
1

Fall 2008 Programming Development
Techniques

1

Topic 21
Streams

Section 3.5

Fall 2008 Programming Development
Techniques

2

Modeling State

• Previously – looked at assignment as a tool in
modeling, and looked at difficulties raised with time
and assignment

• Alternative approach – using streams

Fall 2008 Programming Development
Techniques

3

Streams
• Streams are data objects for representing long or

infinite sequences – in many ways looking like lists
but…

• Use delayed (lazy) evaluation
• Example: paths in maze sorted by length

Fall 2008 Programming Development
Techniques

4

Palindrome numbers

• A palindrome number is a number that remains the
same if its digits are reversed

• Examples: 1253521, 53677635

• Suppose we want to compute the sum of all
palindrome numbers in a certain range

Fall 2008 Programming Development
Techniques

5

Recognizing palindrome
numbers

; takes a number and returns a list of digits in
; the number in reverse order
(define (rev-digits n)
(if (< n 10)

(list n)
(let ((d (remainder n 10)))

(cons d (rev-digits (/ (- n d) 10))))))

; takes a number and returns #t if that number is a
; palindrome
(define (palindrome? n)
(let ((dd (rev-digits n)))

(equal? dd (reverse dd))))
Fall 2008 Programming Development

Techniques
6

Summing palindrome numbers –
Implementation 1

; takes two integers a < b and returns a sum of all
; palindromes in the interval from a to b
(define (sum-palindromes-1 a b)
(define (sum-iter count sum)
(cond ((> count b) sum)

((palindrome? count)
(sum-iter (+ count 1) (+ count sum)))
(else (sum-iter (+ count 1) sum))))

(sum-iter a 0))

2

Fall 2008 Programming Development
Techniques

7

Summing palindrome numbers –
Implementation 2

; takes two integers a < b and returns a sum of all
; palindromes in the interval from a to b
; uses sequence operations (clear but significantly

less
; efficient)
(define (sum-palindromes-2 a b)
(accumulate + 0 (filter palindrome?

(enumerate-interval a b))))

Fall 2008 Programming Development
Techniques

8

Problem with conventional
interface approach

• Sum-palindromes-2 is easier to understand

• But it is grossly inefficient if b - a is
large, e.g, a = 100 and b = 100,000,000

• Finding the first palindrome number can also
be inefficient:

; return first palindrome in interval
(define (first-palindrome a b)

(car (filter palindrome?
(enumerate-interval a b)))

(first-palindrome 123 10000000000)

Fall 2008 Programming Development
Techniques

9

Key property of streams
• Streams allow use of sequence manipulations without

incurring the costs

• Streams allow us to generate the elements of a list
incrementally as they are needed

• We use the technique of delayed evaluation to
represent very large sequences as streams

Fall 2008 Programming Development
Techniques

10

Streams are delayed lists
• We saw earlier how sequences could serve as

standard interfaces for combining program modules
– map
– filter
– accumulate

• But if we represent streams as lists, the elegance is
bought at the prices of inefficiency – instead we want
to delay evaluation with streams

• Basic idea – arrange to construct a stream only
partially, and to pass the partial construction that
consumes the stream – construct just as much of the
stream as is needed for computation

Fall 2008 Programming Development
Techniques

11

On the surface, streams look like
lists

• We want to think of streams as lists, so we'll need
the equivalent of (), null?, car, cdr, cons and other
procedures for building and manipulating lists

• With these, we can build most functions we built for
lists with streams…

Fall 2008 Programming Development
Techniques

12

Some basics
; empty stream is a special element
(define the-empty-stream empty)

; can think of stream-null? just like null?
(define (stream-null? x) (null? x))

We need a cons:
(cons-stream <value>

<procedure-call promise>)

Can define most functions on streams – what is
this procedure-call promise?

3

Fall 2008 Programming Development
Techniques

13

Delay and force

• Stream implementation based on special form call
delay.

• Delay macro generates promises

• Force converts promises into procedure calls

(define test-promise
(delay (display 'hi)))

(force test-promise) --> hi

Fall 2008 Programming Development
Techniques

14

Implementing cons-stream
; macro for cons – creates new object with promise
; of delayed function call for cdr
(define-syntax cons-stream

(syntax-rules ()
((cons-stream value-expr call-expr)
(cons value-expr (delay call-expr)))))

Expression (cons-stream <value> <call-expr>) expands into
(cons <value> (delay <call-expr>)) which is then evaluated

Fall 2008 Programming Development
Techniques

15

Selector functions
; takes a stream and returns its first element

(define (stream-car stream) (car stream))

