
1

Fall 2008 Programming Development
Techniques

1

Topic 17
Assignment, Local State, and the

Environment Model of
Evaluation

Section 3.1 & 3.2

Fall 2008 Programming Development
Techniques

2

Substitution Model and Why it
Doesn’t work

• You have just been introduced to an assignment operator in
scheme – this is really the first time where symbols are viewed
as variables whose values can be set (rather than as values
themselves)

• Introducing assignment breaks us away from the functional
model of programming

Today
1. We will explicitly see WHY the substitution model of evaluation

no longer works and
2. We will be introduced to the environment model of evaluation

that can better explain the behavior of these new programs

Fall 2008 Programming Development
Techniques

3

Functional Programming

• (Almost) everything we’ve seen to now has been
“functional”

• Functional in the sense that it is based on a
mathematical model of functions

• Each of our procedures take input and return a value

Fall 2008 Programming Development
Techniques

4

Functional

• a function, always returns the same value for the
same inputs:

f(x) = 2x+3
f(3) = 9 … always
f(3) = 9

• I hope this seems obvious…

Fall 2008 Programming Development
Techniques

5

Functional
(fib 6)

8

(fact 6)
720

(fib 6)
8

(fact 6)
720

Fall 2008 Programming Development
Techniques

6

values never change

• once we assign a value
– it is always the same
– it never changes

• x = 6
– then x always equals 6 in this context

2

Fall 2008 Programming Development
Techniques

7

but we do have different contexts

• f(x) = x * f(x-1) ;; x > 1
• i.e. different calls may have different bindings for x
• but within a call (a single function)

– the value of any variable never changes

Fall 2008 Programming Development
Techniques

8

no change

• and a call to a function never changes anything else
• (f 6) (g 7) (f 8)
• (f 6) (f 8) ;; return the same thing

;; regardless of call to g
• (+ (f 6) (g 7) (f 8))
• (+ (f 6) (f 8) (g 7)) ;; same value

Fall 2008 Programming Development
Techniques

9

Functional Model

• is a beautiful model of computation
• completely capable

– can solve any computable problem with it

• easy to reason about

• …but it does make programming some things
awkward.

Fall 2008 Programming Development
Techniques

10

change

• introduce the ability to change values
– a variable’s value may change over time

• once we start using this
– the substitution view won’t be correct

Fall 2008 Programming Development
Techniques

11

in other languages...
• changing values of variables happens all the time
• e.g. in C:

int y = 10;
y = 20;
y = y + 30;

• in those languages, change is second nature

Fall 2008 Programming Development
Techniques

12

set!

• By introducing set! we just produced the ability to
change values in scheme

• set! is another special form
– evaluate its 2nd argument (value)
– reassign the 1st argument (variable) to the second

• change the binding
• also known as mutation
• variable "mutates" to new value

3

Fall 2008 Programming Development
Techniques

13

consider:

• (define astate 0)
• (define (accum0! x)

(set! astate
(+ astate x)))

• (accum0! 1)
• astate
• 1
• (accum0! 1)
• astate
• 2

Fall 2008 Programming Development
Techniques

14

value changes over time

• (define (accum0! x)
(set! astate

(+ astate x)))
• astate does not have a unique value here

– initially has one value
– has a different value after assignment

Fall 2008 Programming Development
Techniques

15

accumulator (revised)

• (define astate 0)
• (define (accum! x)

(begin
(set! astate (+ astate x))
astate))

• Now, the set! expression changes the value of the
final expression

Fall 2008 Programming Development
Techniques

16

accumulator (revised)
• (define astate 0)
• (define (accum! x)

(begin
(set! astate (+ astate x))
astate))

– that is:
• (begin (set! astate (+ astate x)) astate)
• is not the same as merely: astate

Fall 2008 Programming Development
Techniques

17

using accum!

