
1

Adversarial Search and
Game Playing

(Where making good decisions
requires respecting your opponent) requires respecting your opponent)

R&N: Chap. 5

 Games like Chess or Go are compact
settings that mimic the uncertainty of
interacting with the natural world
 For centuries humans have used them to

exert their intelligenceexert their intelligence
 Recently, there has been great success in

building game programs that challenge
human supremacy

Relation to Previous Lecture
 Here, uncertainty is caused by the actions of another

agent (MIN), which competes with our agent (MAX)

Relation to Previous Lecture
 Here, uncertainty is caused by the actions of another

agent (MIN), which competes with our agent (MAX)

 MIN wants MAX to fail (and vice versa)

 No plan exists that guarantees MAX’s success
r rdl ss f hich cti ns MIN x cut s (th s m regardless of which actions MIN executes (the same
is true for MIN)

 At each turn, the choice of which action to perform
must be made within a specified time limit

 The state space is enormous: only a tiny fraction of
this space can be explored within the time limit

Specific Setting
Two-player, turn-taking, deterministic, fully

observable, zero-sum, time-constrained game

 State space
 Initial state
 Successor function: it tells which actions can be

t d i h t t d i th executed in each state and gives the successor
state for each action

 MAX’s and MIN’s actions alternate, with MAX
playing first in the initial state

 Terminal test: it tells if a state is terminal and,
if yes, if it’s a win or a loss for MAX, or a draw

 All states are fully observable

Game Tree

MAX’s play 

MIN’s play 
MIN nodes

MAX nodes

Terminal state
(win for MAX) 

Here, symmetries have been used
to reduce the branching factor

2

Game tree (2-player,
deterministic, turns)

Minimax

• Perfect play for deterministic game

• Idea: choose move to position with highest minimax
value = best achievable payoff against best play

• E.g., 2-ply game:

Minimax algorithm

B D

A

C

L N SRQ

J K

O

IE H

P

GF

XVUT Z A1Y

15

M

-3 -5 -10 3 4 6 -7 12 4 8 12 30 20 10

W

20

B D

A

C

max

min

3 6 8

8

L N SRQ

J K

O

IE H

P

GF

XVUT Z A1Y

15

M

-3 -5 -10 3 4 6 -7 12 4 8 12 30 20 10

W

20

max

15 3 6 12 8 30 20

Game Tree

MAX’s play 

MIN’s play 

Terminal state
(win for MAX) 

In general, the branching
factor and the depth of
terminal states are large
Chess:
• Number of states: ~1040

• Branching factor: ~35
• Number of total moves
in a game: ~100

3

Choosing an Action: Basic Idea

1) Using the current state as the initial
state, build the game tree uniformly to
the maximal depth h (called horizon)
feasible within the time limit

2) Evaluate the states of the leaf nodes
3) Back up the results from the leaves to

the root and pick the best action
assuming the worst from MIN

 Minimax algorithm

Evaluation Function

 Function e: state s  number e(s)
 e(s) is a heuristics that estimates how

favorable s is for MAX
() 0 th t i f bl t MAX  e(s)  0 means that s is favorable to MAX

(the larger the better)
 e(s)  0 means that s is favorable to MIN
 e(s)  0 means that s is neutral

Example: Tic-tac-Toe

e(s) = number of rows, columns,
and diagonals open for MAX
 number of rows, columns,
and diagonals open for MIN

88 = 0 64 = 2 33 = 0

Construction of an
Evaluation Function

 Usually a weighted sum of “features”:


n

i ie(s)= wf(s)

 Features may include
 Number of pieces of each type
 Number of possible moves
 Number of squares controlled

 i i
i=1

Backing up Values

-1 1

1Tic-Tac-Toe tree
at horizon = 2 Best move

6-5=1

5-6=-15-5=0

5-5=0 6-5=1 5-5=1 4-5=-1

5-6=-1

6-4=25-4=1

6-6=0 4-6=-2

-2

Continuation

0

1

1 32 11 2

1

1

0

1 1 0

0 2 01 1 1

2 22 3 1 2

4

Why using backed-up values?

 At each non-leaf node N, the backed-up
value is the value of the best state that
MAX can reach at depth h if MIN plays
well (by the same criterion as MAX

l lf)applies to itself)
 If e is to be trusted in the first place,

then the backed-up value is a better
estimate of how favorable STATE(N) is
than e(STATE(N))

