
1

Fall 2008 Programming Development
Techniques

1

Topic 14
Multiple Representations of

Abstract Data – Data Directed
Programming and Additivity

Section 2.4.3

Fall 2008 Programming Development
Techniques

2

Data-Directed Programming
Consider
; takes a tagged complex number and returns
; the real part
(define (real-part z)
(cond ((rectangular? z)

(real-part-rectangular (contents z)))
((polar? z)
(real-part-polar (contents z)))
(else
(error

"data type unknown to REAL-PART"
z))))

Fall 2008 Programming Development
Techniques

3

Problems with that code
• Each interface procedure needs to know about all

representations possible
• As more representation types are added, the

procedure has to be rewritten
• Procedure gets longer
• Procedure gets more complicated
• Procedure is one big conditional statement

• Each representation alternative must be coded with
no name conflicts with any other representation
alternative.

Fall 2008 Programming Development
Techniques

4

The data-directed
programming technique

• Replaces the conditional statement with a lookup
table

• The chunks of code that were in the branches of the
conditional are now indexed by the two dimensions of
the lookup table (procedure X representation type)

Fall 2008 Programming Development
Techniques

5

Lookup table for complex
numbers

Operations Representation types
polar rectangular

real-part real-part-polar real-part-rectangular
imag-part imag-part-polar imag-part-rectangular
magnitude magnitude-polar magnitude-rectangular
angle angle-polar angle-rectangular

(named procedures or lambda expressions)

Fall 2008 Programming Development
Techniques

6

A prototype implementat of
lookup table

• Basic operations are put and get
• Book's implementation isn't until the next chapter
• Our implementation is simple, suitable for rapid

prototyping, but not the most efficient
• Can be replaced later by the book's better

implementation without changing code built on top of
it

2

Fall 2008 Programming Development
Techniques

7

Basic idea of our
implementation

• Lookup table is just a list of triples of the form
(operation type action)

• Simulates a sparse array of infinite size
• Put adds a triple to the list
• Get searches the list for the right triple and returns

the action part
• The type is a list of the representation types of the

operation's arguments

Fall 2008 Programming Development
Techniques

8

And now for the
implementation

; operation-table will hold the triples of
; operations, their type, and the associated action
(define operation-table empty)

; takes an operation, the type of data it acts on, and an
; action that implements the operation on the type given.
; Adds the triple to the operation table
(define (put operation type action)
(set! operation-table

(cons (list operation type action)
operation-table)))

(Forget you saw set!, the reassignment operator, until the next
chapter.)

Fall 2008 Programming Development
Techniques

9

The get procedure
; takes an operator and a type, and returns the
; action that implements the operator for that type
; in the operation-table
(define (get operator type)
(define (get-aux list)
(cond ((null? list) #f)

((and (equal? operator (caar list))
(equal? type (cadar list)))
(caddar list))
(else (get-aux (cdr list)))))

(get-aux operation-table))
Fall 2008 Programming Development

Techniques
10

So? What do we do with it?

• Define a collection of procedures or a package for
each representation

• These are installed in the table

• Complex-arithmetic selectors access the table by
means of a general “operation” procedure called
apply-generic

Fall 2008 Programming Development
Techniques

11

Each representation type in its
own package

; define the selectors in the rectangular representation
; each selector is defined as it was originally – and
; must put installed into the operation table
(define (install-rectangular-package)
(put 'real-part '(rectangular) car)
(put 'imag-part '(rectangular) cdr)
(put 'magnitude

'(rectangular)
(lambda (z)

(sqrt (+ (square (car z))
(square (cdr z))))))

Fall 2008 Programming Development
Techniques

12

Rectangular package continued
(put 'angle

'(rectangular)
(lambda (z) (atan (cdr z) (car z))))

(put 'make-from-real-imag
'rectangular
(lambda (x y)

(attach-tag 'rectangular
(cons x y))))

