
1

Constraint Satisfaction
Problems (CSP)

(Where we delay difficult decisions
until they become easier) y)

R&N: Chap. 6
(These slides are primarily from a course

at Stanford University – any mistakes
were undoubtedly added by me.)

8-Queens: Search Formulation #1
 States: all arrangements of 0,

1, 2, ..., or 8 queens on the
board

 Initial state: 0 queen on the
board

 Successor function: each of
the successors is obtained by
adding one queen in a non-
empty square

 Arc cost: irrelevant
 Goal test: 8 queens are on the

board, with no two of them
attacking each other

 64x63x...x53 ~ 3x1014 states

8-Queens: Search Formulation #2
 States: all arrangements of k =

0, 1, 2, ..., or 8 queens in the k
leftmost columns with no two
queens attacking each other

 Initial state: 0 queen on the
board

 Successor function: each
successor is obtained by adding
one queen in any square that is
not attacked by any queen
already in the board, in the
leftmost empty column

 Arc cost: irrelevant
 Goal test: 8 queens are on the

board 2,057 states

Issue

 Previous search techniques make choices in an
often arbitrary order, even if there is still
little information explicitly available to
choose well.

 There are some problems (called constraint  There are some problems (called constraint
satisfaction problems) whose states and goal
test conform to a standard, structured, and
very simple representation.

 This representation views the problem as
consisting of a set of variables in need of
values that conform to certain constraint.

Issue

 In such problems, the same states can be
reached independently of the order in which
choices are made (commutative actions)

 These problems lend themselves to general-
purpose rather than problem specific purpose rather than problem-specific
heuristics to enable the solution of large
problems

 Can we solve such problems more efficiently
by picking the order appropriately? Can we
even avoid having to make choices?

Constraint Propagation

 Place a queen in a square
 Remove the attacked squares from future

consideration

2

6
6
5
5

5 5 5 5 5 6 7

Constraint Propagation

5
5
6

 Count the number of non-attacked squares in every row
and column

 Place a queen in a row or column with minimum number
 Remove the attacked squares from future consideration

3
4

4

4 3 3 3 4 5

Constraint Propagation

3
3
5

 Repeat

4

3

3 3 3 4 3

Constraint Propagation

2
3
4

4

2

3 3 3 1

Constraint Propagation

2
1
3

2

2

2 2 1

Constraint Propagation

1

Constraint Propagation

2

1 2

1

3

Constraint Propagation

1

1

Constraint Propagation

What do we need?

 More than just a successor function and a goal
test

 We also need:
• A means to propagate the constraints imposed by • A means to propagate the constraints imposed by

one queen’s position on the the positions of the
other queens

• An early failure test

 Explicit representation of constraints
 Constraint propagation algorithms

Constraint Satisfaction Problem (CSP)

 Set of variables {X1, X2, …, Xn}
 Each variable Xi has a domain Di of

possible values. Usually, Di is finite
 Set of constraints {C1 C2 Cp}Set of constraints {C1, C2, …, Cp}
 Each constraint relates a subset of

variables by specifying the valid
combinations of their values
 Goal: Assign a value to every variable such

that all constraints are satisfied

8-Queens: Formulation #1
 64 variables Xij, i = 1 to 8, j = 1 to 8
 The domain of each variable is: {1,0}
 Constraints are of the forms:

• X = 1  X = 0 for all k = 1 to 8 kj• Xij = 1  Xik = 0 for all k = 1 to 8, kj
• Xij = 1  Xkj = 0 for all k = 1 to 8, ki
• Similar constraints for diagonals
• i,j[1,8] Xij = 8

Binary constraints
(each constraint relates only 2 variables)

8-Queens: Formulation #2

 8 variables Xi, i = 1 to 8
 The domain of each variable is: {1,2,…,8}
 Constraints are of the forms:

• Xi = k  Xj  k for all j = 1 to 8, ji
• Similar constraints for diagonals

All constraints are binary

4

Map Coloring

WA

NT

SA

Q

NSW
V

WA

NT

SA

Q

NSW
V

 7 variables {WA,NT,SA,Q,NSW,V,T}
 Each variable has the same domain:

{red, green, blue}
 No two adjacent variables have the same value:

WANT, WASA, NTSA, NTQ, SAQ,
SANSW, SAV,QNSW, NSWV

TT

Constraint graph

• Constraint graph: nodes are variables, arcs
are constraints

A Cryptarithmetic Problem

• Here each constraint is a square box
connected to the variables it constrains

• allDiff; O + O = R + 10 * X1;…

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house Who owns the Zebra?
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Who owns the Zebra?
Who drinks Water?

