
1

Fall 2008 Programming Development
Techniques

1

Topic 16
Assignment and Local State

Section 3.1

Fall 2008 Programming Development
Techniques

2

Program Design
• So far we have learned about basic elements from

which programs are made
– Primitive procedures and primitive data combined to form

compound entities
– Abstraction (data)

• Here turn to organizational principles for overall
design of a program

Two prominent organizational strategies:
• Object oriented – program collection of objects

whose behaviors may change over time
• Streams of information that flow in a system

Fall 2008 Programming Development
Techniques

3

The state of an object

• Objects have properties that change over time, e.g.,
snowballs, cars, people

• The state of an object is the collection of the
values of all of its properties at a given moment
in time

Fall 2008 Programming Development
Techniques

4

Representing objects

• To represent an object, we must represent its state
• The measurable properties of an object can be

represented by local state variables
• To make the values of local state variables

change over time, an assignment operator is
needed, but this will make program behavior
harder to predict

Fall 2008 Programming Development
Techniques

5

Bank account example

(bank-statement) --> 1000
(withdraw 50) --> 950
(withdraw 50) --> 900

(withdraw 990) “insufficient funds"
(withdraw 50) --> 850

withdraw is not a mathematical function!
Notice that different values are returned for the same

function at different times

Fall 2008 Programming Development
Techniques

6

An implementation
; initialize the balance in the account
(define balance 1000)

; takes an amount, if there is enough balance in the account to
; cover the amount, then return the new balance (after withdraw
; is made). Otherwise, return "insufficient funds"
(define (withdraw amount)
(if (>= balance amount)

(begin
(set! balance

(- balance amount))
balance)

"insufficient funds"))

2

Fall 2008 Programming Development
Techniques

7

An implementation
; initialize the balance in the account
(define balance 1000)

; takes an amount, if there is enough balance in the account to
; cover the amount, then return the new balance (after withdraw
; is made). Otherwise, return "insufficient funds"
(define (withdraw amount)
(if (>= balance amount)

(begin
(set! balance

(- balance amount))
balance)

"insufficient funds"))

Fall 2008 Programming Development
Techniques

8

An implementation
; initialize the balance in the account
(define balance 1000)

; takes an amount, if there is enough balance in the account to
; cover the amount, then return the new balance (after withdraw
; is made). Otherwise, return "insufficient funds"
(define (withdraw amount)
(if (>= balance amount)

(begin set! Is a special form that
(set! Balance takes a symbol & an expression.

(- balance amount)) set! changes the value of the
balance) symbol so that its value is

"insufficient funds")) the value of the expression

Fall 2008 Programming Development
Techniques

9

An implementation
; initialize the balance in the account
(define balance 1000)

; takes an amount, if there is enough balance in the account to
; cover the amount, then return the new balance (after withdraw
; is made). Otherwise, return "insufficient funds"
(define (withdraw amount)
(if (>= balance amount)

(begin
(set! Balance

(- balance amount))
balance)

"insufficient funds"))

Fall 2008 Programming Development
Techniques

10

An implementation
; initialize the balance in the account
(define balance 1000)

; takes an amount, if there is enough balance in the account to
; cover the amount, then return the new balance (after withdraw
; is made). Otherwise, return "insufficient funds"
(define (withdraw amount)
(if (>= balance amount)

(begin begin is a special form that
(set! Balance simply evaluates a sequence

(- balance amount)) of expressions – its value is
balance) the value of the last one.

"insufficient funds"))

Fall 2008 Programming Development
Techniques

11

Problems with implementation

• balance is a global variable
• Any procedure can change the variable
• But, it should only be available for change to the

withdraw procedure.
• Can we do that?
• Can we use the function with more than one

account?

Fall 2008 Programming Development
Techniques

12

Withdrawing from more than
one fund

; make-withdraw takes a balance as an argument it returns
; a function that expects an amount to be withdrawn as its
; argument -- resets the balance accordingly. Think of this
; function as establishing a balance in an account – and
; returning a procedure that implements withdraws
(define (make-withdraw balance)
(lambda (amount)
(if (>= balance amount)

(begin (set! balance
(- balance amount))

balance)
"insufficient funds")))

3

Fall 2008 Programming Development
Techniques

13

A history of withdrawals
(define checking-withdraw (make-withdraw 100))
(define savings-withdraw (make-withdraw 500))
> (checking-withdraw 90)
10
> (savings-withdraw 300)
200
> (checking-withdraw 5)
5
> (checking-withdraw 5)
0
> (checking-withdraw 5)
"insufficient funds"
> (savings-withdraw 5)
195
> (savings-withdraw 5)
190

Fall 2008 Programming Development
Techniques

14

More realistic bank accounts
; make-account takes a balance and returns
; a procedure which is able to dispatch
; calls to withdraw or deposit both
; of which takes an amount and either withdraws
; or deposits the amount from the balance
(define (make-account balance)

Fall 2008 Programming Development
Techniques

15

(the two features)
; takes an amount and sets balance to balance minus
; the amount if balance is high enough
(define (withdraw amount)

(if (>= balance amount)
(begin (set! balance

(- balance amount))
balance)

"insufficient funds"))

; takes an amount and increases balance by that amount
(define (deposit amount)

(set! balance (+ balance amount))
balance)

Fall 2008 Programming Development
Techniques

16

(the bank teller)
; dispatches either withdraw or deposit as
; appropriate
(define (dispatch msg)

(cond ((eq? msg 'withdraw) withdraw)
((eq? msg 'deposit) deposit)
(else

(error
"You can't do that here:“
msg))))

dispatch)

Fall 2008 Programming Development
Techniques

17

Using the new function
> (define checking (make-account 100))
> ((checking 'withdraw) 30)
70
> ((checking 'withdraw) 30)
40
> ((checking 'deposit) 400)
440
> ((checking 'withdraw) 30)
410
>

Fall 2008 Programming Development
Techniques

18

Tale of two bank accounts
> (define checking (make-account 100))
> (define savings (make-account 500))
> ((checking 'withdraw) 75)
25
> ((savings 'withdraw) 75)
425
> ((checking 'deposit) 5)
30
> ((savings 'withdraw) 125)
300
> ((savings 'withdraw) 500)
"insufficient funds"
> ((savings 'close))
. reference to undefined identifier: error(define acc1 (make-

account 1000))

