
1

Spring 2008 Programming Development
Techniques

1

Topic 5.5
Higher Order Procedures

(This goes back and picks up section
1.3 and then sections in Chapter 2)

September 2008

Spring 2008 Programming Development
Techniques

2

Procedural Abstraction
• We have seen the use of procedures as abstractions.
• So far we have defined cases where the abstractions

that are captured are essentially compound
operations on numbers.

• What does that buy us?
– Assign a name to a common pattern (e.g., cube) and then

we can work with the abstraction instead of the individual
operations.

• What more could we do?
– What about the ability to capture higher-level “programming”

patterns.
– For this we need procedures are arguments/return values

from procedures

Spring 2008 Programming Development
Techniques

3

The really big idea

• Procedures (function) should be treated as first-
class objects

• In scheme procedures (functions) are data
– can be passed to other procedures as arguments
– can be created inside procedures
– can be returned from procedures

• This notion provides big increase in abstractive power
• One thing that sets scheme apart from most other

programming languages

Spring 2008 Programming Development
Techniques

4

Section 1.3 -Terminology

• Procedures that accept other procedures as input or
return a procedure as output are higher-order
procedures.

• The other procedures are first-order
procedures.

• Scheme treats functions/procedures as first-
class objects. They can be manipulated like
any other object.

Spring 2008 Programming Development
Techniques

5

Book and Here…

• Book goes through showing several examples of the
abstract pattern of summation, and then shows how
you might want to abstract that into a procedure.

• CAUTION: I find some of the names that they use for
their abstraction confusing – don’t let that bother you!
It just makes reading the book a little more difficult.

• I am going to borrow an introduction from some old
slides from Cal-Tech. I think you should be able to
put the two together very nicely.

• At least, that’s my intention…

Spring 2008 Programming Development
Techniques

6

In mathematics…

• Not all operations take in (only) numbers

• +, -, *, /, expt, log, mod, …
– take in numbers, return numbers

• but operations like Σ, d/dx, integration
– take in functions
– return functions (or numbers)

2

Spring 2008 Programming Development
Techniques

7

Math:
Functions as Arguments

• You’ve seen:

a=f(0)+f(1)+f(2)+f(3)+f(4)+f(5)+f(6)

∑
=

=
6

0
)(

n
nfa

Spring 2008 Programming Development
Techniques

8

Math:
Functions as Arguments

• Σ is a “function”
– which takes in

• a function
• a lower bound (an integer)
• an upper bound (also an integer)

– and returns
• a number

• We say that Σ is a “higher-order” function

• Can define higher-order fns in scheme

∑
=

6

0
)(

x
xf

Spring 2008 Programming Development
Techniques

9

Transforming summation

∑
=

high

lowx
xf)(

∑
+=

+
high

lowx
xflowf

1
)()(

is the same as…

Spring 2008 Programming Development
Techniques

10

Summation in scheme

; takes a function a low value and a high value
; returns the sum of f(low)...f(high) by incrementing
; by 1 each time
(define (sum f low high)
(if (> low high) 0

(+ (f low)
(sum f (+ low 1) high))))

∑
+=

+
high

lowx
xflowf

1

))(()(

Spring 2008 Programming Development
Techniques

11

Evaluating summation

• Evaluate: (sum square 2 4)

• ((lambda (f low high) …) square 2 4)

• substitute:

– square for f

– 2 for low, 4 for high

Spring 2008 Programming Development
Techniques

12

…continuing evaluation

• (if (> 2 4) 0

(+ (square 2) (sum square 3 4)))

• (+ (square 2) (sum square 3 4)))

• (square 2) … 4

• (+ 4 (sum square 3 4)))

3

Spring 2008 Programming Development
Techniques

13

…continuing evaluation

• (+ 4 (sum square 3 4)))
• (+ 4 (if (> 3 4) 0

(+ (square 3)
(sum square 4 4))))

• (+ 4 (+ (square 3)
(sum square 4 4))))

• (+ 4 (+ 9 (sum square 4 4))))

Spring 2008 Programming Development
Techniques

14

…continuing evaluation

• (+ 4 (+ 9 (sum square 4 4))))
• yadda yadda…
• (+ 4 (+ 9 (+ 16 (sum square 5 4))))
• (+ 4 (+ 9 (+ 16 (if (> 5 4) 0 …)
• (+ 4 (+ 9 (+ 16 0)))
• … 29 (whew!)
• pop quiz: what kind of process?

– linear recursive

Spring 2008 Programming Development
Techniques

15

Also valid…

(sum (lambda (x) (* x x)) 2 4)

– this is also a valid call

– equivalent in this case

– no need to give the function a name

Spring 2008 Programming Development
Techniques

16

Iterative version

• sum generates a recursive process

• iterative process would use less space

– no pending operations

• Can we re-write to get an iterative version?

