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Topic 20 
Concurrency

Section 3.4
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Concurrency

• In the real world, many processes act concurrently
• If they interact with each other, as when sharing a 

resource, strange things can happen
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Simplified bank account 
example

• Simplified withdraw procedure

; withdraw an amount from the account 
; balance
(define (withdraw amount)

(set! balance
(- balance amount)))

• Withdraw process must read balance, then do a 
computation, then set balance to new value
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Interaction of two withdraw 
processes

• What happens if we have multiple people with a 
shared account?

• Each process does a read of balance and a set of 
balance to a new value

• There are six ways to interleave these events

• Some of these sequences of events make sense and 
some don't
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Consider two withdrawals

• balance = 100 initially
• process 1 = (withdraw 20)
• process 2 = (withdraw 30)
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Sequence 1

process 1                          process 2

reads balance = 100
sets balance =   70

reads balance =   70
sets balance =   50
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Sequence 2

process 1                          process 2

reads balance = 100
reads balance =  100

sets balance =   70
sets balance =    80

???
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Sequence 3

process 1                          process 2

reads balance = 100
reads balance =  100
sets balance =    80

sets balance =   70

???
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Sequence 4

process 1                          process 2

reads balance =  100
reads balance = 100
sets balance =   70

sets balance =    80

???
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Sequence 5

process 1                          process 2

reads balance =  100
reads balance = 100

sets balance =    80
sets balance =   70

???
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Sequence 6

process 1                          process 2

reads balance =  100
sets balance =    80

reads balance =   80
sets balance =   50
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Interactions can be more 
complicated

• Let x = 10
• Let process 1 = (lambda () (set! x (* x x)))
• Let process 2 = (lambda () (set! x (+ x 1)))
• Process 1 must do two reads of x
• Process 2 might change x between reads by process 1
• Five different final values for x are possible
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Notation

• R1(n) means process 1 reads x, obtains n
• R2(n) means process 2 reads x, obtains n
• S1(n) means process 1 sets x to n
• S2(n) means process 2 sets x to n
• Process 1 does two reads, then a set
• Process 2 does one read, then a set
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Five different results

x = 10    x = 10    x = 10    x = 10    x = 10
R1(10)   R2(10)    R2(10)   R1(10)    R1(10)
R1(10)   S2(11)    R1(10)   R1(10)    R1(10)
S1(100)  R1(11)   S2(11)    R2(10)    R2(10)
R2(100)  R1(11)   R1(11)    S1(100)  S2(11)
S2(101)  S1(121)  S1(110)  S2(11)    S1(100)
x = 101  x = 121  x = 110  x = 11    x = 100
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The only way

The only way to prevent unwanted interactions is to 
serialize certain processes, that is, they have to occur 
sequentially rather than in parallel
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Concurrent processing in 
DrScheme

• Must use Pretty-Big language

• Procedures to be run concurrently must have no 
arguments

• Each procedure is run in a separate thread
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Parallel-execute
; cause parallel execution of args

(define (parallel-execute . args)
(map thread args))

• Map creates a thread for each procedure
• They start running immediately
• Example:

; executes the two procedures in parallel
(parallel-execute

(lambda () (set! x (* x x)))
(lambda () (set! x (+ x 1))))

Fall 2008 Programming Development 
Techniques

18

Serialization
• Issue – several processes may share (and be able to 

change) a common state variable. Need some way to 
isolate changes so that only one process can 
access/change the data at a time.

• There are several ways to force procedures to run 
sequentially – generally, allow us to interleave 
programs but constrain interleaving

• Generally – have the process “acquire a flag” – while 
that process has the flag, no other process can run 
until that flag is released.
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Making a Serializer
• Use a primitive synchronization mechanism called a 

mutex.

• Mutex’s can be acquired and released.

• A mutex is a mutable object (e.g., a 1 element list) 
that can hold the value of true or false.

• When the value is false, it is available for being 
acquired.

• When the value is true, it is unavailable and the 
process that wants it must wait…
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What is required?

• To implement a mutex, need a mechanism for testing 
it and setting it that can not be interrupted…
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Test-and-set!
• Conceptually behaves like

; if cell is already #t then return #t otherwise

; set it to #t and return #f

(define (test-and-set! cell)
(if (car cell)

#t
(begin (set-car! cell #t) #f)))

• For this to work, it must not be interruptable
• Exists as a single machine instruction on some 

machines
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Test-and-set! behavior
(define cell1 (list #f))

(car cell1) --> #f
(test-and-set! cell1) --> #f
(car cell1) --> #t
(test-and-set! cell1) --> #t

What do we do with a flag like this?  Use 
it for mutual exclusion purposes.  Share 
flag among several processes – let them 
run only when they get the flag. 
Specific example of a semaphore.
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Mutual exclusion flag (mutex)
• A boolean flag that is controlled by one process at a 

time (because it is manipulated by test-and-set!)

• Accepts 'acquire and 'release messages

• A set of processes (that must be mutually exclusive) 
will share the same flag.  Grab the flag before they 
start, and release it when they are done.