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house (Ni = English)  (Ci = Red)
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = Japanese)  (Ji = Painter)

(N1 = Norwegian)

left as an exercise

(Ci = White)  (Ci+1 = Green)
(C5  White)
(C1  Green)

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house (Ni = English)  (Ci = Red)
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = Japanese)  (Ji = Painter)

(N1 = Norwegian)

(Ci = White)  (Ci+1 = Green)
(C5  White)
(C1  Green)

unary constraints

5

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
i,j[1,5], ij, Ni  Nj

i j[1 5] ij C  CThe Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

i,j[1,5], ij, Ci  Cj
...

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left  N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk  D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house  C1  Red
The Spaniard has a Dog  A1  Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left  N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk  D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice  J3  Violinist
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Finite vs. Infinite CSP

 Finite CSP: each variable has a finite
domain of values
 Infinite CSP: some or all variables have

an infinite domainan infinite domain
E.g., linear programming problems over the
reals:

 We will only consider finite CSP




ni,ni,1 1 i,2 2 i,0

nj,nj,1 1 j,2 2 j,0

for i = 1, 2, ..., p : a x +a x +...+a x a
for j = 1, 2, ..., q : b x +b x +...+b x b

What does CSP Buy You?
 Each of these problems has a standard

pattern – a set of variables that need to be
assigned values that conform to a set of
constraints.

 Successors function and a Goal test predicate p
can be written that works for any such
problem.

 Generic Heuristics can be used for solving
that require NO DOMAIN-SPECIFIC
EXPERTISE

 The constraint graph structure can be used to
simplify the search process.

CSP as a Search Problem
 n variables X1, ..., Xn
 Valid assignment:

{Xi1  vi1, ..., Xik  vik}, 0 k  n,
such that the values vi1, ..., vik satisfy all
constraints relating the variables Xi1, ..., Xik

S lid i States: valid assignments
 Initial state: empty assignment (k = 0)
 Successor of a state:

{Xi1vi1, ..., Xikvik}  {Xi1vi1, ..., Xikvik, Xik+1vik+1}
 Goal test: complete assignment (k = n)

6

How to solve?
 States: valid assignments
 Initial state: empty assignment (k = 0)
 Successor of a state:

{Xi1vi1, ..., Xikvik}  {Xi1vi1, ..., Xikvik, Xik+1vik+1}
 Goal test: complete assignment (k = n)Goal test: complete assignment (k n)

 NOTE: If “regular” search algorithm is used,
the branching factor is quite large since the
successor function must try (1) all unassigned
variables, and (2) for each of those variables,
try all possible values

A Key property of CSP:
Commutativity

The order in which variables are assigned values
has no impact on the assignment reached

Hence:

1) One can generate the successors of a node by
first selecting one variable and then assigning
every value in the domain of this variable
[ big reduction in branching factor]

 4 variables X1, ..., X4
 Let the current assignment be:

A = {X1  v1, X3  v3}
 (For example) pick variable X4
 Let the domain of X4 be {v4 1, v4 2, v4 3}4 { 4,1 4,2 4,3}
 The successors of A are

{X1  v1, X3  v3 , X4  v4,1 }
{X1  v1, X3  v3 , X4  v4,2 }
{X1  v1, X3  v3 , X4  v4,3 }

A Key property of CSP:
Commutativity

The order in which variables are assigned values
has no impact on the assignment reached

Hence:

1) One can generate the successors of a node by
first selecting one variable and then assigning
every value in the domain of this variable
[ big reduction in branching factor]

