
1

Fall 2008 Programming Development
Techniques

1

Topic 5
Data Abstraction

Note: This represents a change in order. We
are skipping to chapter 2 without finishing 1.3.
We will pick up the 1.3 concepts as they are

motivated here.
Section 2.1

September 2008
Fall 2008 Programming Development

Techniques
2

Data abstraction

• Reminder: primitive expressions, means of
combination, means of abstraction

• Chapter 1 – computational processes and role of
procedures in program design. Combining procedures
to form compound procedures, abstraction of
procedures, procedures as a pattern for local
evolution of a process, algorithmic analysis.

• Here look similar concepts for data: primitive data,
compound data, data abstraction

Fall 2008 Programming Development
Techniques

3

Why Compound Data?

• Elevate conceptual level at which we can design our
programs

• Increase modularity of our design
• Enhance expressive power of the language

• Example: Dealing with rational numbers e.g., ¾
• Issue: has numerator and denominator
• Want to deal with them as a unit

Fall 2008 Programming Development
Techniques

4

General Technique
Isolate
• parts of a program that deal with how data objects

are represented
From
• Parts of program that deal with how objects are used

This is a powerful design methodology called
data abstraction

Note similarity with procedural abstraction!

Fall 2008 Programming Development
Techniques

5

Let's pretend!

• Pretend that Scheme only has integers and real
numbers, no rationals or complex numbers

• We will define our own implementation of rational
numbers and complex numbers

• Illustrates data abstraction, multiple representation

Fall 2008 Programming Development
Techniques

6

Data abstraction
• Methodology that combines many data objects so that

they can be treated as one data object

• The new data objects are abstract data: they are used
without making any assumptions about how they are
implemented

• Data abstraction: define representation, hide with
selectors and constructors

• Extends the programming language

2

Fall 2008 Programming Development
Techniques

7

Language extensions for
handliing absract data

• Constructor: a procedure that creates instances
of abstract data from data that is passed to it

• Selector: a procedure that returns a component
datum that is in an abstract data object

• The component datum returned might be the
value of an internal variable, or it might be
computed

Fall 2008 Programming Development
Techniques

8

Rational numbers
• Mathematically represented by a pair of integers: 1/2,

56/874, 78/23, etc.

• Constructor:
(make-rat numerator denominator)
; creates a rational number given an
; integer numerator and denominator

• Selectors: (numer rn), (denom rn)
; given a rational number returns an

; integer rerpresenting the numerator and

; denominator

Fall 2008 Programming Development
Techniques

9

User defines operations on
rational numbers!

Case of wishful thinking. You can start
programming/thinking about programming up various
operations without worrying about implementation of
rational numbers. Just assume (wish) the
constructors and selectors work!

Add:
n1/d1 + n2/d2 = (n1*d2 + n2*d1)/(d1*d2)

Fall 2008 Programming Development
Techniques

10

Rational addition

(define (add-rat x y)
(make-rat (+ (* (numer x)

(denom y))
(* (numer y)

(denom x)))
(* (denom x)

(denom y))))

Fall 2008 Programming Development
Techniques

11

Another operation

Multiply:
(n1/d1) * (n2/d2) = (n1*n2) / (d1*d2)

Fall 2008 Programming Development
Techniques

12

Rational multiplication
(define (mul-rat x y)

(make-rat (* (numer x)
(numer y))

(* (denom x)
(denom y))))

3

Fall 2008 Programming Development
Techniques

13

A test

Equality:
n1/d1 = n2/d2 iff n1*d2 = n2*d1

Fall 2008 Programming Development
Techniques

14

Rational equality
(define (equal-rat? x y)

(= (* (numer x) (denom y))
(* (numer y) (denom x))))

Subtraction and division defined similarly to
addition and multiplication

Fall 2008 Programming Development
Techniques

15

OK – now ready to implement
rational numbers

• Have written programs that use the constructor and
selectors for rational numbers.

• Now need to implement the concrete level of our data
abstraction by defining these functions.

• To do so, we need an implementation of rational
numbers.

• Need a way to glue together the numerator and
denominator into a single unit.

Fall 2008 Programming Development
Techniques

16

Compound data structure in
Scheme

• Called a pair

• Constructor is cons – takes two arguments and
returns a compound data object with those two
arguments as parts.

