
1

Fall 2008 Programming Development
Techniques

1

Topic 9
Symbols and eq? vs equal?

Section 2.3.1

October 2008

Fall 2008 Programming Development
Techniques

2

Example of Symbol
Manipulation

• One of the corner stones of Lisp/Scheme is its ability
to easily manipulate symbols.

• Because of this it has been heavily used in Artificial
Intelligence.

• As an example, we will write a program to manipulate
English Sentences.

Fall 2008 Programming Development
Techniques

3

Symbolic data

(quote a) --> a

(quote this-is-a-symbol) -->
this-is-a-symbol

'a --> a
'(a b d) --> (a b d)
'(1 2 (a (3 d) this is the life)-->

(1 2 (a (3 d) this is the life)

Fall 2008 Programming Development
Techniques

4

Some cautions
''c --> (quote c)

'(1 'a 2) --> (1 (quote a) 2)

Fall 2008 Programming Development
Techniques

5

The eq? predicate
(eq? x y) returns #t iff x and y are both
the same (small) integer, the same symbol
or the same pointer to a data structure.

It always returns #f if x and y are real numbers.

Fall 2008 Programming Development
Techniques

6

Some examples
(eq? 'a 'a) --> #t

(eq? 'a 'b) --> #f
(eq? 1234 1234) --> #t
(eq? 1234567890 1234567890) --> #f
(define x (list 1 2))
(eq? x x) --> #t
(eq? (list 1 2) (list 1 2)) --> #f

2

Fall 2008 Programming Development
Techniques

7

An efficient membership test
(see lisp file)

; takes a symbol named item and a list
; and checks for membership of item in lst
(define (memq item lst)

(cond ((null? lst) #f)
((eq? item (car lst))
lst)

(else (memq item
(cdr lst)))))

(memq 'a '(b a d a b i n g)) -->
(a d a b i n g)

Fall 2008 Programming Development
Techniques

8

A way to count items in a list
; counts the number of times symbol item
; occurs in top level of lst
(define (item-count item lst)

(define (item-count-iter sublist count)
(let ((next-sublist (memq item sublist)))

(if (not next-sublist)
count
(item-count-iter (cdr next-sublist)

(+ count 1)))))
(item-count-iter lst 0))

(item-count 'a '(1 a (a a (a)) b 2 a)) --> 2

Fall 2008 Programming Development
Techniques

9

What about lists whose elements are
not symbols?

; takes two expressions and is #t if they are the
; same symbols, or if they are lists with same elements
; and structure -- i.e., they look the same
(define (my-equal? s1 s2)
(cond ((symbol? s1) (eq? s1 s2))

((symbol? s2) #f)
((and (null? s1) (null? s2)) #t)
((or (null? s1) (null? s2)) #f)
(else (and (my-equal? (car s1) (car s2))

(my-equal? (cdr s1) (cdr s2))))))