2) One need not store the path to a node

 Backtracking search algorithm

Backtracking Search

Essentially a simplified depth-first
algorithm using recursion

Backtracking Search
(3 variables)

Assignment = {}

7

Backtracking Search
(3 variables)

X1

v11

Assignment = {(X1,v11)}

Backtracking Search
(3 variables)

X1

v11

X

Assignment = {(X1,v11), (X3,v31)}

v31

X3

Backtracking Search
(3 variables)

X1

v11

X
Then, the search algorithm

Assignment = {(X1,v11), (X3,v31)}

v31

X3

X2 Assume that no value of X2
leads to a valid assignment

backtracks to the previous
variable and tries another value

Backtracking Search
(3 variables)

X1

v11

X

Assignment = {(X1,v11), (X3,v32)}

X3

v32v31

X2

Backtracking Search
(3 variables)

X1

v11

X

The search algorithm
backtracks to the previous
variable (X3) and tries
another value. But assume
th t X h s l t

Assignment = {(X1,v11), (X3,v32)}

X3

v32

X2

Assume again that no value of
X2 leads to a valid assignment

that X3 has only two
possible values. The
algorithm backtracks to X1v31

X2

Backtracking Search
(3 variables)

X1

v11

X

v12

Assignment = {(X1,v12)}

X3

v32

X2

v31

X2

8

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21)}

X3

v32

X2

v31

X2

v21

X2

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21)}

X3

v32

X2

v31

X2

v21

X2

The algorithm need not consider
the variables in the same order in
this sub-tree as in the other

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3
The algorithm need
not consider the values
of X3 in the same order
in this sub-tree

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3
Since there are only
three variables, the
assignment is complete

Backtracking Algorithm
CSP-BACKTRACKING(A)

1. If assignment A is complete then return A
2. X select a variable not in A
3. D  select an ordering on the domain of X
4. For each value v in D do

dd () a. Add (Xv) to A
b. If A is valid then

i. result  CSP-BACKTRACKING(A)
ii. If result  failure then return result

5. Return failure

Call CSP-BACKTRACKING({})
[This recursive algorithm keeps too much data in memory.
An iterative version could save memory (left as an exercise)]

9

Map Coloring

{}

WA=red WA=green WA=blue

WA=red
NT=green

WA=red
NT=blue

WA=red
NT=green
Q=red

WA=red
NT=green
Q=blue

WA

NT

SA

Q

NSW
V

T

Critical Questions for the
Efficiency of CSP-Backtracking

CSP-BACKTRACKING(a)
1. If assignment A is complete then return A
2 X  select a variable not in A2. X  select a variable not in A
3. D  select an ordering on the domain of X
4. For each value v in D do

a. Add (Xv) to A
b. If a is valid then

i. result  CSP-BACKTRACKING(A)
ii. If result  failure then return result

5. Return failure

Critical Questions for the
Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm still does know it. Selecting the
right variable to which to assign a value may help g g y p
discover the contradiction more quickly

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly

More on these questions in a short while ...

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm still does not know it. Selecting the
right variable to which to assign a value may help

Critical Questions for the
Efficiency of CSP-Backtracking

g g y p
discover the contradiction more quickly.

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly.

More on these questions in a short while ...

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm still does not know it. Selecting the
right variable to which to assign a value may help

Critical Questions for the
Efficiency of CSP-Backtracking

g g y p
discover the contradiction more quickly.

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly.

More on these questions in a short while ...

Critical Questions for the
Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm still does not know it. Selecting the
right variable to which to assign a value may help g g y p
discover the contradiction more quickly.

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly.

More on these questions in a short while ...

10

Propagating Information Through
Constraints

• Our search algorithm considers the
constraints on a variable only at the time
that the variable is chosen to be given a
valuevalue.

• If we can we look at constraints earlier, we
might be able to drastically reduce the
search space.

