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Topic 3
Linear Recursion and Iteration

September 2008
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Processes generated by 
procedures

• Procedure: defined by code in a language
• Process: activities in computer while procedure is run
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Recursion and iteration

• Recursive procedure: procedure calls itself in 
definition

• When recursive procedure runs, the activated process 
can be either iterative or recursive (in language like 
Scheme, Lisp and some other languages)
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So which is it?

• Process is iterative if, whenever procedure calls itself, 
the value returned by that call is just returned 
immediately by procedure. (Example: compute-
sqrt)

• Process is recursive if, for at least one instance when 
a procedure calls itself, the returned value from that 
call is used in some more computation before the 
procedure returns its value.
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Computing factorial

n! = n * (n-1) * (n-2) * . . . * 1

Formally:
n! = 1               if n = 1

= n * (n-1)!      if n > 1

; takes a pos integer and returns its fac
(define (fac n)

(if (= n 1)
1
(* n (fac (- n 1)))))
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Fac process is recursive
• Stack is needed to remember what has to be done 

with returned value.
• (fac 3)
(* 3 (fac 2))

( * 2 (fac 1))
1

(* 2 1)
(* 3 2)
6
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Iterative factorial
• Instead of working from n downward, we can work 

from 1 upward.
• ; iterative version of factorial
• (define (fac n)(ifac 1 1 n))
• ; helping fn for iterative version of 
factorial
(define (ifac val cur-cnt max)

(if (> cur-cnt max)
val
(ifac (* cur-cnt val)

(+ cur-cnt 1)
max)))
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Ifac process is iterative

• No stack needed to remember what to do with 
returned values.

• (fac 3)
(ifac 1 1 3)

(ifac 1 2 3)
(ifac 2 3 3)
(ifac 6 4 3)
6
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Some compilers are smart
• A smart compiler will convert fac into something 

like:

A: if cur-cnt >  max, return val
val = cur-cnt * val
cur-cnt = cur-cnt + 1
goto A
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Tail recursion

• When the value of a  recursive procedure call is 
returned immediately, it is an instance of tail 
recursion. 

• Smart compilers know to write iterative loops 
whenever they find tail recursion.

• Some smart compilers: Scheme, Common Lisp, 
gcc, IBM JIT, C#
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Tree recursion

• A procedure that calls itself two or more times before 
returning a value is a tree recursive procedure.

• (If a procedure calls itself only once before 
returning a value, the procedure is generally a 
linear recursive procedure.)
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Fibonacci numbers

fib(n) = 0                             if n = 0
= 1                             if n = 1
= fib(n-1) + fib(n-2)     if n > 1

; takes a pos int and returns the
; fibonacci #
(define (fib n)

(cond ((= n 0) 0)
((= n 1) 1)
(else (+ (fib (- n 1))

(fib (- n 2))))))
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(fib 5)

(fib 3)         (fib 4)

(fib 1)   (fib 2) (fib 2)  (fib 3)

(fib 0) (fib 1)
(fib0)(fib 1)

(fib 1) (fib 2)

(fib 0)(fib 1)

Tree of subproblems
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Tree Recursion

• Even though it looks bad, it often is a very natural 
way to solve a problem.

• While it seem inefficient, there may be a way to 
create an iterative version.

• However, the recursive version often helps you think 
about the problem easier (and thus, that is what we 
will do – especially helpful if the data structure calls 
for it)
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Fib (iterative version)

; takes a pos int and returns its 

; fibonicci #
(define (fib n) (ifib 1 0 n))

; helping function – counts up
(define (ifib next-fib cur-fib cnt)

(if (= cnt 0)
cur-fib
(ifib (+ next-fib cur-fib)

next-fib

(- cnt 1))))
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Thinking about problems 
Recursively

• Let’s look at some problems that seem “hard” that are 
made much easier if we think about them recursively.

Fall 2008 Programming Development 
Techniques

18

Towers of Hanoi

• Assume 3 pegs and a set of 3 disks (different sizes).
• Start with all disks on the same peg in order of size.  
• Problem is to move them all to another peg, by 

moving one at a time, where no larger peg may go on 
top of a smaller peg.
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Example

Move 3 disks, from peg 1 to peg 3 using peg 2 as extra.
(move-tower 3 1 3 2)

• Move top disk from 1 to 3
• Move top disk from 1 to 2
• Move top disk from 3 to 2
• Move top disk from 1 to 3
• Move top disk from 2 to 1
• Move top disk from 2 to 3
• Move top disk from 1 to 3
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Recursive Program

• Are we done?  Does this represent a base case?

• Otherwise,

• Formulate a problem that calls the same procedure 
again (wishful thinking) with an easier problem (one 
closer to the base conditions)
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(define (move-tower size from to extra)
(cond ((= size 0) #t)

(else
(move-tower (- size 1) from extra to)
(move from to)
(move-tower (- size 1) extra to from)
)))
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(define (move from to)
(newline)
(display "move top disk from ")
(display from)
(display " to ")
(display to))
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Problem reduction

To find a general solution to a problem:
• Break problem into subproblems that are easier to 

solve
• Combine solutions to the subproblems to create 

solution to original problem
Repeat on the subproblems until the problems are 

simple enough to solve directly
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Procedure reduction

• Identify what subprocedures will be needed
• Write code for the procedure to combine the values 

returned by the subprocedures and return as the 
value of the procedure

• Repeat this process on each subprocedure until only 
predefined procedures are called

• Generally, simple cases are tested for first before any 
recursive cases are tried
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Change counting problem

• This is an example of a procedure that is easy to write 
recursively, but difficult to write iteratively.

• Problem: Count the number of ways that change can 
be made for a given amount, using pennies, nickels, 
dimes, quarters, and half-dollars.

• E.g., number of ways to change 10 cents (5 coins)
• (10 pennies) or (1 nickel + 5 pennies) or (2 nickels) 

or (1 dime)
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Strategy

• Divide ways of making change into disjoint sets that 
will be easier to count

• # of ways  =
# of ways without using any coins of largest available 
denomination

+
# of ways that use at least one coin of largest 
available denomination 
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CC Examples

• (cc 5 2) ; count change 5 cents using 2 coins
• 1 (5 pennies) + 1 (1 nickel)

• (cc 10 2) ; count change 10 cents using 2 coins
• 1 (10 pennies) + 2 ways of making (cc 5 2)

• Number of ways of making change for a using          
n-1coins + Number of ways of making change for      
a - (value n) using n coins
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Base Cases

• (cc amt numb-coins)

• If (= amt 0) 1
• If no coins or (< amt 0) 0
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Change counting code

(define (cnt-chng amt) (cc amt 5))

(define (cc amt k)
(cond ((= amt 0) 1)

((or (< amt 0) (= k 0)) 0)
(else (+ (cc amt (- k 1))

(cc (- amt
(vk k))

k)))))
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(continued)
(define (vk kinds);value of largest

(cond ((= kinds 5) 50)
((= kinds 4) 25)
((= kinds 3) 10)
((= kinds 2)  5)
((= kinds 1)  1)
(else 0)))

(cnt-chng 100)   292


