
1

Fall 2008 Programming Development
Techniques

1

Topic 20
Concurrency

Section 3.4

Fall 2008 Programming Development
Techniques

2

Concurrency

• In the real world, many processes act concurrently
• If they interact with each other, as when sharing a

resource, strange things can happen

Fall 2008 Programming Development
Techniques

3

Simplified bank account
example

• Simplified withdraw procedure

; withdraw an amount from the account
; balance
(define (withdraw amount)

(set! balance
(- balance amount)))

• Withdraw process must read balance, then do a
computation, then set balance to new value

Fall 2008 Programming Development
Techniques

4

Interaction of two withdraw
processes

• What happens if we have multiple people with a
shared account?

• Each process does a read of balance and a set of
balance to a new value

• There are six ways to interleave these events

• Some of these sequences of events make sense and
some don't

Fall 2008 Programming Development
Techniques

5

Consider two withdrawals

• balance = 100 initially
• process 1 = (withdraw 20)
• process 2 = (withdraw 30)

Fall 2008 Programming Development
Techniques

6

Sequence 1

process 1 process 2

reads balance = 100
sets balance = 70

reads balance = 70
sets balance = 50

2

Fall 2008 Programming Development
Techniques

7

Sequence 2

process 1 process 2

reads balance = 100
reads balance = 100

sets balance = 70
sets balance = 80

???

Fall 2008 Programming Development
Techniques

8

Sequence 3

process 1 process 2

reads balance = 100
reads balance = 100
sets balance = 80

sets balance = 70

???

Fall 2008 Programming Development
Techniques

9

Sequence 4

process 1 process 2

reads balance = 100
reads balance = 100
sets balance = 70

sets balance = 80

???

Fall 2008 Programming Development
Techniques

10

Sequence 5

process 1 process 2

reads balance = 100
reads balance = 100

sets balance = 80
sets balance = 70

???

Fall 2008 Programming Development
Techniques

11

Sequence 6

process 1 process 2

reads balance = 100
sets balance = 80

reads balance = 80
sets balance = 50

Fall 2008 Programming Development
Techniques

12

Interactions can be more
complicated

• Let x = 10
• Let process 1 = (lambda () (set! x (* x x)))
• Let process 2 = (lambda () (set! x (+ x 1)))
• Process 1 must do two reads of x
• Process 2 might change x between reads by process 1
• Five different final values for x are possible

3

Fall 2008 Programming Development
Techniques

13

Notation

• R1(n) means process 1 reads x, obtains n
• R2(n) means process 2 reads x, obtains n
• S1(n) means process 1 sets x to n
• S2(n) means process 2 sets x to n
• Process 1 does two reads, then a set
• Process 2 does one read, then a set

Fall 2008 Programming Development
Techniques

14

Five different results

x = 10 x = 10 x = 10 x = 10 x = 10
R1(10) R2(10) R2(10) R1(10) R1(10)
R1(10) S2(11) R1(10) R1(10) R1(10)
S1(100) R1(11) S2(11) R2(10) R2(10)
R2(100) R1(11) R1(11) S1(100) S2(11)
S2(101) S1(121) S1(110) S2(11) S1(100)
x = 101 x = 121 x = 110 x = 11 x = 100

Fall 2008 Programming Development
Techniques

15

The only way

The only way to prevent unwanted interactions is to
serialize certain processes, that is, they have to occur
sequentially rather than in parallel

Fall 2008 Programming Development
Techniques

16

Concurrent processing in
DrScheme

• Must use Pretty-Big language

• Procedures to be run concurrently must have no
arguments

• Each procedure is run in a separate thread

Fall 2008 Programming Development
Techniques

17

Parallel-execute
; cause parallel execution of args

(define (parallel-execute . args)
(map thread args))

• Map creates a thread for each procedure
• They start running immediately
• Example:

; executes the two procedures in parallel
(parallel-execute

(lambda () (set! x (* x x)))
(lambda () (set! x (+ x 1))))

Fall 2008 Programming Development
Techniques

18

Serialization
• Issue – several processes may share (and be able to

change) a common state variable. Need some way to
isolate changes so that only one process can
access/change the data at a time.

