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Scheme and Procedures and 
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Substitution model for defined 
procedure application

Function definition:

(define (<fun> <param1> <param2> ...)
<body>)

Function call:

(<fun> <expr1> <expr2> ...)
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The substitution model

• Evaluate expressions <expr1>, <expr2>, ...
• Substitute the value of <expr1> for <param1>, the 

value of <expr2> for <param2>, ... in a copy of the 
<body> expression in the definition of <fun> to make 
a new expression

• Evaluate that expression
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Substitution model example

(define (square x) (* x x))

Evaluation of (square 2) by substitution model:

(square 2)

(* 2 2)
4
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Second substitution example

(define (sum-of-squares x y)

(+ (square x) (square y)))

(sum-of-squares 2 3)
(+ (square 2) (square 3))

(* 2 2)
4

(* 3 3)
9

(+ 4 9)

13
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Third substitution example
(define(double-square   (define (sum-of-squares

x)                        x y)

(sum-of-squares x x))    (+ (square x) 
(square y))) 

(double-square 10)
(sum-of-squares 10 10)
(+ (square 10) (square 10))

(* 10 10)
100

(* 10 10)
100

(+ 100 100)
200
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Applicative order and normal 
order

• Applicative order: evaluate arguments, then apply 
procedure to values

• Normal order: substitute argument expressions for 
corresponding parameters in body of procedure 
definition, then evaluate body

Our substitution model of evaluation uses applicative 
order
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Conditional statements

Two forms:
1) (if <test>

<then-expr>
<else-expr>)   NOT optional in Scheme

Example:
(define (absolute x)

(if (< x 0)

(- x)
x))
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2) (cond (<test1> <expr1>)
(<test2> <expr2>)
. . .
(else <last-expr>)) NOT optional

in Scheme
Example:

(define (absolute x)
(cond ((> x 0) x)

((= x 0) 0)
(else (- x))))
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Comments on conditionals

• A test is considered to be true if it evaluates to 
anything except #f

• A branch of a cond can have more than one 
expression:
(<test> <expr1> <expr2> . . . <exprN>)

• (<test>) returns value of <test> if it is not #f
• The else branch must contain at least one expression

Fall  2008 Programming Development 
Techniques

11

(Confession)

Actually, I lied.  The <else-expr> in if statements and 
the else branch in cond statements are optional, but 
the value that is returned is unspecified, so don't omit 
them.
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Boolean functions

• (and <expr1> <expr2> . . . <exprN>)
<expr>s evaluated in order; return #f if any 
evaluate to #f, else return value of <exprN>

• (or <expr1> <expr2> . . . <exprN>)
<evpr>s evaluated in order; return the first value that 
is not #f; return #f if all are #f
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• (not <expr>)
returns #t or #f as appropriate

NOTE: define, if, cond, and, or are special forms
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Difference between procedures 
and mathematical functions

Mathematical functions are defined declaratively, by 
stating WHAT the conditions are that their values satisfy.

Example:

sqrt(x) = the unique y such that y ≥ 0 and 
y * y = x.
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Procedures are defined by stating step by step HOW to 
find the desired value.

Example:

Newton's method for computing square roots.
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Newton's method for square 
roots

General approach:
• If a guess is good enough, return it.
• If not good enough, compute a better guess.
• Repeat
(As a practical matter, we'll only compute an 

approximate value.)
To compute (squareroot x) with guess=y, new guess is

(y + x/y)/2
I.e., average y with x/y
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Square root of 10

Guess:
2
(2 + (10/2))/2 = 3.5
(3.5 + (10/3.5))/2 = 

3.1785
. . .
3.162277660168. . .