• (accum! 1)
1

• (accum! 1)
2

• (accum! 1)
3

Fall 2008 Programming Development
Techniques

18

history starts to matter
• (define astate 0)
• (begin

(accum! 1)
(accum! 1)
(accum! 1)
)

• 3

not same as:
• (define astate 0)
• (accum! 1)
• 1

• intervening accum!’s change
the value of astate

• changes the value of the final
(accum! 1)

4

Fall 2008 Programming Development
Techniques

19

side-effects

• operations with embedded set!
– may have effects other than to compute their value
– may change state

• that affects the way other things behave
– we say they have “side effects”

• have an effect beyond their local computation

Fall 2008 Programming Development
Techniques

20

notational conventions

• (foo …) is a functional function
;; no side effects

• (foo? …) is a predicate
;; returns a boolean value

• (foo! …) has side effects
;; has an internal set! or equivalent

Fall 2008 Programming Development
Techniques

21

so far…

• before introducing set!
– variable values did not change
– intervening functions never changed the value of

succeeding operations

• introduce set!
– variable values may change
– results of operations may depend on previous operations

Fall 2008 Programming Development
Techniques

22

evaluating with set!

• (define (sadd x y z)
(begin

(set! x (+ x y))
(set! x (+ x z))
x))

• intuitively: what does this do?

Fall 2008 Programming Development
Techniques

23

Substitution Model
evaluating with set!

• (define (sadd x y z)
(begin

(set! x (+ x y))
(set! x (+ x z))
x))

• evaluate:
(sadd 1 2 3)

• apply sadd to 1 2 3
• substitute
• (begin

(set! 1 (+ 1 2))
(set! 1 (+ 1 3))
1)

Fall 2008 Programming Development
Techniques

24

Huh?

• (begin
(set! 1 (+ 1 2))
(set! 1 (+ 1 3))
1)

• does this make any sense?

set!: not an identifier in: 1

5

Fall 2008 Programming Development
Techniques

25

problem

• (define (sadd x y z)
(begin

(set! x (+ x y))
(set! x (+ x z))
x))

• substitute
• (begin

(set! 1 (+ 1 2))
(set! 1 (+ 1 3))
1)

our substitution model does not admit the
possibility that a variable’s value might change

Fall 2008 Programming Development
Techniques

26

problem

• (define (sadd x y z)
(begin

(set! x (+ x y))
(set! x (+ x z))
x))

• substitute
• (begin

(set! 1 (+ 1 2))
(set! 1 (+ 1 3))
1)

our substitution model does not distinguish
between a value and a variable

Fall 2008 Programming Development
Techniques

27

the bottom line

• the substitution model
– breaks down in the presence of side-effects
– cannot handle change of variable's value

• we need a better model...

Fall 2008 Programming Development
Techniques

28

the environment model
• new model

– need to reason about variables as locations

• recall that we said define created an "association"
– a mapping between a variable and a value

• now need to bring that to the forefront of our model

Fall 2008 Programming Development
Techniques

29

frames

• we call the association table a frame
• a frame contains bindings

– mapping from a variable name
– to a value

• e.g.
– x is currently 1
– y is currently 2

Fall 2008 Programming Development
Techniques

30

environment

• An environment
– is a collection of linked

frames

6

Fall 2008 Programming Development
Techniques

31

enclosing environment

• frames
– include a pointer to their

enclosing environment
– except for a special frame

called the global environment

Fall 2008 Programming Development
Techniques

32

variables and their values

• the value of a variable
– is the value

associated with the
variable in the
lowest enclosing
frame

– relative to the current
frame

x ?
1

x ? 10
x ?

