
1

Fall 2008 Programming Development
Techniques

1

Topic 3
Linear Recursion and Iteration

September 2008

Fall 2008 Programming Development
Techniques

2

Processes generated by
procedures

• Procedure: defined by code in a language
• Process: activities in computer while procedure is run

Fall 2008 Programming Development
Techniques

3

Recursion and iteration

• Recursive procedure: procedure calls itself in
definition

• When recursive procedure runs, the activated process
can be either iterative or recursive (in language like
Scheme, Lisp and some other languages)

Fall 2008 Programming Development
Techniques

4

So which is it?

• Process is iterative if, whenever procedure calls itself,
the value returned by that call is just returned
immediately by procedure. (Example: compute-
sqrt)

• Process is recursive if, for at least one instance when
a procedure calls itself, the returned value from that
call is used in some more computation before the
procedure returns its value.

Fall 2008 Programming Development
Techniques

5

Computing factorial

n! = n * (n-1) * (n-2) * . . . * 1

Formally:
n! = 1 if n = 1

= n * (n-1)! if n > 1

; takes a pos integer and returns its fac
(define (fac n)

(if (= n 1)
1
(* n (fac (- n 1)))))

Fall 2008 Programming Development
Techniques

6

Fac process is recursive
• Stack is needed to remember what has to be done

with returned value.
• (fac 3)
(* 3 (fac 2))

(* 2 (fac 1))
1

(* 2 1)
(* 3 2)
6

2

Fall 2008 Programming Development
Techniques

7

Iterative factorial
• Instead of working from n downward, we can work

from 1 upward.
• ; iterative version of factorial
• (define (fac n)(ifac 1 1 n))
• ; helping fn for iterative version of
factorial
(define (ifac val cur-cnt max)

(if (> cur-cnt max)
val
(ifac (* cur-cnt val)

(+ cur-cnt 1)
max)))

Fall 2008 Programming Development
Techniques

8

Ifac process is iterative

• No stack needed to remember what to do with
returned values.

• (fac 3)
(ifac 1 1 3)

(ifac 1 2 3)
(ifac 2 3 3)
(ifac 6 4 3)
6

Fall 2008 Programming Development
Techniques

9

Some compilers are smart
• A smart compiler will convert fac into something

like:

A: if cur-cnt > max, return val
val = cur-cnt * val
cur-cnt = cur-cnt + 1
goto A

Fall 2008 Programming Development
Techniques

10

Tail recursion

• When the value of a recursive procedure call is
returned immediately, it is an instance of tail
recursion.

• Smart compilers know to write iterative loops
whenever they find tail recursion.

• Some smart compilers: Scheme, Common Lisp,
gcc, IBM JIT, C#

Fall 2008 Programming Development
Techniques

11

Tree recursion

• A procedure that calls itself two or more times before
returning a value is a tree recursive procedure.

• (If a procedure calls itself only once before
returning a value, the procedure is generally a
linear recursive procedure.)

Fall 2008 Programming Development
Techniques

12

Fibonacci numbers

fib(n) = 0 if n = 0
= 1 if n = 1
= fib(n-1) + fib(n-2) if n > 1

; takes a pos int and returns the
; fibonacci #
(define (fib n)

(cond ((= n 0) 0)
((= n 1) 1)
(else (+ (fib (- n 1))

(fib (- n 2))))))

3

Fall 2008 Programming Development
Techniques

13

(fib 5)

(fib 3) (fib 4)

(fib 1) (fib 2) (fib 2) (fib 3)

(fib 0) (fib 1)
(fib0)(fib 1)

(fib 1) (fib 2)

(fib 0)(fib 1)

Tree of subproblems

Fall 2008 Programming Development
Techniques

14

Tree Recursion

• Even though it looks bad, it often is a very natural
way to solve a problem.

• While it seem inefficient, there may be a way to
create an iterative version.

• However, the recursive version often helps you think
about the problem easier (and thus, that is what we
will do – especially helpful if the data structure calls
for it)

Fall 2008 Programming Development
Techniques

15

Fib (iterative version)

; takes a pos int and returns its

; fibonicci #
(define (fib n) (ifib 1 0 n))

; helping function – counts up
(define (ifib next-fib cur-fib cnt)

(if (= cnt 0)
cur-fib
(ifib (+ next-fib cur-fib)

next-fib

(- cnt 1))))
Fall 2008 Programming Development

Techniques
16

Fall 2008 Programming Development
Techniques

17

Thinking about problems
Recursively

• Let’s look at some problems that seem “hard” that are
made much easier if we think about them recursively.

