
1

Fall 2008 Programming Development
Techniques

1

Topic 15
Generic Arithmetic Operations

Section 2.5.1 & 2.5.2

Fall 2008 Programming Development
Techniques

2

Systems with Generic Operations

• Previous section: designed systems in which data
objects can be represented in more than one way

• Key idea: link the code that specifies the data
operations to the several representations via generic
interface procedures.

• Extend this idea: define operations that are generic
over different representations AND over differet kinds
of arguments.

• Several different arithmetic packages: regular,
rational, complex – let’s put them all together

Fall 2008 Programming Development
Techniques

3

Generic Use of Numbers

Fall 2008 Programming Development
Techniques

4

Generic operations

• We want to do arithmetic with any combination of
ordinary numbers, rational numbers and complex
numbers

• We'll use the data-directed programming style
• Ordinary Scheme numbers will have to be represented

and tagged like all the rest

Fall 2008 Programming Development
Techniques

5

Basic arithmetic operations
; generic operations definitions to use we would need to
; attach a tag to each kind of number and cause the
; generic procedure to dispatch the appropriate package
; for the data types of its arugments
(define (add x y)
(apply-generic 'add x y))

(define (sub x y)
(apply-generic 'sub x y))

(define (mul x y)
(apply-generic 'mul x y))

(define (div x y)
(apply-generic 'div x y))

Fall 2008 Programming Development
Techniques

6

Scheme number package
; package for handling ordinary scheme numbers
; note the key is (scheme-number scheme-number)
; since each takes two arguments, both of which
; are ordinary scheme-numbers
(define (install-scheme-number-package)
(define (tag x)
(attach-tag 'scheme-number x))

(put 'add
'(scheme-number scheme-number)
(lambda (x y) (tag (+ x y))))

2

Fall 2008 Programming Development
Techniques

7

continued
(put 'sub

'(scheme-number scheme-number)
(lambda (x y) (tag (- x y))))

(put 'mul
'(scheme-number scheme-number)
(lambda (x y) (tag (* x y))))

(put 'div
'(scheme-number scheme-number)
(lambda (x y) (tag (/ x y))))

(put 'make
'scheme-number
(lambda (x) (tag x)))

'done) Fall 2008 Programming Development
Techniques

8

Scheme-number constructor

; user of the scheme-number package will create
; tagged ordinary numbers by means of the make
; procedure
(define (make-scheme-number n)
((get 'make 'scheme-number) n))

Fall 2008 Programming Development
Techniques

9

Rational number package

; package for performing rational arithmetic
(define (install-rational-package)
; internal procedures
(define numer car)
(define denom cdr)
(define (make-rat n d)
(let ((g (gcd n d)))

(cons (/ n g) (/ d g))))
(define (tag x) (attach-tag 'rational x))

Fall 2008 Programming Development
Techniques

10

rational package continued
; interface to rest of system
(put 'add

'(rational rational)
(lambda (x y)
(tag (make-rat

(+ (* (numer x) (denom y))
(* (numer y) (denom x)))

(* (denom x) (denom y))))))

Fall 2008 Programming Development
Techniques

11

subtraction
(put 'sub

'(rational rational)
(lambda (x y)
(tag (make-rat

(- (* (numer x) (denom y))
(* (numer y) (denom x)))

(* (denom x) (denom y))))))

Fall 2008 Programming Development
Techniques

12

multiplication

(put 'mul
'(rational rational)
(lambda (x y)
(tag (make-rat

(* (numer x) (numer y))
(* (denom x) (denom y))))))

3

Fall 2008 Programming Development
Techniques

13

division
(put 'div

'(rational rational)
(lambda (x y)
(tag (make-rat

(* (numer x) (denom y))
(* (denom x) (numer y))))))

Fall 2008 Programming Development
Techniques

14

constructor code
(put 'make

'rational
(lambda (n d) (tag (make-rat n d))))

'done)

(define (make-rational n d)
((get 'make 'rational) n d))

Fall 2008 Programming Development
Techniques

15

Complex number package
; package for handling complex numbers
(define (install-complex-package)
; imported procedures from rectangular and
; polar packages
(define (make-from-real-imag x y)
((get 'make-from-real-imag 'rectangular)
x
y))

; interface to rest of the system
(define (make-from-mag-ang r a)
((get 'make-from-mag-ang 'polar) r a))

(define (tag z) (attach-tag 'complex z))
Fall 2008 Programming Development

Techniques
16

Addition
(put 'add

'(complex complex)
(lambda (z1 z2)
(tag (make-from-real-imag

(+ (real-part z1)
(real-part z2))