100

Fall 2008 Programming Development
Techniques

33

variables and their values

• the value of a variable
– if variable binding

not found in current
frame

– search the parent
frame

q ?
12

q ?
12

z ?
3

Fall 2008 Programming Development
Techniques

34

environments

• are trees made out of
connected frames

• from the POV of any
given frame, you "see"
the environment as a
list of frames

1

2

3

Fall 2008 Programming Development
Techniques

35

Substitution Model

to evaluate a Scheme expression:
1. evaluate its operands
2. evaluate the operator
3. apply the operator to the evaluated operands

(fun op1 op2 op3 …)

Day 1

Substitu
tion Model

Fall 2008 Programming Development
Techniques

36

environment model evaluation

• changes the way we model apply
• to apply a procedure

1. construct a new frame
2. bind the formal parameters to the arguments of the call in that

new frame
3. the new frame’s parent is the environment associated with the

called procedure
• not the calling procedure

4. evaluate the body in the new environment

7

Fall 2008 Programming Development
Techniques

37

huh?

• environment associated with the called procedure?
• how are environments associated with procedures,

anyway?

Fall 2008 Programming Development
Techniques

38

environment model: rule 1

When we create a procedure (evaluate a lambda
expression)

• its environment is the environment in which the lambda
expression is evaluated

• a procedure is a pair
– the text of the lambda expression
– a pointer to the environment in which it was created

Fall 2008 Programming Development
Techniques

39

Procedure

• A procedure is a pair,
e.g.

(define x 3)
(define y 100)
(define foo
(lambda (x y)
(+ x y))

text of lambda

pointer to
environment
where lambda
evaluated

Fall 2008 Programming Development
Techniques

40

environment model: rules 2, 3

• RULE 2: define
– creates a binding in the current environment frame

• RULE 3: set!
– locates the binding of the variable in the environment (lowest

enclosing binding relative to the current frame)
– changes the binding to the new value

Fall 2008 Programming Development
Techniques

41

evaluating a procedure call

(define (f x y) (+ (* 3 x) (* -4 y) 2))
evaluate (f 3 2)

evaluate 3
evaluate 2
apply f to 3 2

current
environment

Fall 2008 Programming Development
Techniques

42

evaluating a procedure call (2)

(define (f x y) (+ (* 3 x) (* -4 y) 2))
evaluate (f 3 2)

...
create new frame

for formal
params of f
parent frame is

env of lambda

current
env

8

Fall 2008 Programming Development
Techniques

43

evaluating a procedure call (3)

(define (f x y) (+ (* 3 x) (* -4 y) 2))
evaluate (f 3 2)

...
evaluate body in
new frame
(+ (* 3 x) (* -4 y) 2)

current
env Fall 2008 Programming Development

Techniques
44

evaluating a procedure call (4)

lookup not
substitution current

env

(define (f x y) (+ (* 3 x) (* -4 y) 2))
evaluate (f 3 2)

...
(+ (* 3 x) (* -4 y) 2)
(+ (* 3 3) (* -4 2) 2)
(+ 9 -8 2)
3

Fall 2008 Programming Development
Techniques

45

another example...

• (define x 20)
• (define y 100)
• (define (f x) (+ x y))
• (f 1)

current
env

Fall 2008 Programming Development
Techniques

46

cont'd... (2)

• (define x 20)
• (define y 100)
• (define (f x) (+ x y))
• (f 1)
• create new frame for f

– and bind call arguments to
formal params

current
env

Fall 2008 Programming Development
Techniques

47

cont'd... (3)

• (define x 20)
• (define y 100)
• (define (f x) (+ x y))
• (f 1)
• create new frame for f

– and bind call arguments to
formal params

• evaluate body: (+ x y)

Call environment

current
env

Fall 2008 Programming Development
Techniques

48

cont'd... (4)

• evaluate: (+ x y)
– evaluate + +
– evaluate x 1
– evaluate y 100

• (+ 1 100)
• 101

Call environment

current
env

9

Fall 2008 Programming Development
Techniques

49

evaluate accum!

