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Topic 5
Data Abstraction

Note: This represents a change in order.  We 
are skipping to chapter 2 without finishing 1.3.  
We will pick up the 1.3 concepts as they are 

motivated here.
Section 2.1
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Data abstraction

• Reminder: primitive expressions, means of 
combination, means of abstraction

• Chapter 1 – computational processes and role of 
procedures in program design. Combining procedures 
to form compound procedures, abstraction of 
procedures, procedures as a pattern for local 
evolution of a process, algorithmic analysis.

• Here look similar concepts for data: primitive data, 
compound data, data abstraction
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Why Compound Data?

• Elevate conceptual level at which we can design our 
programs

• Increase modularity of our design
• Enhance expressive power of the language

• Example: Dealing with rational numbers e.g., ¾
• Issue: has numerator and denominator
• Want to deal with them as a unit
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General Technique
Isolate 
• parts of a program that deal with how data objects 

are represented
From
• Parts of program that deal with how objects are used

This is a powerful design methodology called
data abstraction

Note similarity with procedural abstraction!
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Let's pretend!

• Pretend that Scheme only has integers and real 
numbers, no rationals or complex numbers

• We will define our own implementation of rational 
numbers and complex numbers

• Illustrates data abstraction, multiple representation
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Data abstraction
• Methodology that combines many data objects so that 

they can be treated as one data object

• The new data objects are abstract data: they are used 
without making any assumptions about how they are 
implemented

• Data abstraction: define representation, hide with 
selectors and constructors

• Extends the programming language
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Language extensions for 
handliing absract data

• Constructor: a procedure that creates instances 
of abstract data from data that is passed to it

• Selector: a procedure that returns a component 
datum that is in an abstract data object

• The component datum returned might be the 
value of an internal variable, or it might be 
computed
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Rational numbers
• Mathematically represented by a pair of integers: 1/2, 

56/874, 78/23, etc.

• Constructor: 
(make-rat numerator denominator)
; creates a rational number given an
; integer numerator and denominator

• Selectors: (numer rn), (denom rn)
; given a rational number returns an 

; integer rerpresenting the numerator and

; denominator
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User defines operations on 
rational numbers!

Case of wishful thinking.  You can start 
programming/thinking about programming up various 
operations without worrying about implementation of 
rational numbers.  Just assume (wish) the 
constructors and selectors work!

Add:
n1/d1 + n2/d2 = (n1*d2 + n2*d1)/(d1*d2)
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Rational addition

(define (add-rat x y)
(make-rat (+ (* (numer x)

(denom y))
(* (numer y)

(denom x)))
(* (denom x)

(denom y))))
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Another operation

Multiply:
(n1/d1) * (n2/d2) = (n1*n2) / (d1*d2)
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Rational multiplication
(define (mul-rat x y)

(make-rat (* (numer x)
(numer y))

(* (denom x)
(denom y))))
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A test

Equality:
n1/d1 = n2/d2 iff n1*d2 = n2*d1
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Rational equality
(define (equal-rat? x y)

(= (* (numer x) (denom y))
(* (numer y) (denom x))))

Subtraction and division defined similarly to 
addition and multiplication
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OK – now ready to implement 
rational numbers

• Have written programs that use the constructor and 
selectors for rational numbers.

• Now need to implement the concrete level of our data 
abstraction by defining these functions.

• To do so, we need an implementation of rational 
numbers.

• Need a way to glue together the numerator and 
denominator into a single unit.
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Compound data structure in 
Scheme

• Called a pair

• Constructor is cons – takes two arguments and 
returns a compound data object with those two 
arguments as parts.

• Selectors are car and cdr
(define x (cons 4 9))
(car x) --> 4
(cdr x) --> 9
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Pairs as records with two fields
(define x (cons 4 9)) produces

(4 . 9)

4 9

X
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Building a larger data structure
(define y (cons 3 2))

(define z (cons x y))

z                                    y

x

4       9           3        2

((4 . 9) 3 . 2)
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Extracting data
(car (car z)) --> 4

(car (cdr z)) --> 3
(cdr (car z)) --> 9
(cdr (cdr z)) --> 2
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List structures
Any data structure built using cons

Lists are a subset of the possible list structures

None of the list structures on the last three slides 
are lists
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Representing rational numbers 
the implementation

(define (make-rat n d) (cons n d))

(define (numer x) (car x))

(define (denom x) (cdr x))

(define (print-rat x)
(display (numer x))
(display "/")
(display (denom x))

(newline))
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Using rational numbers

(define one-third (make-rat 1 3))

(define four-fifths
(make-rat 4 5))

(print-rat one-third)
1/3

(print-rat (add-rat one-third
four-fifths))

17/15
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Some more rational numbers
(print-rat (mul-rat one-third

four-fifths))
4/15
(print-rat (add-rat four-fifths

four-fifths))
40/25
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To get the standard 
representation

(define (make-rat n d)
(let ((g (gcd n d)))

(cons (/ n g) (/ d g))))

(print-rat (add-rat four-fifths
four-fifths))

8/5
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Levels of abstraction

• Programs are built up as layers of language 
extensions

• Each layer is a level of abstraction
• Each level hides some implementation details
• There are four levels of abstraction in our rational 

numbers example
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Bottom level

• level of pairs

• procedures cons, car and cdr are already 
provided in the programming language

• The actual implementation of pairs is hidden
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Second level

• Level of rational numbers as data objects

• Procedures make-rat, numer and denom are 
defined at this level

• Actual implementation of rational numbers is 
hidden at this level
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Third level

• Level of service procedures on rational numbers

• Procedures add-rat, mul-rat, equal-rat, etc. 
are defined at this level

• Implementation of these procedures are hidden 
at this level
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Top level

• Program level

• Rational numbers are used in calculations as if they 
were ordinary numbers
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Abstraction barriers

• Each level is designed to hide implementation details 
from higher-level procedures

• These levels act as abstraction barriers
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Advantages of data abstraction
• Programs can be designed one level of abstraction at 

a time
• We don't have to be aware of implementation details 

below the level at which we are programming
• This means there is less to keep in mind at any one 

time while programming
• An implementation can be changed later without 

changing procedures written at higher levels
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Example of changing an 
implementation

(define (make-rat n d) (cons n d))

(define (numer x)
(let ((g (gcd (car x) (cdr x))))

(/ (car x) g)))

(define (denom x)
(let ((g (gcd (car x) (cdr x))))

(/ (cdr x) g)))
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Another advantage

• Data abstraction supports top-down design

• We can gradually figure out representations, 
constructors, selectors and service procedures that we 
need, one level at a time 
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Message passing paradigm

• A way of using procedure abstraction to implement 
data abstraction

• A procedure is used to represent an object
• A higher-order procedure is used to act as a 

constructor
• A message is passed to the object (value passed as 

input to the procedure) to act as a selector
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How pairs could be implemented 
(Return a procedure from a 

Procedure)
(define (cons x y)

(define (dispatch message)

(cond ((= message 0) x)
((= message 1) y)
(else
(error "bad message"

message))))
dispatch)
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• Implementing the selectors requires using 
procedures as arguments – something we didn’t 
cover yet from section 1.3…
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Implementing the selectors
(define (car z) (z 0))

(define (cdr z) (z 1))

("Don't try this at home!")
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Alternate version of cons
(define (cons x y)

(lambda (message)
(cond ((= message 0) x)

((= message 1) y)
(else
(error "bad message"

message)))))