; takes a stream and returns the rest after first

; element – this means the next element is forced, but

; remaining elements remain implicit

(define (stream-cdr stream) (force (cdr stream)))

; it is possible to define most list functions for streams

; takes a stream and a positive number and returns the nth

; element of the stream

(define (stream-ref stream n)

(if (= n 0)

(stream-car stream)

(stream-ref (stream-cdr stream) (- n 1))))

Fall 2008 Programming Development
Techniques

16

Stream version of enumerate-
interval

; takes two integers where low < high and
; returns a stream containing the numbers
; from low to high
(define (stream-enumerate-interval low high)

(if (> low high)
the-empty-stream
(cons-stream

low
(stream-enumerate-interval (+ low 1)

high))))

Fall 2008 Programming Development
Techniques

17

Equivalent to writing ...
; takes two integers with low < high and
; generates a stream containing the numbers
; from low to high – here regular cons is used
; Along with delay for the cdr part
(define (stream-enumerate-interval low high)

(if (> low high)
the-empty-stream
(cons

low
(delay (stream-enumerate-interval (+ low 1)

high)))))

Fall 2008 Programming Development
Techniques

18

Stream-filter
; takes a predicate and a stream and returns
; a stream whose elements are the original
; elements of stream for which pred returns #t
(define (stream-filter pred stream)

(cond ((stream-null? stream) the-empty-stream)
((pred (stream-car stream))
(cons-stream (stream-car stream)

(stream-filter
pred
(stream-cdr stream))))

(else (stream-filter
pred
(stream-cdr stream)))))

4

Fall 2008 Programming Development
Techniques

19

Finding palindrome numbers
efficiently

; efficient palindrome function using streams
(define palnums

(stream-filter
palindrome?
(stream-enumerate-interval
123
100000000)))

(stream-car palnums) --> 131
(stream-ref palnums 99) --> 2222
(stream-ref palnums 1000) --> 92329

Fall 2008 Programming Development
Techniques

20

Some useful stream
procedures

; takes a procedure of one argument and a stream
; returns the stream that is the procedure applied
; to the first element of the stream, and whose
; remaining elements are the procedure applied
; to the next and so on
(define (stream-map proc stream)

(if (stream-null? stream)
the-empty-stream
(cons-stream

(proc (stream-car stream))
(stream-map proc (stream-cdr stream)))))

Fall 2008 Programming Development
Techniques

21

Stream-for-each
; takes a procedure that has a side effect
; and a stream. Applies the procedure
; to each element of the stream.
(define (stream-for-each proc stream)

(if (stream-null? stream)
'done
(begin

(proc (stream-car stream))
(stream-for-each proc

(stream-cdr stream)))))

Fall 2008 Programming Development
Techniques

22

Display-stream
; a function that takes a stream and
; displays it
(define (display-stream stream)
(display "[")
(stream-for-each
(lambda (x)
(display x)
(display " "))

stream)
(display "]"))

Fall 2008 Programming Development
Techniques

23

Implementing delay

• Delay needs to produce something that can evaluate to a
procedure call later

• Lambda expressions do this

• We can expand (delay <procedure call>) to
(lambda () <procedure call>)

Fall 2008 Programming Development
Techniques

24

Simple implementation:
delay and force

; delays the evaluation of its argument -- macro
(define-syntax delay
(syntax-rules ()
((delay expr) (lambda () expr))))

; forces the evaluation of a delayed procedure call
(define (force delayed-proc-call)
(delayed-proc-call))

5

Fall 2008 Programming Development
Techniques

25

Example of delay and force
(define s (stream-enumerate-interval 1 3))

(stream-car (stream-cdr s))

Finding s:

(cons-stream 1
(stream-enumerate-interval 2 3))

(cons 1 (delay (stream-enumerate-interval 2 3)))

(cons 1 (lambda () (stream-enumerate-interval 2 3)))

Fall 2008 Programming Development
Techniques

26

Evaluating (stream-cdr s)

(stream-cdr (cons 1 (lambda () (stream-enumerate-interval 2 3))))
(force (cdr (cons 1 (lambda () (stream-enumerate-interval 2 3)))))
(force (lambda () (stream-enumerate-interval 2 3)))
(stream-enumerate-interval 2 3)
(cons-stream 2 (stream-enumerate-interval 3 3))
(cons 2 (delay (stream-enumerate-interval 3 3)))
(cons 2 (lambda () (stream-enumerate-interval 3 3)))

Fall 2008 Programming Development
Techniques

27

Making delay more efficient

It would be more efficient if the delayed procedure call
were evaluated only once and the result stored for
future reuse

