
1

Fall 2008 Programming Development
Techniques

1

Topic 18
Environment Model of

Evaluation

Section 3.2

Acknowledgement: This lecture (and also much of
the previous one) were taken from an old CalTech

Course Page
Fall 2008 Programming Development

Techniques
2

bindings (review)

• a binding is an association between a name and a
Scheme value

• names:
– variable names, procedure names
– formal parameters of procedures
– in let statements: (let ((name value) ...) ...)

• values: any Scheme value

Fall 2008 Programming Development
Techniques

3

bindings (review)

• a binding is an association between a name and a
Scheme value

• examples:
– name: x value: 10
– name: y value: #f
– name: square value: (lambda (x) (* x x))

Fall 2008 Programming Development
Techniques

4

frames (review)

• a frame is a collection of bindings:

x: 10

y: #f

square: (lambda (x) (* x x))

Fall 2008 Programming Development
Techniques

5

frames (review)

• frames are used to look up the value corresponding
to a name
– x = ?
– y = ?
– square = ?

x: 10

y: #f

square: (lambda (x) (* x x))

Fall 2008 Programming Development
Techniques

6

frames (review)

• frames have an enclosing
environment
– which will be another

frame (parent frame)
– if lookup fails, go to parent

frame and try again
– then to its parent frame

etc. x: 10

y: #f

square: (lambda (x) (* x x))

to parent frame

2

Fall 2008 Programming Development
Techniques

7

environments (review)

• an environment is a linked
chain of frames ending in
the global environment

• every frame defines an
environment starting from
it

x: 10

y: 20

z: 30

(global environment)

E1

E2

E3
Fall 2008 Programming Development

Techniques
8

environments (review)

• the global environment is there when Scheme interpreter
starts up

• evaluating code can create new frames
– and thus new environments

• all code being evaluated does so in the context of an
environment
– because names must be looked up
– called the current environment

Fall 2008 Programming Development
Techniques

9

rule 1: define

• define creates a new binding in the current
environment (current frame)

• example:
• (define x 10)

(global environment)

Fall 2008 Programming Development
Techniques

10

rule 1: define

• define creates a new binding in the current
environment (current frame)

• example:
• (define x 10)

(global environment)

x: 10

Fall 2008 Programming Development
Techniques

11

rule 2: set!

• set! changes an old binding in the current
environment

• NEVER creates a new binding
• example:
• (set! x 'foo)

(global environment)

x: 10

Fall 2008 Programming Development
Techniques

12

rule 2: set!

• set! changes an old binding in the current
environment

• NEVER creates a new binding
• example:
• (set! x 'foo)

(global environment)

x: foo

3

Fall 2008 Programming Development
Techniques

13

rule 2: set!

• set! can change a binding in a different frame (if no
binding in current frame)

• example:
• (set! x 24)

– no x in current env
– so change in global env

(global environment)

x: foo

y: 13
(current environment)

Fall 2008 Programming Development
Techniques

14

rule 2: set!

• set! can change a binding in a different frame (if no
binding in current frame)

• example:
• (set! x 24)

– no x in current env
– so change in global env

(global environment)

x: 24

y: 13
(current environment)

Fall 2008 Programming Development
Techniques

15

rule 3: lambda

• a lambda expression (procedure) is a pair:
– the text of the lambda expression
– a pointer to the environment in which the lambda expression

was evaluated (created)

Fall 2008 Programming Development
Techniques

16

rule 3: lambda

• evaluate:
(lambda (x) (* x x))

global environment

params: x

code: (* x x)

pointer to
environment
where lambda
evaluated

text of lambda

Fall 2008 Programming Development
Techniques

17

with define

• (define square
(lambda (x) (* x x)))

global environment

params: x

code: (* x x)

square:

Fall 2008 Programming Development
Techniques

18

rule 4: evaluation

• changes the way we model apply
• To apply a procedure:

1. construct a new frame
2. bind the formal parameters of the procedure to the arguments

of the procedure call
3. the new frame’s parent is the environment associated with the

called procedure
• not the calling procedure

4. evaluate the body in the new environment

4

Fall 2008 Programming Development
Techniques

19

evaluating (square 10)

global environment

params: x

code: (* x x)

square:

