
1

Spring 2008 Programming Development
Techniques

1

Topic 7
More Hierarchical Data

Exercises 1.41, 1.42
Section 2.2.1
Section 2.2.2

October 2008

Spring 2008 Programming Development
Techniques

2

Back to Chapter 1

• Exercise 1.41

• Define a procedure double that takes a procedure of
one argument as argument and returns a procedure
that applies the original procedure twice.

• ((double inc) 1)
• 3

Spring 2008 Programming Development
Techniques

3

Another Chapter 1 Exercise

• Exercise 1.42
• Let f and g be two one-argument functions. The

composition of f after g is defined to be the function
x -> f(g(x)).

Define a procedure compose that implements
composition. For example:

((compose square inc) 6)

Spring 2008 Programming Development
Techniques

4

Functions that take any number of
Arguments

• Some procedures in scheme (e.g., +, *, list) take an
arbitrary number of arguments?

• How do we do that??
• Use define with dotted-tail notation

• End parameter list with a . before the last element.
The parameters before the . get bound normally. The
final formal parameter gets bound to the list
containing the remaining actual parameters.

Spring 2008 Programming Development
Techniques

5

Dotted-Tail Notation in Define

• (define (f x y . z) <body>)
• (f 1 2 3 4 5 6)
• x=1
• y=2
• z=(3 4 5 6)

• (define (g . w) <body>)
• (g 1 2 3 4 5)
• w= (1 2 3 4 5)

Spring 2008 Programming Development
Techniques

6

Exercise 2.20

• Define a function same-parity that takes one or more
integers and returns a list of all the arguments that
have the same even-ldd parity as the first argument.

(same-parity 1 2 3 4 5 6 7)
(1 3 5 7)

(same-parity 2 3 4 5 6 7)
(2 4 6)

2

Spring 2008 Programming Development
Techniques

7

A more general append
Use the dotted tail notation to write a
function that acts like append. Call it
gappend. gappend takes any number of lists
and returns a single list whose elements are
the elements of the individual lists.

(gappend ‘(a b) ‘(c d) ‘(e f) ‘(g h))
(a b c d e f g h)

Spring 2008 Programming Development
Techniques

8

Mapping over lists

Define a function square-list

; takes a list of numbers and returns a list containing
; the squares of the numbers in the original list

(square-list '(1 2 3 4))
(1 4 9 16)

Spring 2008 Programming Development
Techniques

9

Mapping over lists

Define a function double-eles

; takes a list and returns a list containing
; the elements of the original list doubled
; in individual sublists

(double-eles '(a b c d))
((a a) (b b) (c c) (d d))

Spring 2008 Programming Development
Techniques

10

Can this be generalized?

• Write a map procedure – and then define the earlier
two procedures using map

Spring 2008 Programming Development
Techniques

11

Scheme's map procedure
(map <procedure taking N arguments>

<list 1>
<list 2>
. . .
<list N>)

All lists must have the same length.

Spring 2008 Programming Development
Techniques

12

Using map
(define (vector-sum vec1 vec2)

(map + vec1 vec2))

(vector-sum (list 1 2 3 4)
(list 5 6 7 8))

--> (6 8 10 12)

3

Spring 2008 Programming Development
Techniques

13

Arbitrarily Complex Lists

• Also called trees in the text – we have worked with
these in a couple of procedures earlier –

• We write emb-subst and ?? (perhaps it was add-
nums?)

Spring 2008 Programming Development
Techniques

14

Counting leaves
; takes a tree and returns the number

; of leaves in that tree

(count-leaves '(a ((b c) 2) (((e))) 7))
6

Spring 2008 Programming Development
Techniques

15

Multiplying all leaves by the
same number – scale-tree

; takes a tree whose leaves are numbers
; and a number
; returns a similar tree with the numbers
; multiplied by num

if x --> ((2 1) (4 3)), then

(scale-tree x 5) --> ((10 5) (20 15))

Spring 2008 Programming Development
Techniques

16

A definition of scale-tree using
map

(better than book's definition; works on one-leaf
tree)

Spring 2008 Programming Development
Techniques

17

Solution to exercise 2.32
; generates the set of subsets of a set s

(subsets (list 1 2 3) -->

(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

