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Topic 21 
Streams

Section 3.5
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Modeling State

• Previously – looked at assignment as a tool in 
modeling, and looked at difficulties raised with time 
and assignment

• Alternative approach – using streams
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Streams
• Streams are data objects for representing long or 

infinite sequences – in many ways looking like lists 
but…

• Use delayed (lazy) evaluation
• Example: paths in maze sorted by length
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Palindrome numbers

• A palindrome number is a number that remains the 
same if its digits are reversed

• Examples: 1253521, 53677635

• Suppose we want to compute the sum of all 
palindrome numbers in a certain range
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Recognizing palindrome 
numbers

; takes a number and returns a list of digits in
; the number in reverse order
(define (rev-digits n)
(if (< n 10)

(list n)
(let ((d (remainder n 10)))

(cons d (rev-digits (/ (- n d) 10))))))

; takes a number and returns #t if that number is a 
; palindrome
(define (palindrome? n)
(let ((dd (rev-digits n)))

(equal? dd (reverse dd))))
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Summing palindrome numbers –
Implementation 1

; takes two integers a < b and returns a sum of all
; palindromes in the interval from a to b
(define (sum-palindromes-1 a b)
(define (sum-iter count sum)
(cond ((> count b) sum)

((palindrome? count)
(sum-iter (+ count 1) (+ count sum)))  
(else (sum-iter (+ count 1) sum))))

(sum-iter a 0))
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Summing palindrome numbers –
Implementation 2

; takes two integers a < b and returns a sum of all
; palindromes in the interval from a to b
; uses sequence operations (clear but significantly 

less
; efficient)
(define (sum-palindromes-2 a b)
(accumulate + 0 (filter palindrome?

(enumerate-interval a b))))
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Problem with conventional 
interface approach

• Sum-palindromes-2 is easier to understand

• But it is grossly inefficient if b - a is 
large, e.g, a = 100 and b = 100,000,000

• Finding the first palindrome number can also 
be inefficient:

; return first palindrome in interval
(define (first-palindrome a b)

(car (filter palindrome?
(enumerate-interval a b)))

(first-palindrome 123 10000000000)
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Key property of streams
• Streams allow use of sequence manipulations without 

incurring the costs

• Streams allow us to generate the elements of a list 
incrementally as they are needed

• We use the technique of delayed evaluation to 
represent very large sequences as streams
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Streams are delayed lists
• We saw earlier how sequences could serve as 

standard interfaces for combining program modules
– map
– filter
– accumulate

• But if we represent streams as lists, the elegance is 
bought at the prices of inefficiency – instead we want 
to delay evaluation with streams

• Basic idea – arrange to construct a stream only 
partially, and to pass the partial construction that 
consumes the stream – construct just as much of the 
stream as is needed for computation
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On the surface, streams look like 
lists

• We want to think of streams as lists, so we'll need 
the equivalent of (), null?, car, cdr, cons and other 
procedures for building and manipulating lists

• With these, we can build most functions we built for 
lists with streams…
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Some basics
; empty stream is a special element
(define the-empty-stream empty)

; can think of stream-null? just like null?
(define (stream-null? x) (null? x))

We need a cons:
(cons-stream <value>

<procedure-call promise>)

Can define most functions on streams – what is 
this procedure-call promise?
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Delay and force

• Stream implementation based on special form call 
delay.

• Delay macro generates promises

• Force converts promises into procedure calls

(define test-promise
(delay (display 'hi)))

(force test-promise) --> hi
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Implementing cons-stream 
; macro for cons – creates new object with promise
; of delayed function call for cdr
(define-syntax cons-stream

(syntax-rules ()
((cons-stream value-expr call-expr)
(cons value-expr (delay call-expr)))))

Expression (cons-stream <value> <call-expr>) expands into
(cons <value> (delay <call-expr>)) which is then evaluated
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Selector functions
; takes a stream and returns its first element

(define (stream-car stream) (car stream))

; takes a stream and returns the rest after first

; element – this means the next element is forced, but

; remaining elements remain implicit

(define (stream-cdr stream) (force (cdr stream)))