Spring 2008 Programming Development
Techniques

17

Iterative version

; takes a function a low value and a high value
; returns the sum of f(low)...f(high) by incrementing
; by 1 each time
(define (isum f low high)

(sum-iter f low high 0))

(define (sum-iter f low high result)
(if (> low high) result

(sum-iter f (+ low 1) high (+ (f low) result))))

Spring 2008 Programming Development
Techniques

18

Evaluating iterative version
• (isum square 2 4)
• (sum-iter square 2 4 0)
• (if (> 2 4) 0

(sum-iter square (+ 2 1) 4 (+ (square 2) 0)))
• (sum-iter square (+ 2 1) 4 (+ (square 2) 0))
• (sum-iter square 3 4 (+ 4 0))
• (sum-iter square 3 4 4)

4

Spring 2008 Programming Development
Techniques

19

eval iterative sum cont’d...

• (sum-iter square 3 4 4)
• (if (> 3 4) 4

(sum-iter square (+ 3 1) 4 (+ (square 3) 4)))
• (sum-iter square (+ 3 1) 4 (+ (square 3) 4))
• (sum-iter square 4 4 (+ 9 4))
• (sum-iter square 4 4 13)

Spring 2008 Programming Development
Techniques

20

eval iterative sum cont’d...

• (sum-iter square 4 4 13)
• (if (> 4 4) 13

(sum-iter square (+ 4 1) 4 (+ (square 4) 13)))
• (sum-iter square (+ 4 1) 4 (+ (square 4) 13))
• (sum-iter square 5 4 (+ 16 13))
• (sum-iter square 5 4 29)

Spring 2008 Programming Development
Techniques

21

eval iterative sum cont’d...

• (sum-iter square 5 4 29)
• (if (> 5 4) 29 (sum-iter ...))
• 29
• same result, no pending operations
• more space-efficient

Spring 2008 Programming Development
Techniques

22

recursive vs. iterative
(define (sum f low high)

(if (> low high)
0
(+ (f low)

(sum f
(+ low 1) high))))

(define (isum f low high)
(define (sum-iter f low high result)

(if (> low high)
result
(sum-iter f

(+ low 1) high
(+ (f low) result))))

(sum-iter f a b 0))

Spring 2008 Programming Development
Techniques

23

recursive vs. iterative

• recursive:
– pending computations
– when recursive calls return, still work to do

• iterative:
– current state of computation stored in operands of internal

procedure
– when recursive calls return, no more work to do (“tail

recursive”)

Spring 2008 Programming Development
Techniques

24

Historical interlude
Reactions on first seeing “lambda”:

– What the heck is this thing?
– What the heck is it good for?
– Where the heck does it come from?

This represents the essence of a function – no need to give it a
name. It comes from mathematics. Where ever you might
use the name of a procedure – you could use a lambda
expression and not bother to give the procedure a name.

5

Spring 2008 Programming Development
Techniques

25

Generalizing summation
• What if we don’t want to go up by 1?
• Supply another procedure

– given current value, finds the next one

; takes a function, a low value, a function to generate the
next

; value and the high value. Returns f(low)...f(high) by
; incrementing according to next each time
(define (gsum f low next high)

(if (> low high) 0
(+ (f low)

(gsum f (next low) next high))))
Spring 2008 Programming Development

Techniques
26

stepping by 1, 2, ...
; takes a number and increments it by 1
(define (step1 n) (+ n 1))

; new definition of sum...
(define (new-sum f low high) ; same as before

(gsum f low step1 high))

; takes a number and increments it by 2
(define (step2 n) (+ n 2))

; new definition of a summation that goes up by 2 each time
(define (sum2 f low high)

(gsum f low step2 high))

Spring 2008 Programming Development
Techniques

27

stepping by 2

• (sum square 2 4)
= 22 + 32 + 42

• (sum2 square 2 4)
= 22 + 42

• (sum2 (lambda (n) (* n n n)) 1 10)
= 13 + 33 + 53 + 73 + 93

Spring 2008 Programming Development
Techniques

28

using lambda
• (define (step2 n) (+ n 2))
• (define (sum2 f low high)

(gsum f low step2 high))

• Why not just write this as:
• (define (sum2 f low high)

(gsum f low (lambda (n) (+ n 2)) high))
• don’t need to name tiny one-shot functions

Spring 2008 Programming Development
Techniques

29

(ab)using lambda

• How about:
– sum of n4 for n = 1 to 100, stepping by 5?

• (gsum (lambda (n) (* n n n n))
1
(lambda (n) (+ n 5))
100)

• NOTE: the n’s in the lambdas are independent of each other

Spring 2008 Programming Development
Techniques

30

Big Ideas

• Procedures (functions) are data!

• We can abstract operations around functions as well
as numbers

• Provides great power

– expression, abstraction

– high-level formulation of techniques

• We’ve only scratched the surface!

