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Topic 18 
Environment Model of 

Evaluation

Section 3.2

Acknowledgement: This lecture (and also much of 
the previous one) were taken from an old CalTech
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bindings (review)

• a binding is an association between a name and a 
Scheme value

• names:
– variable names, procedure names
– formal parameters of procedures
– in let statements: (let ((name value) ...) ...)

• values: any Scheme value
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bindings (review)

• a binding is an association between a name and a 
Scheme value

• examples:
– name: x           value: 10
– name: y           value: #f
– name: square  value: (lambda (x) (* x x))
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frames (review)

• a frame is a collection of bindings:

x: 10

y: #f

square: (lambda (x) (* x x))
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frames (review)

• frames are used to look up the value corresponding 
to a name
– x = ?
– y = ?
– square = ?

x: 10

y: #f

square: (lambda (x) (* x x))
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frames (review)

• frames have an enclosing 
environment
– which will be another 

frame (parent frame)
– if lookup fails, go to parent 

frame and try again
– then to its parent frame 

etc. x: 10

y: #f

square: (lambda (x) (* x x))

to parent frame
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environments (review)

• an environment is a linked 
chain of frames ending in 
the global environment

• every frame defines an 
environment starting from 
it

x: 10

y: 20

z: 30

(global environment)

E1

E2

E3
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environments (review)

• the global environment is there when Scheme interpreter 
starts up

• evaluating code can create new frames
– and thus new environments

• all code being evaluated does so in the context of an 
environment
– because names must be looked up
– called the current environment
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rule 1: define

• define creates a new binding in the current 
environment (current frame)

• example:
• (define x 10)

(global environment)
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rule 1: define

• define creates a new binding in the current 
environment (current frame)

• example:
• (define x 10)

(global environment)

x: 10
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rule 2: set!

• set! changes an old binding in the current 
environment

• NEVER creates a new binding
• example:
• (set! x 'foo)

(global environment)

x: 10
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rule 2: set!

• set! changes an old binding in the current 
environment

• NEVER creates a new binding
• example:
• (set! x 'foo)

(global environment)

x: foo
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rule 2: set!

• set! can change a binding in a different frame (if no 
binding in current frame)

• example:
• (set! x 24)

– no x in current env
– so change in global env

(global environment)

x: foo

y: 13
(current environment)
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rule 2: set!

• set! can change a binding in a different frame (if no 
binding in current frame)

• example:
• (set! x 24)

– no x in current env
– so change in global env

(global environment)

x: 24

y: 13
(current environment)
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rule 3: lambda

• a lambda expression (procedure) is a pair:
– the text of the lambda expression
– a pointer to the environment in which the lambda expression 

was evaluated (created)
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rule 3: lambda

• evaluate: 
(lambda (x) (* x x))

global environment

params: x

code: (* x x)

pointer to
environment
where lambda
evaluated

text of lambda
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with define

• (define square 
(lambda (x) (* x x)))

global environment

params: x

code: (* x x)

square:
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rule 4: evaluation

• changes the way we model apply
• To apply a procedure:

1. construct a new frame
2. bind the formal parameters of the procedure to the arguments 

of the procedure call
3. the new frame’s parent is the environment associated with the 

called procedure
• not the calling procedure

4. evaluate the body in the new environment
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evaluating (square 10)

global environment

params: x

code: (* x x)

square:
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evaluating (square 10)

global environment

params: x

code: (* x x)

square:

new

frame

current environment
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evaluating (square 10)

global environment

params: x

code: (* x x)

square:

new

frame

current environment

x: 10
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evaluating (square 10)

global environment

params: x

code: (* x x)

square:

current 
env

evaluate: (* x x)

x: 10
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evaluating (square 10)

global environment

params: x

code: (* x x)

square:

current 
env

(* x x) =>

(* 10 10) => 100

x: 10
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evaluating (square 10)

global environment

params: x

code: (* x x)

square: current 
env

result: 100

new frame "goes away"
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That was WAY too easy!

Let's try something harder...
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accumulator (revisited)

• (define (make-accum value)
(lambda (x) 

(set! value (+ value x))
value))

• N.B. body of lambda, define, cond clause is implicitly 
a begin block.
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accumulator
• (define (make-accum value)

(lambda (x) 
(set! value (+ value x))
value)) current env
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accumulator (another look)
• (define make-accum

(lambda (value)
(lambda (x) 
(set! value 

(+ value x))
value))

current env
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accumulator

• (define a! (make-accum 0))
– evaluate (make-accum 0)

• create frame
• bind arguments

current env
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accumulator
• evaluate (make-accum 0)

– create, bind
– evaluate body

• (lambda (x) …)

current env
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rule 3:

• when we create a procedure (evaluate a lambda 
expression)
– its environment is the environment in which the lambda 

expression is evaluated
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accumulator
• evaluate (make-accum 0)

– create, bind
– evaluate body

• (lambda (x) …)
– result is lambda

• with env binding

current env
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accumulator

• (define a! (make-accum 0))
– evaluate (make-accum 0)

• result is (lambda (x) …) with env ptr
– make binding for a! 

