented
; in polar form
(define (make-from-mag-ang r a) (cons r a))

Fall 2008 Programming Development
Techniques

17

Polar Representation (cont)

; given an imaginary number in
; polar form
; return the magnitude
(define (magnitude z) (car z))

; given an imaginary number in
; rectangular form
; return the angle
(define (angle z) (cdr z))

Fall 2008 Programming Development
Techniques

18

Polar Representation (cont)
; given an imaginary number in
; polar form
; returns the real part
; (using trignomic rels)
(define (real-part z)
(* (magnitude z) (cos (angle z))))

; given an imaginary number in
; polar form
; returns the imaginary part
; (using trigonomic rels)
(define (imag-part z)
(* (magnitude z) (sin (angle z))))

4

Fall 2008 Programming Development
Techniques

19

Polar Representation (cont)

; takes a real and imaginary part and
; creates a complex number represented
; in polar form (harder)
(define (make-from-real-imag x y)
(make-from-mag-ang
(sqrt (+ (square x) (square y)))
(atan y x)))

Fall 2008 Programming Development
Techniques

20

Which Representation?

• Note – either representation will work fine.

• Notice that some of the selectors/constructors are
easier with one representation over the other

• But, no matter which is used, our basic operations
will still work.