; it is possible to define most list functions for streams

; takes a stream and a positive number and returns the nth

; element of the stream

(define (stream-ref stream n)

(if (= n 0)

(stream-car stream)

(stream-ref (stream-cdr stream) (- n 1))))
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Stream version of enumerate-
interval

; takes two integers where low < high and
; returns a stream containing the numbers
; from low to high
(define (stream-enumerate-interval low high)

(if (> low high)
the-empty-stream
(cons-stream

low
(stream-enumerate-interval (+ low 1)

high))))
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Equivalent to writing ...
; takes two integers with low < high and
; generates a stream containing the numbers
; from low to high – here regular cons is used
; Along with delay for the cdr part
(define (stream-enumerate-interval low high)

(if (> low high)
the-empty-stream
(cons

low
(delay (stream-enumerate-interval (+ low 1)

high)))))
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Stream-filter
; takes a predicate and a stream and returns
; a stream whose elements are the original
; elements of stream for which pred returns #t
(define (stream-filter pred stream)

(cond ((stream-null? stream) the-empty-stream)
((pred (stream-car stream))
(cons-stream (stream-car stream)

(stream-filter
pred
(stream-cdr stream))))

(else (stream-filter
pred
(stream-cdr stream)))))
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Finding palindrome numbers 
efficiently

; efficient palindrome function using streams
(define palnums

(stream-filter
palindrome?
(stream-enumerate-interval
123
100000000)))

(stream-car palnums) --> 131
(stream-ref palnums 99) --> 2222
(stream-ref palnums 1000) --> 92329 
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Some useful stream 
procedures

; takes a procedure of one argument and a stream
; returns the stream that is the procedure applied
; to the first element of the stream, and whose
; remaining elements are the procedure applied 
; to the next and so on
(define (stream-map proc stream)

(if (stream-null? stream)
the-empty-stream
(cons-stream 

(proc (stream-car stream))
(stream-map proc (stream-cdr stream)))))
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Stream-for-each
; takes a procedure that has a side effect
; and a stream.  Applies the procedure
; to each element of the stream.
(define (stream-for-each proc stream)

(if (stream-null? stream)
'done
(begin

(proc (stream-car stream))
(stream-for-each proc

(stream-cdr stream)))))
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Display-stream
; a function that takes a stream and
; displays it
(define (display-stream stream)
(display "[")
(stream-for-each
(lambda (x)
(display x)
(display " "))

stream)
(display "]"))
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Implementing delay

• Delay needs to produce something that can evaluate to a 
procedure call later

• Lambda expressions do this

• We can expand (delay <procedure call>) to 
(lambda () <procedure call>)
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Simple implementation: 
delay and force

; delays the evaluation of its argument -- macro
(define-syntax delay
(syntax-rules ()
((delay expr) (lambda () expr))))

; forces the evaluation of a delayed procedure call
(define (force delayed-proc-call)
(delayed-proc-call))
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Example of delay and force
(define s (stream-enumerate-interval 1 3))

(stream-car (stream-cdr s))

Finding s:

(cons-stream 1
(stream-enumerate-interval 2 3))

(cons 1 (delay (stream-enumerate-interval 2 3)))

(cons 1 (lambda () (stream-enumerate-interval 2 3)))                                    
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Evaluating (stream-cdr s)

(stream-cdr (cons 1 (lambda () (stream-enumerate-interval 2 3))))
(force (cdr (cons 1 (lambda () (stream-enumerate-interval 2 3)))))
(force (lambda () (stream-enumerate-interval 2 3)))
(stream-enumerate-interval 2 3)
(cons-stream 2 (stream-enumerate-interval 3 3))
(cons 2 (delay (stream-enumerate-interval 3 3)))
(cons 2 (lambda () (stream-enumerate-interval 3 3)))
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Making delay more efficient

It would be more efficient if the delayed procedure call 
were evaluated only once and the result stored for 
future reuse
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Memoization
; takes a procedure and if it has already run
; saves its value – otherwise, the value is
; kept implicit
(define (memo-proc proc)