Fall 2008 Programming Development
Techniques

20

evaluating (square 10)

global environment

params: x

code: (* x x)

square:

new

frame

current environment

Fall 2008 Programming Development
Techniques

21

evaluating (square 10)

global environment

params: x

code: (* x x)

square:

new

frame

current environment

x: 10

Fall 2008 Programming Development
Techniques

22

evaluating (square 10)

global environment

params: x

code: (* x x)

square:

current
env

evaluate: (* x x)

x: 10

Fall 2008 Programming Development
Techniques

23

evaluating (square 10)

global environment

params: x

code: (* x x)

square:

current
env

(* x x) =>

(* 10 10) => 100

x: 10

Fall 2008 Programming Development
Techniques

24

evaluating (square 10)

global environment

params: x

code: (* x x)

square: current
env

result: 100

new frame "goes away"

5

Fall 2008 Programming Development
Techniques

25

That was WAY too easy!

Let's try something harder...

Fall 2008 Programming Development
Techniques

26

accumulator (revisited)

• (define (make-accum value)
(lambda (x)

(set! value (+ value x))
value))

• N.B. body of lambda, define, cond clause is implicitly
a begin block.

Fall 2008 Programming Development
Techniques

27

accumulator
• (define (make-accum value)

(lambda (x)
(set! value (+ value x))
value)) current env

Fall 2008 Programming Development
Techniques

28

accumulator (another look)
• (define make-accum

(lambda (value)
(lambda (x)
(set! value

(+ value x))
value))

current env

Fall 2008 Programming Development
Techniques

29

accumulator

• (define a! (make-accum 0))
– evaluate (make-accum 0)

• create frame
• bind arguments

current env

Fall 2008 Programming Development
Techniques

30

accumulator
• evaluate (make-accum 0)

– create, bind
– evaluate body

• (lambda (x) …)

current env

6

Fall 2008 Programming Development
Techniques

31

rule 3:

• when we create a procedure (evaluate a lambda
expression)
– its environment is the environment in which the lambda

expression is evaluated

Fall 2008 Programming Development
Techniques

32

accumulator
• evaluate (make-accum 0)

– create, bind
– evaluate body

• (lambda (x) …)
– result is lambda

• with env binding

current env

Fall 2008 Programming Development
Techniques

33

accumulator

• (define a! (make-accum 0))
– evaluate (make-accum 0)

• result is (lambda (x) …) with env ptr
– make binding for a!

• in its environment

current env

Fall 2008 Programming Development
Techniques

34

after (define a!…)

current env

Fall 2008 Programming Development
Techniques

35

after (define a!…)

"trapped"
frame persists

current env

Fall 2008 Programming Development
Techniques

36

using a!
• (a! 1)

– create frame
– bind values

current env

7

Fall 2008 Programming Development
Techniques

37

using a!

• (a! 1)
– create frame
– bind values
– evaluate body

• (begin (set! value…) …)
– (set! value (+ x value))
– (set! value (+ 1 0))
– (set! value 1)

current env

Fall 2008 Programming Development
Techniques

38

using a!

• (a! 1)
– Create frame
– Bind values
– Evaluate body

• (begin (set! value…) ,,,,)
• (set! value (+ x value))
• (set! value (+ 1 0))
• (set! value 1)

current env

Fall 2008 Programming Development
Techniques

39

environment after (a! 1)

trapped
frame

current env

Fall 2008 Programming Development
Techniques

40

more usage

• (a! 1)
2

• (a! 1)
3

Fall 2008 Programming Development
Techniques

41

accumulator 2
• (define b! (make-accum 0))

– evaluate (make-accum 0)
• create
• bind…

current env

Fall 2008 Programming Development
Techniques

42

accumulator 2

• (define b! (make-accum 0))
– evaluate (make-accum 0)

• result is (lambda (x) …) w/ env ptr
– make binding for b!

current env

8

Fall 2008 Programming Development
Techniques

43

resulting environment
• a! and b! have their own value

current env

Fall 2008 Programming Development
Techniques

44

using b!

• (b! 1)
– …frame

current env

Fall 2008 Programming Development
Techniques

45

using b!