6

Spring 2008 Programming Development
Techniques

31

Procedures without names
• (lambda (<param1> <param2> . . .)

<body>)

• (define (square x) (* x x))

• (define square
(lambda (x) (* x x)))

• lambda = create-procedure

Spring 2008 Programming Development
Techniques

32

Procedures are first-class
objects

• Can be the value of variables

• Can be passed as parameters

• Can be return values of functions

• Can be included in data structures

Spring 2008 Programming Development
Techniques

33

Another Use for Lambda
• Providing “local” variables

(define (make-rat a b)
(cons (/ a (gcd a b))

(/ b (gcd a b))))

(define (make-rat a b)
((lambda (div)

(cons (/ a div)
(/ b div)))

(gcd a b)))

Spring 2008 Programming Development
Techniques

34

More local variables

((lambda (x y) (+ (* x x)
(* y y)))

5
7)

((lambda (v1 v2 ...) <body>)
val-for-v1
val-for-v2
...)

Spring 2008 Programming Development
Techniques

35

The let special form ...
(let ((<var1> <expr1>)

(<var2> <expr2>)
...)

<body>)

Translates into…

((lambda (<var1> <var2> ...) <body>)
<expr1>
<expr2>
. . .)

Spring 2008 Programming Development
Techniques

36

Using let

(define (f x y)
(let ((z (+ x y)))

(+ z (* z z))))

7

Spring 2008 Programming Development
Techniques

37

Taking the Abstraction 1 Step
Further…

• we can also construct and return functions.

Spring 2008 Programming Development
Techniques

38

Math:
Operators as return values

• The derivative operator
– Takes in…

• A function
– (from numbers to numbers)

– Returns…
• Another function

– (from numbers to numbers)

))(()(xF
dx
dxf =

Spring 2008 Programming Development
Techniques

39

Math:
Operators as return values

• The integration operator
– Takes in…

• A function
– from numbers to numbers, and

• A value of the function at some point
– E.g. F(0) = 0

– Returns
• A function from numbers to numbers

∫= dxxfxF)()(

Spring 2008 Programming Development
Techniques

40

Returning operators
• So operators can be return values, as well:

))(()(xF
dx
dxf =

∫= dxxfxF)()(

Spring 2008 Programming Development
Techniques

41

Further motivation

• Besides mathematical operations that inherently
return operators…

• …it’s often nice, when designing programs, to have
operations that help construct larger, more complex
operations.

Spring 2008 Programming Development
Techniques

42

An example:

• Consider defining all these functions:
(define add1 (lambda (x) (+ x 1))
(define add2 (lambda (x) (+ x 2))
(define add3 (lambda (x) (+ x 3))
(define add4 (lambda (x) (+ x 4))
(define add5 (lambda (x) (+ x 5))

• …repetitive, tedious.

8

Spring 2008 Programming Development
Techniques

43

Avoid Needless Repetition

(define add1 (lambda (x) (+ x 1))
(define add2 (lambda (x) (+ x 2))
(define add3 (lambda (x) (+ x 3))
(define add4 (lambda (x) (+ x 4))
(define add5 (lambda (x) (+ x 5))

– Whenever we find ourselves doing something
rote/repetitive… ask:

• Is there a way to abstract this?

Spring 2008 Programming Development
Techniques

44

Abstract “Up”
• Generalize to a function that can create adders:
; function that takes a number and returns a function
; that takes a number and adds that number to the given number
(define (make-addn n)

(lambda (x) (+ x n)))

;(define make-addn ;; equivalent def
; (lambda (n)
; (lambda (x) (+ x n))))

Spring 2008 Programming Development
Techniques

45

How do I use it?

(define (make-addn n)
(lambda (x) (+ x n)))

((make-addn 1) 3)
4

(define add3 (make-addn 3))
(define add2 (make-addn 2))
(add3 4)
7

Spring 2008 Programming Development
Techniques

46

Evaluating…
• (define add3 (make-addn 3))

– Evaluate (make-addn 3)
• Evaluate 3 -> 3.
• Evaluate make-addn ->

– (lambda (n) (lambda (x) (+ x n)))
• Apply make-addn to 3…

– Substitute 3 for n in (lambda (x) (+ x n))
– Get (lambda (x) (+ x 3))

– Make association:
• add3 bound to (lambda (x) (+ x 3))

Spring 2008 Programming Development
Techniques

47

Evaluating (add3 4)
• (add3 4)
• Evaluate 4
• Evaluate add3

(lambda (x) (+ x 3))
• Apply (lambda (x) (+ x 3)) to 4

Substitute 4 for x in (+ x 3)
(+ 4 3)
7

Spring 2008 Programming Development
Techniques

48

Big Ideas
• We can abstract operations around functions as well

as numbers
• We can “compute” functions just as we can compute

numbers and booleans
• Provides great power to

– express
– abstract
– formulate high-level techniques