• There are several ways to force procedures to run
sequentially – generally, allow us to interleave
programs but constrain interleaving

• Generally – have the process “acquire a flag” – while
that process has the flag, no other process can run
until that flag is released.

4

Fall 2008 Programming Development
Techniques

19

Making a Serializer
• Use a primitive synchronization mechanism called a

mutex.

• Mutex’s can be acquired and released.

• A mutex is a mutable object (e.g., a 1 element list)
that can hold the value of true or false.

• When the value is false, it is available for being
acquired.

• When the value is true, it is unavailable and the
process that wants it must wait…

Fall 2008 Programming Development
Techniques

20

What is required?

• To implement a mutex, need a mechanism for testing
it and setting it that can not be interrupted…

Fall 2008 Programming Development
Techniques

21

Test-and-set!
• Conceptually behaves like

; if cell is already #t then return #t otherwise

; set it to #t and return #f

(define (test-and-set! cell)
(if (car cell)

#t
(begin (set-car! cell #t) #f)))

• For this to work, it must not be interruptable
• Exists as a single machine instruction on some

machines

Fall 2008 Programming Development
Techniques

22

Test-and-set! behavior
(define cell1 (list #f))

(car cell1) --> #f
(test-and-set! cell1) --> #f
(car cell1) --> #t
(test-and-set! cell1) --> #t

What do we do with a flag like this? Use
it for mutual exclusion purposes. Share
flag among several processes – let them
run only when they get the flag.
Specific example of a semaphore.

Fall 2008 Programming Development
Techniques

23

Mutual exclusion flag (mutex)
• A boolean flag that is controlled by one process at a

time (because it is manipulated by test-and-set!)

• Accepts 'acquire and 'release messages

• A set of processes (that must be mutually exclusive)
will share the same flag. Grab the flag before they
start, and release it when they are done.

• In this way, only one process at a time can
manipulate the variable.

Fall 2008 Programming Development
Techniques

24

Make-mutex
; provides a cell that can be used for
; mutual exclusion purposes among processes
(define (make-mutex)

(let ((cell (list #f)))
(define (the-mutex m)

(cond ((eq? m 'acquire)
(if (test-and-set! cell)

(the-mutex ‘acquire))) ;retry
((eq? m 'release)

(clear! cell))))
the-mutex))

(define (clear! Cell) (set-car! Cell #f))

5

Fall 2008 Programming Development
Techniques

25

Serializers

• A serializer is a higher-order procedure that converts
other procedures into ones that can only run one at a
time

• All the procedures that are processed by the same
serializer are run in sequence without interleaving

Fall 2008 Programming Development
Techniques

26

Make-serializer
; make a serializer by creating a mutex
; to be shared by the mutually exclusive

; procedures
(define (make-serializer)

(let ((mutex (make-mutex)))
(lambda (p)

(define (serialized-p . args)
(mutex 'acquire)
(let ((value (apply p args)))

(mutex 'release)
value))

serialized-p)))

Fall 2008 Programming Development
Techniques

27

Serialization guaranteed

(define s (make-serializer))

(parallel-execute
(s (lambda () (set! x (* x x))))
(s (lambda () (set! x (+ x 1)))))

Fall 2008 Programming Development
Techniques

28

Protecting bank accounts
; create a bank account that is protected and
; allows parallel execution
(define (make-account balance)
(define (withdraw amount)
(if (>= balance amount)

(begin (set! balance (- balance amount))
balance)

"Insufficient funds"))
(define (deposit amount)
(set! balance (+ balance amount))
balance)

Fall 2008 Programming Development
Techniques

29

continued

(let ((s (make-serializer)))

(define (dispatch m)
(cond ((eq? m 'withdraw) (s withdraw))