• In this way, only one process at a time can 
manipulate the variable.
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Make-mutex
; provides a cell that can be used for
; mutual exclusion purposes among processes
(define (make-mutex)

(let ((cell (list #f)))
(define (the-mutex m)

(cond ((eq? m 'acquire)
(if (test-and-set! cell)

(the-mutex ‘acquire))) ;retry
((eq? m 'release)

(clear! cell))))
the-mutex))

(define (clear! Cell) (set-car! Cell #f))
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Serializers

• A serializer is a higher-order procedure that converts 
other procedures into ones that can only run one at a 
time

• All the procedures that are processed by the same 
serializer are run in sequence without interleaving
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Make-serializer
; make a serializer by creating a mutex
; to be shared by the mutually exclusive

; procedures
(define (make-serializer)

(let ((mutex (make-mutex)))
(lambda (p)

(define (serialized-p . args)
(mutex 'acquire)
(let ((value (apply p args)))

(mutex 'release)
value))

serialized-p)))
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Serialization guaranteed

(define s (make-serializer))

(parallel-execute
(s (lambda () (set! x (* x x))))
(s (lambda () (set! x (+ x 1)))))

Fall 2008 Programming Development 
Techniques

28

Protecting bank accounts
; create a bank account that is protected and
; allows parallel execution
(define (make-account balance)
(define (withdraw amount)
(if (>= balance amount)

(begin (set! balance (- balance amount))
balance)

"Insufficient funds"))
(define (deposit amount)
(set! balance (+ balance amount))
balance)
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continued

(let ((s (make-serializer)))

(define (dispatch m)
(cond ((eq? m 'withdraw) (s withdraw))

((eq? m 'deposit) (s deposit))
((eq? m 'balance) balance)
(else
(error "unknown msg-MAKE-ACCOUNT"

m))))
dispatch))
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Works for simple transactions

• Muliple processes withdrawing from and depositing to 
the same account are serialized

• Multiple accounts can still be withdrawn from and 
deposited to concurrently

• Problems can still arise if two or more resources are 
involved in a transaction



6

Fall 2008 Programming Development 
Techniques

31

Even accounts
; evens up two accounts by splitting the difference
(define (even-accounts account1 account2)

(if (< (account1 'balance) 
(account2 'balance))

(let ((temp account1))  ; swap accounts
(set! account1 account2)
(set! account2 temp)))

(let ((amount (/ (- (account1 'balance)
(account2 'balance))

2)))
((account1 'withdraw) amount)

((account2 'deposit) amount)))
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What can happen
• If two even-accounts processes run 

concurrently on the same pair of accounts, it is 
still possible for the two accounts to end up 
with balances that are different from each 
other

• To prevent this, processes need access to the 
serializers of both accounts

• Consider making the serializer available by 
exporting it via message passing
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Making serializer accessible

; account that can export its serializer via
; Message passing
(define (make-account-and-serializer balance)

(define (withdraw amount)
(if (>= balance amount)

(begin (set! balance (- balance amount))
balance)

"Insufficient funds"))
(define (deposit amount)

(set! balance (+ balance amount))
balance)
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continued

(let ((s (make-serializer)))

(define (dispatch m)
(cond ((eq? m 'withdraw?) withdraw)

((eq? m 'deposit) deposit)
((eq? m 'balance) balance)
((eq? m 'serializer) s)
(else
(error "unknown msg-MAKE-ACCOUNT"

m))))
dispatch))

Fall 2008 Programming Development 
Techniques

35

Protected deposit
(define (deposit account amount)

(let ((s (account 'serializer))
(d (account 'deposit)))

((s d) amount)))
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Protected withdraw
(define (withdraw account amount)

(let ((s (account 'serializer))
(d (account 'withdraw)))

((s d) amount)))

Disadvantage here is each user of bank-
account objects have to explicitly 
manage the serialization.

But, it allows us to run a protected 
even-accounts!
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Protected even accounts

(define (even-accounts account1 account2)
(define (transfer-funds account1 account2)

(if (< (account1 'balance) (account2 'balance))
(let ((temp account1))  ; swap accounts

(set! account1 account2)
(set! account2 temp)))

(let ((amount (/ (- (account1 'balance)  
(account2 'balance))

2)))
((account1 'withdraw) amount)
((account2 'deposit) amount)))
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continued

(let ((s1 (account1 'serializer))

(s2 (account2 'serializer)))
((s1 (s2 transfer-funds)))))
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Our problems aren't over yet

• Consider
(parallel-execute

(even-accounts acc1 acc2)
(even-accounts acc2 acc1))

• Each process can grab one account (first arg) 
and will be forced to wait forever to grab the 
other account (second arg)

• This is called deadlock
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Preventing deadlock

• One way is to order all the mutexes in a program and 
always acquire mutexes in this order, release mutexes 
in reverse order

• Other methods of deadlock avoidance and recovery 
are being researched

• Deadlock recovery may be needed in situations where 
all the required resources are not known in advance; 
some have to be accessed first to decide which others 
are needed
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Extended concurrent processes

• Concurrent processes that have complex interactions 
over a long period of time often need to synchronize 
their actions

• These processes are often allowed to communicate 
with each other to achieve synchronization

• Example: consumer-producer pair of processes