• Selectors are car and cdr
(define x (cons 4 9))
(car x) --> 4
(cdr x) --> 9

Fall 2008 Programming Development
Techniques

17

Pairs as records with two fields
(define x (cons 4 9)) produces

(4 . 9)

4 9

X

Fall 2008 Programming Development
Techniques

18

Building a larger data structure
(define y (cons 3 2))

(define z (cons x y))

z y

x

4 9 3 2

((4 . 9) 3 . 2)

4

Fall 2008 Programming Development
Techniques

19

Extracting data
(car (car z)) --> 4

(car (cdr z)) --> 3
(cdr (car z)) --> 9
(cdr (cdr z)) --> 2

Fall 2008 Programming Development
Techniques

20

List structures
Any data structure built using cons

Lists are a subset of the possible list structures

None of the list structures on the last three slides
are lists

Fall 2008 Programming Development
Techniques

21

Representing rational numbers
the implementation

(define (make-rat n d) (cons n d))

(define (numer x) (car x))

(define (denom x) (cdr x))

(define (print-rat x)
(display (numer x))
(display "/")
(display (denom x))

(newline))
Fall 2008 Programming Development

Techniques
22

Using rational numbers

(define one-third (make-rat 1 3))

(define four-fifths
(make-rat 4 5))

(print-rat one-third)
1/3

(print-rat (add-rat one-third
four-fifths))

17/15

Fall 2008 Programming Development
Techniques

23

Some more rational numbers
(print-rat (mul-rat one-third

four-fifths))
4/15
(print-rat (add-rat four-fifths

four-fifths))
40/25

Fall 2008 Programming Development
Techniques

24

To get the standard
representation

(define (make-rat n d)
(let ((g (gcd n d)))

(cons (/ n g) (/ d g))))

(print-rat (add-rat four-fifths
four-fifths))

8/5

5

Fall 2008 Programming Development
Techniques

25

Levels of abstraction

• Programs are built up as layers of language
extensions

• Each layer is a level of abstraction
• Each level hides some implementation details
• There are four levels of abstraction in our rational

numbers example

Fall 2008 Programming Development
Techniques

26

Bottom level

• level of pairs

• procedures cons, car and cdr are already
provided in the programming language

• The actual implementation of pairs is hidden

Fall 2008 Programming Development
Techniques

27

Second level

• Level of rational numbers as data objects

• Procedures make-rat, numer and denom are
defined at this level

• Actual implementation of rational numbers is
hidden at this level

Fall 2008 Programming Development
Techniques

28

Third level

• Level of service procedures on rational numbers

• Procedures add-rat, mul-rat, equal-rat, etc.
are defined at this level

• Implementation of these procedures are hidden
at this level

Fall 2008 Programming Development
Techniques

29

Top level

• Program level

• Rational numbers are used in calculations as if they
were ordinary numbers

Fall 2008 Programming Development
Techniques

30

Abstraction barriers

• Each level is designed to hide implementation details
from higher-level procedures

• These levels act as abstraction barriers

6

Fall 2008 Programming Development
Techniques

31

Advantages of data abstraction
• Programs can be designed one level of abstraction at

a time
• We don't have to be aware of implementation details

below the level at which we are programming
• This means there is less to keep in mind at any one

time while programming
• An implementation can be changed later without

changing procedures written at higher levels

Fall 2008 Programming Development
Techniques

32

Example of changing an
implementation

(define (make-rat n d) (cons n d))

(define (numer x)
(let ((g (gcd (car x) (cdr x))))

(/ (car x) g)))

(define (denom x)
(let ((g (gcd (car x) (cdr x))))

(/ (cdr x) g)))

Fall 2008 Programming Development
Techniques

33

Another advantage

• Data abstraction supports top-down design

• We can gradually figure out representations,
constructors, selectors and service procedures that we
need, one level at a time

Fall 2008 Programming Development
Techniques

34

Message passing paradigm

• A way of using procedure abstraction to implement
data abstraction

• A procedure is used to represent an object
• A higher-order procedure is used to act as a

constructor
• A message is passed to the object (value passed as

input to the procedure) to act as a selector

Fall 2008 Programming Development
Techniques

35

How pairs could be implemented
(Return a procedure from a

Procedure)
(define (cons x y)

(define (dispatch message)

(cond ((= message 0) x)
((= message 1) y)
(else
(error "bad message"

message))))
dispatch)

Fall 2008 Programming Development
Techniques

36

• Implementing the selectors requires using
procedures as arguments – something we didn’t
cover yet from section 1.3…

7

Fall 2008 Programming Development
Techniques

37

Implementing the selectors
(define (car z) (z 0))

(define (cdr z) (z 1))

("Don't try this at home!")

Fall 2008 Programming Development
Techniques

38

Alternate version of cons
(define (cons x y)

(lambda (message)
(cond ((= message 0) x)

((= message 1) y)
(else
(error "bad message"

message)))))