3

Fall 2008 Programming Development
Techniques

13

part 3
(put 'make-from-mag-ang

'rectangular
(lambda (r a)

(attach-tag 'rectangular
(cons (* r (cos a))

(* r (sin a))))))
'done)

Fall 2008 Programming Development
Techniques

14

Polar package
; define the selectors in the polar representation
; each selector is defined as it was originally --
; and must put installed into the operation
(define (install-polar-package)
(put 'magnitude '(polar) car)
(put 'angle '(polar) cdr)
(put 'real-part

'(polar)
(lambda (z)

(* (car z) (cos (cdr z)))))

Fall 2008 Programming Development
Techniques

15

Polar package continued
(put 'imag-part

'(polar)
(lambda (z)

(* (car z) (sin (cdr z)))))
(put 'make-from-mag-ang

'polar
(lambda (r a)
(attach-tag 'polar (cons r a))))

Fall 2008 Programming Development
Techniques

16

Part 3

(put 'make-from-real-imag
'polar
(lambda (x y)
(attach-tag
'polar
(cons (sqrt (+ (square x)

(square y)))
(atan y x)))))

'done)

Fall 2008 Programming Development
Techniques

17

The constructors

;; THE CONSTRUCTORS
(define (make-from-real-imag x y)
((get 'make-from-real-imag 'rectangular)
x
y))

(define (make-from-mag-ang r a)
((get 'make-from-mag-ang 'polar) r a))

Fall 2008 Programming Development
Techniques

18

Generic operation call
;;; general operation will implement selector
;; functions for complex numbers
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc

(apply proc (map contents args))
(error
"APPLY-GENERIC failed"
(list op type-tags))))))

(note: operations can have more than one argument)

4

Fall 2008 Programming Development
Techniques

19

The selectors
; selectors are implemented in terms of the
; generic operation
(define (real-part z)
(apply-generic 'real-part z))

(define (imag-part z)
(apply-generic 'imag-part z))

(define (magnitude z)
(apply-generic 'magnitude z))

(define (angle z)
(apply-generic 'angle z))

Fall 2008 Programming Development
Techniques

20

Three programming styles

1) Data-directed programming, where code for each
operator and representation type combination is
stored in a 2-dimensional operation table

2) Conventional-style programming, where each
operator decides what code to run by testing the
representation types of its arguments

In effect, each operator has one row of operation table
built into it.

Fall 2008 Programming Development
Techniques

21

Continued

3) Message passing, where each data object decides
what code to run by testing the name of the operation
it is being asked to perform

In effect, each data object has one column of the
operation table built into it.

Instead of intelligent operations that know what kind of
data they work on, each data object is intelligent and
can dispatch its own operations.

Fall 2008 Programming Development
Techniques

22

A message passing version
; message passing version takes a real and imaginary
; part of a complex number and returns an intelligent data
; object that can dispatch its operations
(define (make-from-real-imag-mp x y)
(define (dispatch op)
(cond ((eq? op 'real-part) x)

((eq? op 'imag-part y)
((eq? op 'magnitude)(sqrt (+ (square x) (square y))))
((eq? op 'angle) (atan y x))
(else
(error "MAKE-FROM-REAL-IMAG failed"

op)))))
dispatch)

Fall 2008 Programming Development
Techniques

23

Uses a different apply-generic
; the individual parts are defined as above e.g.
;(define (real-part z)
; (apply-generic 'real-part z))
; etc.
; apply-generic for message passing version
; notice that this function simply calls the data
; object as an function applied to the operator
(define (apply-generic op arg)
(arg op))

;or more directly,
(define (real-part-mp z)
(z 'real-part)) Fall 2008 Programming Development

Techniques
24

Advantage

The main advantage of the message passing
programming style is that it more effectively hides the
internal structure of data objects so that programmers
are not tempted to access the insides of the data
objects with cars and cdrs.

The programing style for classes in C++ most closely
resembles message passing.

