
1

Fall 2008 Programming Development
Techniques

1

Topic 2
Scheme and Procedures and

Processes

September 2008

Fall 2008 Programming Development
Techniques

2

Substitution model for defined
procedure application

Function definition:

(define (<fun> <param1> <param2> ...)
<body>)

Function call:

(<fun> <expr1> <expr2> ...)

Fall 2008 Programming Development
Techniques

3

The substitution model

• Evaluate expressions <expr1>, <expr2>, ...
• Substitute the value of <expr1> for <param1>, the

value of <expr2> for <param2>, ... in a copy of the
<body> expression in the definition of <fun> to make
a new expression

• Evaluate that expression

Fall 2008 Programming Development
Techniques

4

Substitution model example

(define (square x) (* x x))

Evaluation of (square 2) by substitution model:

(square 2)

(* 2 2)
4

Fall 2008 Programming Development
Techniques

5

Second substitution example

(define (sum-of-squares x y)

(+ (square x) (square y)))

(sum-of-squares 2 3)
(+ (square 2) (square 3))

(* 2 2)
4

(* 3 3)
9

(+ 4 9)

13

Fall 2008 Programming Development
Techniques

6

Third substitution example
(define(double-square (define (sum-of-squares

x) x y)

(sum-of-squares x x)) (+ (square x)
(square y)))

(double-square 10)
(sum-of-squares 10 10)
(+ (square 10) (square 10))

(* 10 10)
100

(* 10 10)
100

(+ 100 100)
200

2

Fall 2008 Programming Development
Techniques

7

Applicative order and normal
order

• Applicative order: evaluate arguments, then apply
procedure to values

• Normal order: substitute argument expressions for
corresponding parameters in body of procedure
definition, then evaluate body

Our substitution model of evaluation uses applicative
order

Fall 2008 Programming Development
Techniques

8

Conditional statements

Two forms:
1) (if <test>

<then-expr>
<else-expr>) NOT optional in Scheme

Example:
(define (absolute x)

(if (< x 0)

(- x)
x))

Fall 2008 Programming Development
Techniques

9

2) (cond (<test1> <expr1>)
(<test2> <expr2>)
. . .
(else <last-expr>)) NOT optional

in Scheme
Example:

(define (absolute x)
(cond ((> x 0) x)

((= x 0) 0)
(else (- x))))

Fall 2008 Programming Development
Techniques

10

Comments on conditionals

• A test is considered to be true if it evaluates to
anything except #f

• A branch of a cond can have more than one
expression:
(<test> <expr1> <expr2> . . . <exprN>)

• (<test>) returns value of <test> if it is not #f
• The else branch must contain at least one expression

Fall 2008 Programming Development
Techniques

11

(Confession)

Actually, I lied. The <else-expr> in if statements and
the else branch in cond statements are optional, but
the value that is returned is unspecified, so don't omit
them.

Fall 2008 Programming Development
Techniques

12

Boolean functions

• (and <expr1> <expr2> . . . <exprN>)
<expr>s evaluated in order; return #f if any
evaluate to #f, else return value of <exprN>

• (or <expr1> <expr2> . . . <exprN>)
<evpr>s evaluated in order; return the first value that
is not #f; return #f if all are #f

3

Fall 2008 Programming Development
Techniques

13

• (not <expr>)
returns #t or #f as appropriate

NOTE: define, if, cond, and, or are special forms

Fall 2008 Programming Development
Techniques

14

Difference between procedures
and mathematical functions

Mathematical functions are defined declaratively, by
stating WHAT the conditions are that their values satisfy.

Example:

sqrt(x) = the unique y such that y ≥ 0 and
y * y = x.

Fall 2008 Programming Development
Techniques

15

Procedures are defined by stating step by step HOW to
find the desired value.

Example:

Newton's method for computing square roots.

Fall 2008 Programming Development
Techniques

16

Newton's method for square
roots

General approach:
• If a guess is good enough, return it.
• If not good enough, compute a better guess.
• Repeat
(As a practical matter, we'll only compute an

approximate value.)
To compute (squareroot x) with guess=y, new guess is

(y + x/y)/2
I.e., average y with x/y

Fall 2008 Programming Development
Techniques

17

Square root of 10

Guess:
2
(2 + (10/2))/2 = 3.5
(3.5 + (10/3.5))/2 =

3.1785
. . .
3.162277660168. . .

Good enough?
2 * 2 = 4
3.5 * 3.5 = 12.25
3.1785 * 3.1785 =

10.1029
. . .