Good enough?
2 * 2 = 4
3.5 * 3.5 = 12.25
3.1785 * 3.1785 = 

10.1029
. . .
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Newton's method (code)

(define (sqrt x)
(compute-sqrt 1.0 x))

(define (compute-sqrt guess x)
(if (good-enough-sqrt? guess x)

guess
(compute-sqrt

(better-sqrt-guess guess x)

x)))
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(code continued)

(define (good-enough-sqrt? guess x)

(< (abs (- x (square guess)))
0.000001))

(define (better-sqrt-guess guess x)
(average guess (/ x guess)))

(define (average x y)
(/ (+ x y) 2))
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Notice compute-sqrt is a recursive 
procedure 

• Recursive procedure calls itself

Body
• Base conditions (am I done? – is this a problem so 

easy I can do right now with no work?)
• Otherwise, call itself on a simpler problem – one 

closer to the base condition

Each time recursive procedure is called, it is like a new 
procedure (variables are bound anew).
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Brain Teaser – getting recursion

• What do the following procedures print when applied 
to 4?  Note, I am not worried about the value 
returned, rather, about what is printed.

• First, try to predict what is printed.
• Second, try it in scheme.
• Third, if your prediction is different from what scheme 

produced, figure out why.
• Fourth, get help if it doesn’t make sense!
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The Code
(define (count1 x)

(cond ((= x 0) (print x))
(else (print x)

(count1 (- x 1)))))

(define (count2 x)
(cond ((= x 0) (print x))

(else (count2 (- x 1))
(print x))))

(define (print x)
(display x)
(newline))
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Procedures as Black-Box 
abstractions

• A computing problem is often broken down into 
natural, smaller subproblems.

• Procedures are written for each of these subproblems.
• A procedure may call itself to solve a subproblem that 

is a smaller version of the original problem.  This is 
called recursion.
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Square root example

Subproblems (subprocedures)

sqrt
compute-sqrt  (also calls itself)

good-enough?
square

better
average

(primitives abs, /, +, - are also called)
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Black box

We know what it does, not how

Inputs Output
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Procedures

Procedures are like Black Boxs.  Their definitions (how 
they work) can be changed without affecting the rest of 
the program.

Example:

(define (square x)
(exp (* 2 (log x))))
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Procedural abstraction

• A user-defined procedure is called by name, just as 
primitive procedures are.

• How the procedure operates is hidden.

(square x)
(exp x)
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Variables

• All symbols in a procedure definition are variables.
• All symbols in the procedure head (procedure name 

and parameters) are called bound variables.
• All occurrences of these variables in the body of 

the procdure definition are bound occurrences.
• All symbols in the body of the procedure that 

are not bound are called free variables.
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Scope

• Bound variables in a procedure definition can be 
renamed without changing the meaning of the 
definition.

• The body of a procedure is the scope of the bound 
variables named in the procedure head.

• Changing the name of free variables will 
change the meaning of the definition.
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Local variables

• The formal parameters of a procedure definition are 
local variables in the body.

• Other variables can become local variables by defining 
values for them; they become bound.

(define (area-of-circle radius)
(define pi 3.14159)
(* pi radius radius))
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Procedure definitions can be 
nested

(define (sqrt x)
(define (compute-sqrt guess x)

(if (good-enough? guess x)
guess
(compute-sqrt

(better guess x)
x)))
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(sqrt continued)

(define (good-enough? guess x)

(or (< guess 1e-100)
(< (abs (- (/ x

(square guess))
1))

0.000001)))
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(sqrt continued 2)
(define (better guess x)

(average guess (/ x guess)))
(compute-sqrt 1.0 x))

Locally defined procedures must come first in 
body of definition.
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Block structure

• Procedure definitions are often called blocks
• The nesting of procedure definitions is called 

block structure
• Variables that are free in an inner block are 

bound as local variables in an outer block
• Values of local variables don't have to be 

passed into nested definitions via parameters
• This manner of determining the values of 

variables is called lexical scoping
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Using fewer parameters
(define (sqrt x)

(define (compute-sqrt guess)
(define (good-enough?)

(or (< guess 1e-100)
(< (abs (- (/ x

(square
guess))

1))
0.000001)))
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(fewer params continued)

(define (better)

(average guess (/ x guess)))
(if (good-enough?)

guess
(compute-sqrt (better))))

(compute-sqrt 1.0))