• in its environment

current env
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after (define a!…)

current env
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after (define a!…)

"trapped" 
frame persists

current env
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using a!
• (a! 1)

– create frame
– bind values

current env
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using a!

• (a! 1)
– create frame
– bind values
– evaluate body

• (begin (set! value…) …)
– (set! value (+ x value))
– (set! value (+ 1 0))
– (set! value 1)

current env
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using a!

• (a! 1)
– Create frame
– Bind values
– Evaluate body

• (begin (set! value…) ,,,,)
• (set! value (+ x value))
• (set! value (+ 1 0))
• (set! value 1)

current env
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environment after (a! 1)

trapped
frame

current env
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more usage

• (a! 1)
2

• (a! 1)
3
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accumulator 2
• (define b! (make-accum 0))

– evaluate (make-accum 0)
• create
• bind…

current env
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accumulator 2

• (define b! (make-accum 0))
– evaluate (make-accum 0)

• result is (lambda (x) …) w/ env ptr
– make binding for b! 

current env
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resulting environment
• a! and b! have their own value

current env
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using b!

• (b! 1)
– …frame

current env
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using b!

• (b! 1)
– …frame
– …set!

current env
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using a! again

• (a! 1)
– …frame

current env

Fall 2008 Programming Development 
Techniques

47

using a! again

• (a! 1)
– …frame
– …set!

current env
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using b!

• (b! 1)
• 2
• (a! 1)
• 3
• (a! 1)
• 4
• (b! 1)
• 3
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procedure environment
• make-accum

creates a unique
frame for each call

• the lambda traps the 
frame and keeps a 
pointer to it

• only that lambda 
has access to that 
frame
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procedure environment
• value is a local variable that is owned (and 

accessible) exclusively by the resulting lambda
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a!  and b!

• a! and b! have unique procedure frames
• have unique local variables: value
• don’t affect each other
• remember own state
• important form of encapsulation

– limits unwanted interactions
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contrast

• (define astate 0)
• (define (accum! x)

(set! astate (+ x astate))
astate))

• (define (toggle!)
(if (= astate 0) 

(set! astate 1)
(set! astate 0)))
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interaction
• (accum! 1)
• 1
• (toggle!) ;; astate: 0
• (accum! 1)
• 1
• (accum! 1)
• 2

• (toggle!) ;; astate: 0
• (accum! 1)
• 1

• toggle! and accum! share a 
variable

• not independent
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encapsulation

• generally a bad idea to put state in the global 
environment
– pollutes namespace
– gives other routines access

• even ones that don't need it
– can get bad interactions

• even accidental ones
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disciplined use of side-effects

• moral of the story:
• there are many things we can do with side-effects
• …that we really should not do.
• keep your state private!

– nobody else has to know
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controlling access

• What if I want multiple procedures to access the 
same state?

• want specificity
– give multiple procedures access
– but not all procedures
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code and data

• encapsulate data
– with associated (limited) code to manipulate
– code mediates kinds of access

• familiar…
– message-passing associated data and code
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message-passing
; returns a procedure that will act as an accumulator
; or will return its value or reset the value
• (define (mp-make-accum value)

(lambda (op)
(cond ((eq? op 'accum)

(lambda (x) (set! value 
(+ value x))))

((eq? op 'value) value)
((eq? op 'reset) (set! value 0))
(else (error “unknown op: ” op)))))
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message-passing use

• (define a2 (mp-make-accum 0))
• (a2 'value)

0
• ((a2 'accum) 1)
• (a2 'value) 

1
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environment
• (define a2 (mp-make-accum 0))

current env
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environment
• (define a2 (mp-make-accum 0))
• (a2 ‘accum)

current env
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environment
• (define a2 (mp-make-accum 0))
• (a2 ‘value)

current env
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usage

• (define a2 (mp-make-accum 0))
• during: ((a2 ‘accum) 1)

current env
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usage

• (define a2 (mp-make-accum 0))
• during: ((a2 ‘accum) 1)

current env
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usage

• (define a2 (mp-make-accum 0))
• during: ((a2 ‘accum) 1)

current env

(set! value (+ value x))

(set! value (+ 0 1))

(set! value 1)
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usage
• after: ((a2 ‘accum) 1)

1

current env
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Big Ideas

• procedures point to environment at the place where 
they're evaluated

• procedures can have local state
• allows us to create procedure-specific (object-specific) 

state
• allows us to encapsulate data

– avoiding conflict
– control usage