((eq? m 'deposit) (s deposit))
((eq? m 'balance) balance)
(else
(error "unknown msg-MAKE-ACCOUNT"

m))))
dispatch))

Fall 2008 Programming Development
Techniques

30

Works for simple transactions

• Muliple processes withdrawing from and depositing to
the same account are serialized

• Multiple accounts can still be withdrawn from and
deposited to concurrently

• Problems can still arise if two or more resources are
involved in a transaction

6

Fall 2008 Programming Development
Techniques

31

Even accounts
; evens up two accounts by splitting the difference
(define (even-accounts account1 account2)

(if (< (account1 'balance)
(account2 'balance))

(let ((temp account1)) ; swap accounts
(set! account1 account2)
(set! account2 temp)))

(let ((amount (/ (- (account1 'balance)
(account2 'balance))

2)))
((account1 'withdraw) amount)

((account2 'deposit) amount)))

Fall 2008 Programming Development
Techniques

32

What can happen
• If two even-accounts processes run

concurrently on the same pair of accounts, it is
still possible for the two accounts to end up
with balances that are different from each
other

• To prevent this, processes need access to the
serializers of both accounts

• Consider making the serializer available by
exporting it via message passing

Fall 2008 Programming Development
Techniques

33

Making serializer accessible

; account that can export its serializer via
; Message passing
(define (make-account-and-serializer balance)

(define (withdraw amount)
(if (>= balance amount)

(begin (set! balance (- balance amount))
balance)

"Insufficient funds"))
(define (deposit amount)

(set! balance (+ balance amount))
balance)

Fall 2008 Programming Development
Techniques

34

continued

(let ((s (make-serializer)))

(define (dispatch m)
(cond ((eq? m 'withdraw?) withdraw)

((eq? m 'deposit) deposit)
((eq? m 'balance) balance)
((eq? m 'serializer) s)
(else
(error "unknown msg-MAKE-ACCOUNT"

m))))
dispatch))

Fall 2008 Programming Development
Techniques

35

Protected deposit
(define (deposit account amount)

(let ((s (account 'serializer))
(d (account 'deposit)))

((s d) amount)))

Fall 2008 Programming Development
Techniques

36

Protected withdraw
(define (withdraw account amount)

(let ((s (account 'serializer))
(d (account 'withdraw)))

((s d) amount)))

Disadvantage here is each user of bank-
account objects have to explicitly
manage the serialization.

But, it allows us to run a protected
even-accounts!

7

Fall 2008 Programming Development
Techniques

37

Protected even accounts

(define (even-accounts account1 account2)
(define (transfer-funds account1 account2)

(if (< (account1 'balance) (account2 'balance))
(let ((temp account1)) ; swap accounts

(set! account1 account2)
(set! account2 temp)))

(let ((amount (/ (- (account1 'balance)
(account2 'balance))

2)))
((account1 'withdraw) amount)
((account2 'deposit) amount)))

Fall 2008 Programming Development
Techniques

38

continued

(let ((s1 (account1 'serializer))

(s2 (account2 'serializer)))
((s1 (s2 transfer-funds)))))

Fall 2008 Programming Development
Techniques

39

Our problems aren't over yet

• Consider
(parallel-execute

(even-accounts acc1 acc2)
(even-accounts acc2 acc1))

• Each process can grab one account (first arg)
and will be forced to wait forever to grab the
other account (second arg)

• This is called deadlock

Fall 2008 Programming Development
Techniques

40

Preventing deadlock

• One way is to order all the mutexes in a program and
always acquire mutexes in this order, release mutexes
in reverse order

• Other methods of deadlock avoidance and recovery
are being researched

• Deadlock recovery may be needed in situations where
all the required resources are not known in advance;
some have to be accessed first to decide which others
are needed

Fall 2008 Programming Development
Techniques

41

Extended concurrent processes

• Concurrent processes that have complex interactions
over a long period of time often need to synchronize
their actions

• These processes are often allowed to communicate
with each other to achieve synchronization

• Example: consumer-producer pair of processes