Fall 2008 Programming Development
Techniques

18

Newton's method (code)

(define (sqrt x)
(compute-sqrt 1.0 x))

(define (compute-sqrt guess x)
(if (good-enough-sqrt? guess x)

guess
(compute-sqrt

(better-sqrt-guess guess x)

x)))

4

Fall 2008 Programming Development
Techniques

19

(code continued)

(define (good-enough-sqrt? guess x)

(< (abs (- x (square guess)))
0.000001))

(define (better-sqrt-guess guess x)
(average guess (/ x guess)))

(define (average x y)
(/ (+ x y) 2))

Fall 2008 Programming Development
Techniques

20

Notice compute-sqrt is a recursive
procedure

• Recursive procedure calls itself

Body
• Base conditions (am I done? – is this a problem so

easy I can do right now with no work?)
• Otherwise, call itself on a simpler problem – one

closer to the base condition

Each time recursive procedure is called, it is like a new
procedure (variables are bound anew).

Fall 2008 Programming Development
Techniques

21

Brain Teaser – getting recursion

• What do the following procedures print when applied
to 4? Note, I am not worried about the value
returned, rather, about what is printed.

• First, try to predict what is printed.
• Second, try it in scheme.
• Third, if your prediction is different from what scheme

produced, figure out why.
• Fourth, get help if it doesn’t make sense!

Fall 2008 Programming Development
Techniques

22

The Code
(define (count1 x)

(cond ((= x 0) (print x))
(else (print x)

(count1 (- x 1)))))

(define (count2 x)
(cond ((= x 0) (print x))

(else (count2 (- x 1))
(print x))))

(define (print x)
(display x)
(newline))

Fall 2008 Programming Development
Techniques

23

Procedures as Black-Box
abstractions

• A computing problem is often broken down into
natural, smaller subproblems.

• Procedures are written for each of these subproblems.
• A procedure may call itself to solve a subproblem that

is a smaller version of the original problem. This is
called recursion.

Fall 2008 Programming Development
Techniques

24

Square root example

Subproblems (subprocedures)

sqrt
compute-sqrt (also calls itself)

good-enough?
square

better
average

(primitives abs, /, +, - are also called)

5

Fall 2008 Programming Development
Techniques

25

Black box

We know what it does, not how

Inputs Output

Fall 2008 Programming Development
Techniques

26

Procedures

Procedures are like Black Boxs. Their definitions (how
they work) can be changed without affecting the rest of
the program.

Example:

(define (square x)
(exp (* 2 (log x))))

Fall 2008 Programming Development
Techniques

27

Procedural abstraction

• A user-defined procedure is called by name, just as
primitive procedures are.

• How the procedure operates is hidden.

(square x)
(exp x)

Fall 2008 Programming Development
Techniques

28

Variables

• All symbols in a procedure definition are variables.
• All symbols in the procedure head (procedure name

and parameters) are called bound variables.
• All occurrences of these variables in the body of

the procdure definition are bound occurrences.
• All symbols in the body of the procedure that

are not bound are called free variables.

Fall 2008 Programming Development
Techniques

29

Scope

• Bound variables in a procedure definition can be
renamed without changing the meaning of the
definition.

• The body of a procedure is the scope of the bound
variables named in the procedure head.

• Changing the name of free variables will
change the meaning of the definition.

Fall 2008 Programming Development
Techniques

30

Local variables

• The formal parameters of a procedure definition are
local variables in the body.

• Other variables can become local variables by defining
values for them; they become bound.

(define (area-of-circle radius)
(define pi 3.14159)
(* pi radius radius))

6

Fall 2008 Programming Development
Techniques

31

Procedure definitions can be
nested

(define (sqrt x)
(define (compute-sqrt guess x)

(if (good-enough? guess x)
guess
(compute-sqrt

(better guess x)
x)))

Fall 2008 Programming Development
Techniques

32

(sqrt continued)

(define (good-enough? guess x)

(or (< guess 1e-100)
(< (abs (- (/ x

(square guess))
1))

0.000001)))

Fall 2008 Programming Development
Techniques

33

(sqrt continued 2)
(define (better guess x)

(average guess (/ x guess)))
(compute-sqrt 1.0 x))

Locally defined procedures must come first in
body of definition.

Fall 2008 Programming Development
Techniques

34

Block structure

• Procedure definitions are often called blocks
• The nesting of procedure definitions is called

block structure
• Variables that are free in an inner block are

bound as local variables in an outer block
• Values of local variables don't have to be

passed into nested definitions via parameters
• This manner of determining the values of

variables is called lexical scoping

Fall 2008 Programming Development
Techniques

35

Using fewer parameters
(define (sqrt x)

(define (compute-sqrt guess)
(define (good-enough?)

(or (< guess 1e-100)
(< (abs (- (/ x

(square
guess))

1))
0.000001)))

Fall 2008 Programming Development
Techniques

36

(fewer params continued)

(define (better)

(average guess (/ x guess)))
(if (good-enough?)

guess
(compute-sqrt (better))))

(compute-sqrt 1.0))