• (b! 1)
– …frame
– …set!

current env

Fall 2008 Programming Development
Techniques

46

using a! again

• (a! 1)
– …frame

current env

Fall 2008 Programming Development
Techniques

47

using a! again

• (a! 1)
– …frame
– …set!

current env
Fall 2008 Programming Development

Techniques
48

using b!

• (b! 1)
• 2
• (a! 1)
• 3
• (a! 1)
• 4
• (b! 1)
• 3

9

Fall 2008 Programming Development
Techniques

49

procedure environment
• make-accum

creates a unique
frame for each call

• the lambda traps the
frame and keeps a
pointer to it

• only that lambda
has access to that
frame

Fall 2008 Programming Development
Techniques

50

procedure environment
• value is a local variable that is owned (and

accessible) exclusively by the resulting lambda

Fall 2008 Programming Development
Techniques

51

a! and b!

• a! and b! have unique procedure frames
• have unique local variables: value
• don’t affect each other
• remember own state
• important form of encapsulation

– limits unwanted interactions

Fall 2008 Programming Development
Techniques

52

contrast

• (define astate 0)
• (define (accum! x)

(set! astate (+ x astate))
astate))

• (define (toggle!)
(if (= astate 0)

(set! astate 1)
(set! astate 0)))

Fall 2008 Programming Development
Techniques

53

interaction
• (accum! 1)
• 1
• (toggle!) ;; astate: 0
• (accum! 1)
• 1
• (accum! 1)
• 2

• (toggle!) ;; astate: 0
• (accum! 1)
• 1

• toggle! and accum! share a
variable

• not independent

Fall 2008 Programming Development
Techniques

54

encapsulation

• generally a bad idea to put state in the global
environment
– pollutes namespace
– gives other routines access

• even ones that don't need it
– can get bad interactions

• even accidental ones

10

Fall 2008 Programming Development
Techniques

55

disciplined use of side-effects

• moral of the story:
• there are many things we can do with side-effects
• …that we really should not do.
• keep your state private!

– nobody else has to know

Fall 2008 Programming Development
Techniques

56

controlling access

• What if I want multiple procedures to access the
same state?

• want specificity
– give multiple procedures access
– but not all procedures

Fall 2008 Programming Development
Techniques

57

code and data

• encapsulate data
– with associated (limited) code to manipulate
– code mediates kinds of access

• familiar…
– message-passing associated data and code

Fall 2008 Programming Development
Techniques

58

message-passing
; returns a procedure that will act as an accumulator
; or will return its value or reset the value
• (define (mp-make-accum value)

(lambda (op)
(cond ((eq? op 'accum)

(lambda (x) (set! value
(+ value x))))

((eq? op 'value) value)
((eq? op 'reset) (set! value 0))
(else (error “unknown op: ” op)))))

Fall 2008 Programming Development
Techniques

59

message-passing use

• (define a2 (mp-make-accum 0))
• (a2 'value)

0
• ((a2 'accum) 1)
• (a2 'value)

1

Fall 2008 Programming Development
Techniques

60

environment
• (define a2 (mp-make-accum 0))

current env

11

Fall 2008 Programming Development
Techniques

61

environment
• (define a2 (mp-make-accum 0))
• (a2 ‘accum)

current env

Fall 2008 Programming Development
Techniques

62

environment
• (define a2 (mp-make-accum 0))
• (a2 ‘value)

current env

Fall 2008 Programming Development
Techniques

63

usage

• (define a2 (mp-make-accum 0))
• during: ((a2 ‘accum) 1)

current env

Fall 2008 Programming Development
Techniques

64

usage

• (define a2 (mp-make-accum 0))
• during: ((a2 ‘accum) 1)

current env

Fall 2008 Programming Development
Techniques

65

usage

• (define a2 (mp-make-accum 0))
• during: ((a2 ‘accum) 1)

current env

(set! value (+ value x))

(set! value (+ 0 1))

(set! value 1)
Fall 2008 Programming Development

Techniques
66

usage
• after: ((a2 ‘accum) 1)

1

current env

12

Fall 2008 Programming Development
Techniques

67

Big Ideas

• procedures point to environment at the place where
they're evaluated

• procedures can have local state
• allows us to create procedure-specific (object-specific)

state
• allows us to encapsulate data

– avoiding conflict
– control usage