(let ((already-run? #f) (result #f))
(lambda ()

(if already-run?
result
(begin (set! result (proc))

(set! already-run? #t)
result)))))

Fall 2008 Programming Development 
Techniques

29

Memoization – saves on evaluation

(define (factorial n)
(if (eq? n 1)  1 (* n (factorial (- n 1)))))

(define fact-3 (lambda () (factorial 3)))
(fact-3)
(fact-3)
(define memoized-fact-3 (memo-proc fact-3))
(memoized-fact-3)
(memoized-fact-3)

Fall 2008 Programming Development 
Techniques

30

A better delay

; more efficient delay
(define-syntax delay

(syntax-rules ()
((delay expr) 
(memo-proc (lambda () expr)))))
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Infinite streams
We can use streams to represent sequences that 
are infinitely long.

; infinite stream of integers starting at n
(define (integers-from n)

(cons-stream n (integers-from (+ n 1))))

; an infinite stream of integers starting from 100
(define large-integers (integers-from 100))

; filter to leave just palindromes
(define large-palindromes

(stream-filter palindrome? large-integers))

; pull the 11th palindrome from the infinite sequence
(stream-ref large-palindromes 11) --> 212
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Stream of Fibonacci numbers
; generates a stream of Fibonacci Numbers
; given two numbers in the sequence, creates
; a sequence of the rest starting from a
(define (fibgen a b)

(cons-stream a (fibgen b (+ a b))))

; fibs is a pair whose car is 0 and whose

; cdr is a promise to evaluate (fibgen 1 1)
(define fibs (fibgen 0 1))

(stream-ref fibs 10) --> 55
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Recursively defined streams
(defining streams implicitly)

; generate an infinite stream of 7’s

(define lucky (cons-stream 7 lucky))

Note: lucky is a pair whose car is 7 and whose 
cdr is the promise to evaluate lucky.
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Stream addition

; takes two streams and returns a stream

; that is the pairwise addition of the 
; individual streams
(define (add-stream stream1 stream2)

(stream-map + stream1 stream2))

(See Exercise 3.50 for generalized stream-map)
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Defining Streams Implicitly…
(define ones (cons-stream 1 ones)

(define integers
(cons-stream 1 (add-streams ones 

integers)))

integers =  1  2  3  4  5  6  7 ...

ones =  1  1  1  1  1  1  1 ...
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Recursive Fibonacci stream 
(theory)

• Fib(n+2) = Fib(n+1) + Fib(n)
• In terms of fibs stream:

(stream-cdr (stream-cdr fibs)) =
(add-stream (stream-cdr fibs) fibs)

• (In general, when the index is (n+k), stream-
cdr has to be applied k times)



7

Fall 2008 Programming Development 
Techniques

37

In other words ...
fibs = 0  1  1  2  3  5  8 13 21 ...

+ (stream-cdr fibs) = 1  1  2  3  5  8 13 21 34 ...

= 1  2  3  5  8 13 21 34 55 ...

= (stream-cdr (stream-cdr fibs))

hence
fibs =

(cons-stream

0

(cons-stream

1

(stream-cdr (stream-cdr fibs))))
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Recursive definition

; a recursive version of fibs
(define rfibs

(cons-stream 0
(cons-stream 1

(add-stream
(stream-cdr rfibs)
rfibs))))
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Why it works

• By the time (add-streams (stream-cdr fibs) fibs) is evaluated, the 
first two values in fibs are already explicitly in the stream (memoized), 
so first value in the stream addition of (stream-cdr fibs) and fibs can 
be calculated

• Once the first value in the addition stream is calculated, it is made the 
third value in fibs

• The second and third values in fibs are then available to calculate the 
second value in the addition stream

• This second value in the addition stream is made the fourth value in  
fibs

• And so forth
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Scalar multiplication of streams

; returns a stream that is the original
; stream with each element multiplied by
; factor
(define (scale-stream stream factor)

(stream-map (lambda (x) (* x factor))
stream))
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Recursive stream of powers

; generates the powers of 3

(define triple
(cons-stream 1

(scale-stream triple
3)))