Minimax Algorithm
1. Expand the game tree uniformly from the current

state (where it is MAX’s turn to play) to depth h
2. Compute the evaluation function at every leaf of

the tree
3. Back-up the values from the leaves to the root of

th t f llthe tree as follows:
a. A MAX node gets the maximum of the evaluation of its

successors
b. A MIN node gets the minimum of the evaluation of its

successors
4. Select the move toward a MIN node that has the

largest backed-up value

Minimax Algorithm
1. Expand the game tree uniformly from the current

state (where it is MAX’s turn to play) to depth h
2. Compute the evaluation function at every leaf of

the tree
3. Back-up the values from the leaves to the root of

th t f llthe tree as follows:
a. A MAX node gets the maximum of the evaluation of its

successors
b. A MIN node gets the minimum of the evaluation of its

successors
4. Select the move toward a MIN node that has the

largest backed-up value

Horizon: Needed to return a
decision within allowed time

Repeated States

Left as an exercise
[Distinguish between states on the same path and
states on different paths]states on different paths]

Game Playing (for MAX)

Repeat until a terminal state is reached
1. Select move using Minimax
2. Execute move
3. Observe MIN’s move

Note that at each cycle the large game tree built to
horizon h is used to select only one move
All is repeated again at the next cycle (a sub-tree of
depth h-2 can be re-used)

Can we do better?

Yes ! Much better !

 3

3

-1

 Pruning

 -1

This part of the tree can’t
have any effect on the value
that will be backed up to the
root

5

Example Example

The beta value of a MIN
node is an upper bound on

 = 2

2

node is an upper bound on
the final backed-up value.
It can never increase

Example

The beta value of a MIN
node is an upper bound onnode is an upper bound on
the final backed-up value.
It can never increase

1

 = 1

2

Example

 = 1

The alpha value of a MAX
node is a lower bound onnode is a lower bound on
the final backed-up value.
It can never decrease

1

 = 1

2

Example

 = 1

 1

1

 = 1

2 -1

 = -1

Example

 = 1

 1

1

 = 1

2 -1

 = -1

Search can be discontinued below
any MIN node whose beta value is
less than or equal to the alpha value
of one of its MAX ancestors

6

Alpha-Beta Pruning

 Explore the game tree to depth h in
depth-first manner
 Back up alpha and beta values whenever

possible
 Prune branches that can’t lead to

changing the final decision

Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

Example

0

0

2 1

1

2

1

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

2

2

2

1

1

-3

1

-5

-5

-5

2

2

2

Alpha-Beta Algorithm

 Update the alpha/beta value of the parent of
a node N when the search below N has been
completed or discontinued

 Discontinue the search below a MAX node N
if its alpha value is  the beta value of a MIN
ancestor of N

 Discontinue the search below a MIN node N if
its beta value is  the alpha value of a MAX
ancestor of N

The α-β algorithm The α-β algorithm

7

D E F

T1

H

T2 T3

G

3 5

(-i, i)
v= -i

Q S T YXW

O P

U

NI L

V

MKJ

A6A5A4A3A2A1Z A8 A9A7

7

R

0 310 5 6 7 8 8 10 -3 -12 4 2 6 4 5 2 8

D E F

T1

H

T2 T3

G

3 5

(4, i)
return v=4 and associated move to T3

Min

Q S T YXW

O P

U

NI L

V

MKJ

A6A5A4A3A2A1Z A8 A9A7

7

R

0 310 5 6 8 8 10 -3 -12 4 2 6 4 5 2 87

How much do we gain?

Consider these two cases:

 = 3  = 3

3

-1

=-1

(4)

3

4

=4

-1

How much do we gain?
 Assume a game tree of uniform branching factor b
 Minimax examines O(bh) nodes, so does alpha-beta in

the worst-case
 The gain for alpha-beta is maximum when:

• The MIN children of a MAX node are ordered in increasing g
backed up values

• The MAX children of a MIN node are ordered in decreasing
backed up values

 Then alpha-beta examines O(bh/2) nodes [Knuth and Moore, 1975]

 But this requires an oracle (if we knew how to order nodes
perfectly, we would not need to search the game tree)

 If nodes are ordered at random, then the average
number of nodes examined by alpha-beta is ~O(b3h/4)

Heuristic Ordering of Nodes

 Order the nodes below the root according to
the values backed-up at the previous iteration

 Order MIN (resp.MAX) nodes by decreasing
(increasing) values of the evaluation function e
computed at these nodes

Other Improvements
 Adaptive horizon + iterative deepening
 Extended search: Retain k1 best paths,

instead of just one, and extend the tree at
greater depth below their leaf nodes to (help
dealing with the “horizon effect”)g)

 Singular extension: If a move is obviously
better than the others in a node at horizon h,
then expand this node along this move

 Use transposition tables to deal with
repeated states

 Null-move search

8

Deterministic games in practice
• Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used a precomputed endgame database
defining perfect play for all positions involving 8 or fewer pieces on
the board, a total of 444 billion positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov
in a six-game match in 1997. Deep Blue searches 200 million g p
positions per second, uses very sophisticated evaluation, and
undisclosed methods for extending some lines of search up to 40
ply.

• Othello: human champions refuse to compete against computers,
who are too good.

• Go: human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