Fall 2008 Programming Development
Techniques

18

Towers of Hanoi

• Assume 3 pegs and a set of 3 disks (different sizes).
• Start with all disks on the same peg in order of size.
• Problem is to move them all to another peg, by

moving one at a time, where no larger peg may go on
top of a smaller peg.

4

Fall 2008 Programming Development
Techniques

19

Example

Move 3 disks, from peg 1 to peg 3 using peg 2 as extra.
(move-tower 3 1 3 2)

• Move top disk from 1 to 3
• Move top disk from 1 to 2
• Move top disk from 3 to 2
• Move top disk from 1 to 3
• Move top disk from 2 to 1
• Move top disk from 2 to 3
• Move top disk from 1 to 3

Fall 2008 Programming Development
Techniques

20

Recursive Program

• Are we done? Does this represent a base case?

• Otherwise,

• Formulate a problem that calls the same procedure
again (wishful thinking) with an easier problem (one
closer to the base conditions)

Fall 2008 Programming Development
Techniques

21

(define (move-tower size from to extra)
(cond ((= size 0) #t)

(else
(move-tower (- size 1) from extra to)
(move from to)
(move-tower (- size 1) extra to from)
)))

Fall 2008 Programming Development
Techniques

22

(define (move from to)
(newline)
(display "move top disk from ")
(display from)
(display " to ")
(display to))

Fall 2008 Programming Development
Techniques

23

Problem reduction

To find a general solution to a problem:
• Break problem into subproblems that are easier to

solve
• Combine solutions to the subproblems to create

solution to original problem
Repeat on the subproblems until the problems are

simple enough to solve directly

Fall 2008 Programming Development
Techniques

24

Procedure reduction

• Identify what subprocedures will be needed
• Write code for the procedure to combine the values

returned by the subprocedures and return as the
value of the procedure

• Repeat this process on each subprocedure until only
predefined procedures are called

• Generally, simple cases are tested for first before any
recursive cases are tried

5

Fall 2008 Programming Development
Techniques

25

Change counting problem

• This is an example of a procedure that is easy to write
recursively, but difficult to write iteratively.

• Problem: Count the number of ways that change can
be made for a given amount, using pennies, nickels,
dimes, quarters, and half-dollars.

• E.g., number of ways to change 10 cents (5 coins)
• (10 pennies) or (1 nickel + 5 pennies) or (2 nickels)

or (1 dime)

Fall 2008 Programming Development
Techniques

26

Strategy

• Divide ways of making change into disjoint sets that
will be easier to count

• # of ways =
of ways without using any coins of largest available
denomination

+
of ways that use at least one coin of largest
available denomination

Fall 2008 Programming Development
Techniques

27

CC Examples

• (cc 5 2) ; count change 5 cents using 2 coins
• 1 (5 pennies) + 1 (1 nickel)

• (cc 10 2) ; count change 10 cents using 2 coins
• 1 (10 pennies) + 2 ways of making (cc 5 2)

• Number of ways of making change for a using
n-1coins + Number of ways of making change for
a - (value n) using n coins

Fall 2008 Programming Development
Techniques

28

Base Cases

• (cc amt numb-coins)

• If (= amt 0) 1
• If no coins or (< amt 0) 0

Fall 2008 Programming Development
Techniques

29

Change counting code

(define (cnt-chng amt) (cc amt 5))

(define (cc amt k)
(cond ((= amt 0) 1)

((or (< amt 0) (= k 0)) 0)
(else (+ (cc amt (- k 1))

(cc (- amt
(vk k))

k)))))

Fall 2008 Programming Development
Techniques

30

(continued)
(define (vk kinds);value of largest

(cond ((= kinds 5) 50)
((= kinds 4) 25)
((= kinds 3) 10)
((= kinds 2) 5)
((= kinds 1) 1)
(else 0)))

(cnt-chng 100) 292

