

Orders of growth

- When a procedure is called, how do time and memory grow as a function of the size of the input?
- Size of an integer = its value
- Size of a string = its length
- Size of a graph structure = \# of nodes or \# of links

Theta(polynomial)

If $R(n)$ is a polynomial such as
$a_{0}+a_{1} * n^{1}+a_{2} * n^{2}+a_{3} * n^{3}+\ldots+a_{m} * n^{m}$
then $R(n)$ has order of growh $\Theta\left(n^{m}\right)$.

- $R(n)$ has order of growth $\Theta(f(n))$ if there exist constants k_{1} and k_{2} s.t.
$\mathbf{k}_{1} * \mathbf{f}(\mathrm{n}) \leq R(n) \leq \mathbf{k}_{\mathbf{2}} * \mathbf{f}(\mathrm{n})$
for all sufficiently large n.

Iterative factorial

- For time, ifac(n) has order of growth $\Theta(n)$
- For memory, ifac(n) has order of growth $\Theta(1)$
- $\mathrm{k}_{1} * 1 \leq$ amount of memory $\leq \mathrm{k}_{2} * 1$
of growth $\Theta(n)$ because the number of steps grows proportionally to the input n.
- $R(n)=R(n-1)+k$
; takes a positive integer and returns its factorial
; $(\operatorname{fac} 1)=1$; if $n>1$, then $(\operatorname{fac} n)=\left({ }^{*} n(f a c(-n 1))\right)$
(define (fac n)
(if (= n 1)
1
(* $n(f a c(-n 1))))$)
Fall 2008
Tograning Developmen
Techniques
; iterative version of factorial
; takes a positive integer and returns its factorial (define (faci n)(ifac 11 n))
; helping fn for iterative version of factorial (define (ifac val cur-cnt max)
(if (> cur-cnt max)
val
(ifac (* cur-cnt val)
(+ cur-cnt 1)
Fall 2008 max)) Programming Development Techniques

Orders of Growth

- Orders of growth provide only a crude description of the behavior of a process.
- This is still often very useful - especially as numbers (n 's) are very large.
- The difference between a process that is linear $(\mathrm{O}(\mathrm{n})$) versus $O\left(n^{2}\right)$ can mean the difference between being able to run the algorithm on a particular input and not being able to run it.

Can we do better?

- We could do better by developing a procedure that generated a linear iterative process rather than a recursive one.

Iterative exponentiation

```
; computes b to the n
(define (exponent-i b n)
    (ipwr 1 b n))
; val contains intermediate value
; val = b^(n-ctr)
(define (ipwr val b ctr)
    (if (= ctr 0)
            val
                        (ipwr (* b val) b (- ctr 1))))
Fall 2008 Programming Development
    Techniques
```

Notice: Computing $\mathrm{b}^{\wedge} 8$			
$\mathrm{b}^{*}(\mathrm{~b} *(\mathrm{~b} *(\mathrm{~b} *(\mathrm{~b} *(\mathrm{~b} *(\mathrm{~b} * \mathrm{~b}))$)))			
But			
$b^{\wedge} 2=b * b$			
$b^{\wedge} 4=b^{\wedge} 2 *{ }^{\wedge}$ 2			
$b^{\wedge} 8=b^{\wedge} 4 *$ in far fewe		I can	
This works for exponents that are powers of 2 . In general			
$\begin{aligned} b^{n} & =\left(b^{n / 2}\right)^{2} \\ & =b^{*} b^{n-1} \end{aligned}$	if n is even if n is odd	(NOT	
Fall 2008	Programming D	velopment.	12

Analysis (watch it run)

- $R(n) \approx R(n / 2)+k$
- For time and memory, has order of growth $\Theta\left(\log _{2} n\right)$

