Topic 12

Multiple Representations of Abstract Data - Complex Numbers

Section 2.4.1

Multiple representations for abstract data

- Implementation of complex numbers as an example
- Illustrates how one representation can be better for one operation, but another representation might be better for another operation
- (Scheme already has complex numbers, but we'll pretend that it doesn't)

Complex number arithmetic

Addition - addition of coordinates - add real parts and imaginary parts
$z_{1}+z_{2}=x_{1}+i y_{1}+x_{2}+i y_{2}$
$=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$

Multiplication - easier to think of in polar form $z_{1} * z_{2}=r_{1} \mathrm{e}^{\mathrm{ia1} 1} * \mathrm{r}_{2} \mathrm{e}^{\mathrm{ian} 2}$
$=\left(r_{1} * r_{2}\right) e^{i^{(a 1+a 2)}}$

Fall 2008
Programming Development
Techniques

Two representations

- Rectangular

$$
\begin{aligned}
& \text { make-from-real-imag - constructor } \\
& \text { real-part - selector } \\
& \text { imag-part - selector } \\
& \text { lar } \\
& \text { make-from-mag-ang - constructor } \\
& \text { magnitude - selector } \\
& \text { angle - selector }
\end{aligned}
$$

- Polar

Two different representations possible for the same number.
Fall $2008 \quad \begin{gathered}\text { Programming Development } \\ \text { Techniques }\end{gathered}$ Techniques

Addition

; adds together two complex numbers
; uses the representation of addition of coordinates
; in terms of real and imaginary parts
(define (add-complex z1 z2)
(make-from-real-imag
(+ (real-part z1) (real-part z2))
(+ (imag-part z1) (imag-part z2))))

Fall 2008
Programming Development
Techniques

Multiplication

; multiplies two complex numbers
; uses the representation as polar form
; in terms of magnitude and angle
(define (mul-complex z1 z2) (make-from-mag-ang
(* (magnitude z1) (magnitude z2))
(+ (angle z1) (angle z2))))

Rectangular Representation

;; lower level implementation
; RECTANGULAR FORM REPRESENTATION
; takes a real and imaginary part and
; creates a complex number represented
; in rectangular form
(define (make-from-real-imag $x y$) (cons x y))

- Either representation OK as long as we can select out all of the pieces we need - real, imaginary, magnitude, angle
Fall 2008
Programming Developmen
Techniques

Subtraction

; subtract one complex number from another
; uses the representation of subtraction of
; coordinates in terms of real and
; imaginary parts
(define (sub-complex z1 z2)
(make-from-real-imag
(- (real-part z1) (real-part z2))
(- (imag-part z1) (imag-part z2))))

Division

; divides one complex number from another
; uses the representation as polar form
; in terms of magnitude and angle
(define (div-complex z1 z2)
(make-from-mag-ang
(I (magnitude z1) (magnitude z2))
(- (angle z1) (angle z2))))

Fall 2008
Techniques

Choose a representation

- We must implement constructors and selectors in terms of primitive numbers and primitive list structure.

Which representation should we use??

- Rectangular form (real part, imaginary part - good for addition and subtraction)
- Polar form (magnitude and angle - good for multiplication and division)

10

Rectangular Representation (cont)

; given an imaginary number in
; rectangular form
; returns the real part
(define (real-part z) (car z))
; given an imaginary number in
; rectangular form
; returns the imaginary part
(define (imag-part z) (cdr z))

Programming Developmen Technique

Rectangular Representation (cont)

; given an imaginary number in rectangular form
; return the magnitude (using trigonomic rels)
(define (magnitude z)
(sqrt (+ (square (real-part z))
(square (imag-part z)))))
; given an imaginary number in rectangular form
; return the angle (using trigonomic rels)
(define (angle z)
(atan (imag-part z) (real-part z)))

Polar representation

;; lower level implementation
; POLAR FORM REPRESENTATION
; takes a magnigude and an angle and
; creates a complex number represented
; in polar form
(define (make-from-mag-ang ra) (cons ra))

Fall 2008
Programming Development
Techniques

Polar Representation (cont)

; given an imaginary number in
; polar form
; returns the real part
; (using trignomic rels)
(define (real-part z)
(* (magnitude z) (cos (angle z))))
; given an imaginary number in
; polar form
; returns the imaginary part
; (using trigonomic rels)
(define (imag-part z)
(* (magnitude z) (sin (angle z))))
Fall 2008
Programming Development
Techniques Techniques

18

Which Representation?

- Note - either representation will work fine.
- Notice that some of the selectors/constructors are easier with one representation over the other
- But, no matter which is used, our basic operations will still work.