(+ (imag-part z1)
(imag-part z2))))))

Fall 2008 Programming Development
Techniques

17

Subtraction
(put 'sub

'(complex complex)
(lambda (z1 z2)
(tag (make-from-real-imag

(- (real-part z1)
(real-part z2))

(- (imag-part z1)
(imag-part z2))))))

Fall 2008 Programming Development
Techniques

18

Multiplication
(put 'mul

'(complex complex)
(lambda (z1 z2)
(tag (make-from-mag-ang

(* (magnitude z1)
(magnitude z2))

(+ (angle z1) (angle z2))))))

4

Fall 2008 Programming Development
Techniques

19

Division
(put 'div

'(complex complex)
(lambda (z1 z2)
(tag (make-from-mag-ang

(/ (magnitude z1)
(magnitude z2))

(- (angle z1) (angle z2))))))

Fall 2008 Programming Development
Techniques

20

Constructors
(put 'make-from-real-imag

'complex
(lambda (x y)
(tag (make-from-real-imag x y))))

(put 'make-from-mag-ang
'complex
(lambda (r a)
(tag (make-from-mag-ang r a))))

'done)

Fall 2008 Programming Development
Techniques

21

continued

; exporting complex numbers to outside world

(define (make-complex-from-real-imag x y)
((get 'make-from-real-imag 'complex) x y))

(define (make-complex-from-mag-ang r a)
((get 'make-from-mag-ang 'complex) r a))

Fall 2008 Programming Development
Techniques

22

Complex Numbers – two levels of
export

• Notice that complex numbers for a two-level tag
system. A typical complex number e.g., 1 + 2i in
rectangular form will be represented as

(complex (rectangular 1 . 2))

First tag directs to complex number package, once
there, second tag directs to rectangular package.

Fall 2008 Programming Development
Techniques

23

Installing it all

; run the procedures to set up the operations table
; operation-table will hold the triples of
; operations, their type, and the associated action
(install-scheme-number-package)

(install-rational-package)
(install-rectangular-package)
(install-polar-package)
(install-complex-package)

Fall 2008 Programming Development
Techniques

24

Combining Data of Different Types

One approach:

(put 'add
'(complex scheme-number)
(lambda (z x)

(tag (make-from-real-imag

(+ (real-part z) x)
(imag-part z))))))

Awkward when there are many combinations

5

Fall 2008 Programming Development
Techniques

25

A better way – transform objects
of one type into another type

;; to allow operations between mixed types
;; must allow coercion between types

; puts a procedure for coercing a scheme-number
; into a rational number
(put 'coerce

'scheme-number
(lambda (n)
(make-rational (contents n) 1)))

Fall 2008 Programming Development
Techniques

26

Coerce a rational number into a
complex one

; puts a procedure for coercing a rational
; number into a complex number
(put 'coerce

'rational
(lambda (r)
(make-complex-from-real-imag

(/ (car (contents r))
(cdr (contents r)))

Fall 2008 Programming Development
Techniques

27

Precedence info to control
coercion

When a mixed procedure is encountered,
must try to coerce arguments. Thus,
must know which way coercion can occur.
To do this, put precedence information
in the operations table.

;; must put precedence information in the operation
;; table to control coercion
(put 'scheme-number 'rational 'precedence)
(put 'scheme-number 'complex 'precedence)
(put 'rational 'complex 'precedence)

Fall 2008 Programming Development
Techniques

28

Revised apply-generic

; new apply-generic procedure attempts to
; do type coercion if no operator with the
; appropriate type is defined in the operation
; table
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))

Fall 2008 Programming Development
Techniques

29

continued
(if proc

; if procedure of appropraite type
; exists apply that procedure
(apply proc (map contents args))

Fall 2008 Programming Development
Techniques

30

; otherwise, attempt to do coercion if
; there are two arguments
(if (= (length args) 2)

(let ((t1 (car type-tags))
(t2 (cadr type-tags))
(a1 (car args))
(a2 (cadr args)))

(let ((t1up (get 'coerce t1))
(t2up (get 'coerce t2))
(p1 (get t1 t2))
(p2 (get t2 t1)))

6

Fall 2008 Programming Development
Techniques

31

; t1up and t2up contain coercion
; procedures if they exist
; p1 and p2 tell whether precedence is correct
(cond (p1

(apply-generic
op
(t1up a1)
a2))

(p2
(apply-generic
op
a1

(t2up a2)))

Fall 2008 Programming Development
Techniques

32

(else
(error
"no method"
(list
op
type-tags))))))

(error "no method"
(list op type-tags)))))))

