

## Processes generated by procedures

- Procedure: defined by code in a language
- Process: activities in computer while procedure is run


## So which is it?

- Process is iterative if, whenever procedure calls itself, the value returned by that call is just returned immediately by procedure. (Example: computesqrt)
- Process is recursive if, for at least one instance when a procedure calls itself, the returned value from that call is used in some more computation before the procedure returns its value.
Recursive procedure: procedure calls itself in definition
- When recursive procedure runs, the activated process can be either iterative or recursive (in language like Scheme, Lisp and some other languages)


## Computing factorial

```
n! = n * (n-1) * (n-2) * . . . * 1
Formally:
n! = 1 if n = 1
    =n * (n-1)! if n > 1
; takes a pos integer and returns its fac
(define (fac n)
    (if (= n 1)
            1
            (* n (fac (- n 1)))))
Fall 2008
                                Programming Development
            Techniques
```


## Fac process is recursive

- Stack is needed to remember what has to be done with returned value.
- (fac 3) (* 3 (fac 2))
(*2 (fac 1))
1
(* 2 1)
(* 3 2)
6

Fall 2008
Programming Development
Techniques

## Iterative factorial

- Instead of working from n downward, we can work from 1 upward.
- ; iterative version of factorial
- (define (fac n) (ifac 11 n ))
- ; helping fn for iterative version of factorial
(define (ifac val cur-cnt max) (if (> cur-cnt max)
val
(ifac (* cur-cnt val)
(+ cur-cnt 1)
max) ))
Fall 2008
Programming Development Techniques


## Ifac process is iterative

- No stack needed to remember what to do with returned values.
- (fac 3)
(ifac 113 )
(ifac 123 )
(ifac 23 3)
(ifac 643 )
6


## Tail recursion

- When the value of a recursive procedure call is returned immediately, it is an instance of tail recursion.
- Smart compilers know to write iterative loops whenever they find tail recursion.
- Some smart compilers: Scheme, Common Lisp, gcc, IBMJIT, C\# cur-cnt $=$ cur-cnt +1 goto A

Fibonacci numbers

$$
\begin{aligned}
& \mathrm{fib}(\mathrm{n})=0 \quad \text { if } \mathrm{n}=0 \\
& =1 \quad \text { if } n=1 \\
& =f i b(n-1)+f i b(n-2) \quad \text { if } n>1 \\
& \text {; takes a pos int and returns the } \\
& \text {; fibonacci \# } \\
& \text { (define (fib n) } \\
& \text { (cond ( }=\mathrm{n} 0 \text { ) } 0 \text { ) } \\
& \text { ( }\left(\begin{array}{ll}
= & \mathrm{n} \\
1
\end{array}\right) \text { 1) } \\
& \text { (else (+ (fib (- n 1)) } \\
& \underset{\text { rogramming Development }}{(\mathrm{fib}}(-\mathrm{n})))) \text { ) } \\
& \text { Trogramming Development } \\
& \text { Techniques }
\end{aligned}
$$



## Tree Recursion

- Even though it looks bad, it often is a very natural way to solve a problem.
- While it seem inefficient, there may be a way to create an iterative version.
- However, the recursive version often helps you think about the problem easier (and thus, that is what we will do - especially helpful if the data structure calls for it)



## Thinking about problems

## Recursively

- Let's look at some problems that seem "hard" that are made much easier if we think about them recursively.


## Towers of Hanoi

- Assume 3 pegs and a set of 3 disks (different sizes).
- Start with all disks on the same peg in order of size.
- Problem is to move them all to another peg, by moving one at a time, where no larger peg may go on top of a smaller peg.


## Example

Move 3 disks, from peg 1 to peg 3 using peg 2 as extra. (move-tower 313 2)

- Move top disk from 1 to 3
- Move top disk from 1 to 2
- Move top disk from 3 to 2
- Move top disk from 1 to 3
- Move top disk from 2 to 1
- Move top disk from 2 to 3
- Move top disk from 1 to 3
- Formulate a problem that calls the same procedure again (wishful thinking) with an easier problem (one closer to the base conditions)
(define (move from to)
(newline)
(display "move top disk from ")
(display from)
(display " to ")
(display to))
)))


## Procedure reduction

- Identify what subprocedures will be needed
- Write code for the procedure to combine the values returned by the subprocedures and return as the value of the procedure
- Repeat this process on each subprocedure until only predefined procedures are called
- Generally, simple cases are tested for first before any recursive cases are tried


## Change counting problem

- This is an example of a procedure that is easy to write recursively, but difficult to write iteratively.
- Problem: Count the number of ways that change can be made for a given amount, using pennies, nickels, dimes, quarters, and half-dollars.
- E.g., number of ways to change 10 cents ( 5 coins)
- (10 pennies) or ( 1 nickel +5 pennies) or ( 2 nickels) or (1 dime)
- Divide ways of making change into disjoint sets that will be easier to count
- \# of ways =
\# of ways without using any coins of largest available denomination
$+$
\# of ways that use at least one coin of largest available denomination


## Base Cases

- (cc amt numb-coins)
- If ( $=$ amt 0 ) 1
- If no coins or (<amt 0) 0
- (cc 102 ) ; count change 10 cents using 2 coins
- 1 (10 pennies) +2 ways of making (cc 5 2)
- Number of ways of making change for a using n -1coins + Number of ways of making change for a - (value $n$ ) using $n$ coins


