
1

Fall 2008 Programming Development
Techniques

1

Topic 4
Orders of Growth

September 2008

Fall 2008 Programming Development
Techniques

2

Orders of growth

• When a procedure is called, how do time and memory
grow as a function of the size of the input?

• Size of an integer = its value
• Size of a string = its length
• Size of a graph structure = # of nodes or # of links

Fall 2008 Programming Development
Techniques

3

A definition

• Let R(n) = amount of resource (time, memory) used
when n = size of input

• R(n) has order of growth Θ(f(n)) if there exist
constants k1 and k2 s.t.
k1 * f(n) ≤ R(n) ≤ k2 * f(n)

for all sufficiently large n.

Fall 2008 Programming Development
Techniques

4

Theta(polynomial)

If R(n) is a polynomial such as
a0 + a1 * n1 + a2 * n2 + a3 * n3 + ... + am * nm

then R(n) has order of growh Θ(nm).

Fall 2008 Programming Development
Techniques

5

Recursive factorial
• For both time and memory, recursive fac(n) has order

of growth Θ(n) because the number of steps grows
proportionally to the input n.

• R(n) = R(n-1) + k

; takes a positive integer and returns its factorial
; (fac 1) = 1; if n>1, then (fac n) = (* n (fac (- n 1)))
(define (fac n)
(if (= n 1)

1
(* n (fac (- n 1)))))

Fall 2008 Programming Development
Techniques

6

Iterative factorial
• For time, ifac(n) has order of growth Θ(n)
• For memory, ifac(n) has order of growth Θ(1)
• k1 * 1 ≤ amount of memory ≤ k2 * 1

; iterative version of factorial
; takes a positive integer and returns its factorial
(define (faci n)(ifac 1 1 n))

; helping fn for iterative version of factorial
(define (ifac val cur-cnt max)
(if (> cur-cnt max)

val
(ifac (* cur-cnt val)

(+ cur-cnt 1)
max)))

2

Fall 2008 Programming Development
Techniques

7

Orders of Growth

• Orders of growth provide only a crude description of
the behavior of a process.

• This is still often very useful – especially as numbers
(n’s) are very large.

• The difference between a process that is linear (O(n))
versus O(n2) can mean the difference between being
able to run the algorithm on a particular input and not
being able to run it.

Fall 2008 Programming Development
Techniques

8

Exponentiation
bn = 1 if n = 0

= b * bn-1 if n > 0

; raises b to the nth power
; where n is a positive integer
(define (expt b n)

(if (= n 0)
1

(* b (expt b (- n 1)))))

Θ(n) in both time and space.

Fall 2008 Programming Development
Techniques

9

Can we do better?

• We could do better by developing a procedure that
generated a linear iterative process rather than a
recursive one.

Fall 2008 Programming Development
Techniques

10

Iterative exponentiation
; computes b to the n

(define (exponent-i b n)
(ipwr 1 b n))

; val contains intermediate value
; val = b^(n-ctr)
(define (ipwr val b ctr)

(if (= ctr 0)
val
(ipwr (* b val) b (- ctr 1))))

Fall 2008 Programming Development
Techniques

11

Exponentiation

bn = 1 if n = 0
= b * bn-1 if n > 0

For both time and memory, Θ(n) if process is recursive.

For memory, iterative process can be Θ(1)

Fall 2008 Programming Development
Techniques

12

Notice: Computing b^8
b * (b * (b * (b * (b * (b * (b * b))))))
But
b^2 = b * b
b^4 = b^2 * b^2
b^8 = b^4 * b^4 I can do the computation

in far fewer steps!

This works for exponents that are powers of 2. In
general

bn = (bn/2)2 if n is even (NOTE: book has error!)
= b * bn-1 if n is odd

3

Fall 2008 Programming Development
Techniques

13

Faster code
(define (fast-pwr b n)

(cond ((= n 0) 1)
((even? n)
(square
(fast-pwr b (/ n 2))))

(else

(* b
(fast-pwr b

(- n 1))))))

Fall 2008 Programming Development
Techniques

14

Analysis (watch it run)

• At least every other recursive call has an even input
• R(n) ≈ R(n/2) + k
• For time and memory, has order of growth Θ(log2 n)