Fall 2008 Programming Development
Techniques

28

Memoization
; takes a procedure and if it has already run
; saves its value – otherwise, the value is
; kept implicit
(define (memo-proc proc)

(let ((already-run? #f) (result #f))
(lambda ()

(if already-run?
result
(begin (set! result (proc))

(set! already-run? #t)
result)))))

Fall 2008 Programming Development
Techniques

29

Memoization – saves on evaluation

(define (factorial n)
(if (eq? n 1) 1 (* n (factorial (- n 1)))))

(define fact-3 (lambda () (factorial 3)))
(fact-3)
(fact-3)
(define memoized-fact-3 (memo-proc fact-3))
(memoized-fact-3)
(memoized-fact-3)

Fall 2008 Programming Development
Techniques

30

A better delay

; more efficient delay
(define-syntax delay

(syntax-rules ()
((delay expr)
(memo-proc (lambda () expr)))))

6

Fall 2008 Programming Development
Techniques

31

Infinite streams
We can use streams to represent sequences that
are infinitely long.

; infinite stream of integers starting at n
(define (integers-from n)

(cons-stream n (integers-from (+ n 1))))

; an infinite stream of integers starting from 100
(define large-integers (integers-from 100))

; filter to leave just palindromes
(define large-palindromes

(stream-filter palindrome? large-integers))

; pull the 11th palindrome from the infinite sequence
(stream-ref large-palindromes 11) --> 212

Fall 2008 Programming Development
Techniques

32

Stream of Fibonacci numbers
; generates a stream of Fibonacci Numbers
; given two numbers in the sequence, creates
; a sequence of the rest starting from a
(define (fibgen a b)

(cons-stream a (fibgen b (+ a b))))

; fibs is a pair whose car is 0 and whose

; cdr is a promise to evaluate (fibgen 1 1)
(define fibs (fibgen 0 1))

(stream-ref fibs 10) --> 55

Fall 2008 Programming Development
Techniques

33

Recursively defined streams
(defining streams implicitly)

; generate an infinite stream of 7’s

(define lucky (cons-stream 7 lucky))

Note: lucky is a pair whose car is 7 and whose
cdr is the promise to evaluate lucky.

Fall 2008 Programming Development
Techniques

34

Stream addition

; takes two streams and returns a stream

; that is the pairwise addition of the
; individual streams
(define (add-stream stream1 stream2)

(stream-map + stream1 stream2))

(See Exercise 3.50 for generalized stream-map)

Fall 2008 Programming Development
Techniques

35

Defining Streams Implicitly…
(define ones (cons-stream 1 ones)

(define integers
(cons-stream 1 (add-streams ones

integers)))

integers = 1 2 3 4 5 6 7 ...

ones = 1 1 1 1 1 1 1 ...

Fall 2008 Programming Development
Techniques

36

Recursive Fibonacci stream
(theory)

• Fib(n+2) = Fib(n+1) + Fib(n)
• In terms of fibs stream:

(stream-cdr (stream-cdr fibs)) =
(add-stream (stream-cdr fibs) fibs)

• (In general, when the index is (n+k), stream-
cdr has to be applied k times)

7

Fall 2008 Programming Development
Techniques

37

In other words ...
fibs = 0 1 1 2 3 5 8 13 21 ...

+ (stream-cdr fibs) = 1 1 2 3 5 8 13 21 34 ...

= 1 2 3 5 8 13 21 34 55 ...

= (stream-cdr (stream-cdr fibs))

hence
fibs =

(cons-stream

0

(cons-stream

1

(stream-cdr (stream-cdr fibs))))

Fall 2008 Programming Development
Techniques

38

Recursive definition

; a recursive version of fibs
(define rfibs

(cons-stream 0
(cons-stream 1

(add-stream
(stream-cdr rfibs)
rfibs))))

Fall 2008 Programming Development
Techniques

39

Why it works

• By the time (add-streams (stream-cdr fibs) fibs) is evaluated, the
first two values in fibs are already explicitly in the stream (memoized),
so first value in the stream addition of (stream-cdr fibs) and fibs can
be calculated

• Once the first value in the addition stream is calculated, it is made the
third value in fibs

• The second and third values in fibs are then available to calculate the
second value in the addition stream

• This second value in the addition stream is made the fourth value in
fibs

• And so forth

Fall 2008 Programming Development
Techniques

40

Scalar multiplication of streams

; returns a stream that is the original
; stream with each element multiplied by
; factor
(define (scale-stream stream factor)

(stream-map (lambda (x) (* x factor))
stream))

Fall 2008 Programming Development
Techniques

41

Recursive stream of powers

; generates the powers of 3

(define triple
(cons-stream 1

(scale-stream triple
3)))