• (define astate 0)
• (define (accum! x)

(begin
(set! astate (+ astate x))
astate))

• (accum! 1)
• (accum! 1) ; again!

current
env

Fall 2008 Programming Development
Techniques

50

evaluate accum! (2)

• (define (accum! x) …)
• (accum! 1)

– create call frame
– bind formal params

current
env

Fall 2008 Programming Development
Techniques

51

evaluate accum! (3)
• evaluate:

– (begin (set! astate (+ astate x))
astate)

– evaluate first expression
• (set! astate

(+ astate x))
• evaluate 2nd arg.

(+ astate x)
(+ 0 1)
1

current
env

Fall 2008 Programming Development
Techniques

52

evaluate accum! (4)
• evaluate:

– (begin (set! astate (+ astate x))
astate)

– evaluate first expression
• (set! astate …)
• evaluate 2nd arg.
• 1
• update binding of first

argument (variable astate)
current
env

Fall 2008 Programming Development
Techniques

53

evaluate accum! (5)

• evaluate:
– (begin … astate)
– evaluate first expr

current
env (end)

– evaluate second expr
• astate
• 1

• return value of final expression =
1

Fall 2008 Programming Development
Techniques

54

after first (accum! 1)
current env

10

Fall 2008 Programming Development
Techniques

55

one more time...

• second call
• (accum! 1)
• create env frame

– bind formal params

current
env

Fall 2008 Programming Development
Techniques

56

evaluate accum! again
• evaluate body:

– (begin (set! ….) astate)
– evaluate first expr

• (set! astate
(+ astate x))

• evaluate 2nd arg
(+ astate x)
(+ 1 1)
2

current
env

Fall 2008 Programming Development
Techniques

57

cont'd... (2)

• evaluate:
– (begin (set! …)) astate)
– evaluate first exp.

• (set! astate (+ astate x))
• eval 2nd arg…2
• update binding of first

argument (variable)

running env

current
env

Fall 2008 Programming Development
Techniques

58

cont'd... (3)

• evaluate:
– (begin (set! astate (+ astate x))

astate)
– evaluate first expression
– evaluate second expression

• astate
• 2

• return value of final expression
= 2

running env

current
env (end)

Fall 2008 Programming Development
Techniques

59

after second (accum! 1)
current env

Fall 2008 Programming Development
Techniques

60

evaluate sadd

• (define (sadd x y z)
(begin

(set! x (+ x y))
(set! x (+ x z))
x))

• (sadd 1 2 3)

current
env

11

Fall 2008 Programming Development
Techniques

61

evaluate sadd (2)

• (sadd 1 2 3)
• create new frame
• bind args to formal

params

current
env

Fall 2008 Programming Development
Techniques

62

evaluate sadd (3)

• (sadd 1 2 3)
• create call frame
• bind args to formal params
• evaluate body

(begin
(set! x (+ x y))
(set! x (+ x z))
x))

current
env

Fall 2008 Programming Development
Techniques

63

evaluate sadd (4)

• evaluate 1st set!
– (set! x (+ x y))
– (set! x (+ 1 2))

current
env

Fall 2008 Programming Development
Techniques

64

evaluate sadd (5)

• evaluate 1st set!
– (set! x (+ x y))
– (set! x (+ 1 2))

• Update binding

current
env

Fall 2008 Programming Development
Techniques

65

evaluate sadd (6)

• evaluate 2nd set!
– (set! x (+ x z))
– (set! x (+ 3 3))

current
env

Fall 2008 Programming Development
Techniques

66

evaluate sadd (7)

• evaluate 2nd

– (set! x (+ x z))
– (set! x (+ 3 3))

• update binding

current
env

12

Fall 2008 Programming Development
Techniques

67

evaluate sadd (8)

• evaluate final exp
x
6

current
env

Fall 2008 Programming Development
Techniques

68

evaluate sadd (9)

• evaluate final exp
x
6

• ….which is return value
from sadd

current
env

Fall 2008 Programming Development
Techniques

69

Big Ideas

• functional model
– adequate, easy to reason, simple model

• add the ability to change values
– has convenience
– complicates reasoning and model
– must reason about locations

• can still model precisely
– environment model