Forward Checking

Assigning the value 5 to X1
l d t i l f

1
2
3

A simple constraint-propagation technique:

leads to removing values from
the domains of X2, X3, ..., X8

3
4
5
6
7
8

X1 X2 X3 X4 X5 X6 X7 X8

A simple constraint-propagation technique:
Forward Checking

Assigning the value 5 to X1
leads to removing values from
the domains of X2, X3, ..., X8

1
2
3
4
5
6
7

Whenever a variable X is assigned, forward
checking looks at each unassigned variable Y
that is connected to X by a constraint, and
removes from Y’s domain any value that is
inconsistent with the value chosen for x.

8
X1 X2 X3 X4 X5 X6 X7 X8

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

Forward checking removes the value Red of NT and of SA

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

11

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring

Empty set: the current assignment
{(WA  R), (Q  G), (V  B)}

does not lead to a solution

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking (General Form)

When a pair (Xv) is added to assignment A do:
For each variable Y not in A do:

For every constraint C relating Y to
X do:X do:

Remove all values from Y’s domain
that do not satisfy C

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X  select a variable not in A
3. D  select an ordering on the domain of X. D g m f X
4. For each value v in D do

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

5. Return failure

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X  select a variable not in A
3. D  select an ordering on the domain of X. D g m f X
4. For each value v in D do

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

5. Return failure

No need any more to
verify that A is valid

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X  select a variable not in A
3. D  select an ordering on the domain of X. D g m f X
4. For each value v in D do

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

5. Return failure
Need to pass down the
updated variable domains

12

1) Which variable Xi should be assigned a value next?
Most-constrained-variable heuristic
(also called minimum remaining values heuristic)
 Most-constraining-variable heuristic

2) In which order should its values be assigned?
 Least-constraining-value heuristicg

Keep in mind that all variables must eventually
get a value, while only one value from a domain
must be assigned to each variable.

The general idea with 1) is, if you are going to
fail, do so as quickly as possible. With 2) it is
give yourself the best chance for success.

Most-Constrained-Variable
Heuristic

1) Which variable Xi should be assigned a value
next?

Select the variable with the smallest
 dremaining domain

[Rationale: Minimize the branching factor]

8-Queens

New assignment

Forward checking

4 3 2 3 4 Numbers
of values for
each un-assigned
variable

8-Queens

Forward checking

4 2 1 3 New numbers
of values for
each un-assigned
variable

New assignment

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

SA

 SA’s remaining domain has size 1 (value Blue remaining)
 Q’s remaining domain has size 2
 NSW’s, V’s, and T’s remaining domains have size 3

 Select SA

V

T

Most-Constraining-Variable
Heuristic

1) Which variable Xi should be assigned a value
next?

Among the variables with the smallest
remaining domains (ties with respect to remaining domains (ties with respect to
the most-constrained variable heuristic),
select the one that appears in the
largest number of constraints on
variables not in the current assignment
[Rationale: Increase future elimination of
values, to reduce branching factors]

13

Map Coloring

WA

NT

SA

Q

NSWSA
V

T

 Before any value has been assigned, all
variables have a domain of size 3, but SA is
involved in more constraints (5) than any other
variable

 Select SA and assign a value to it (e.g., Blue)

Least-Constraining-Value Heuristic
2) In which order should X’s values be assigned?

Select the value of X that removes the
smallest number of values from the
domains of those variables which are
not in the current assignmentnot in the current assignment

[Rationale: Since only one value will eventually
be assigned to X, pick the least-constraining
value first, since it is the most likely one not
to lead to an invalid assignment]
[Note: Using this heuristic requires performing a
forward-checking step for every value, not just for
the selected value]

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

{}
V

T

 Q’s domain has two remaining values: Blue and Red
 Assigning Blue to Q would leave 0 value for SA, while

assigning Red would leave 1 value

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

{Blue}
V

T

 Q’s domain has two remaining values: Blue and Red
 Assigning Blue to Q would leave 0 value for SA, while

assigning Red would leave 1 value
 So, assign Red to Q

Constraint Propagation …

… is the process of determining how the
constraints and the possible values of one
variable affect the possible values of other
variables

It is an important form of “least-commitment”
reasoning

Forward checking is only one simple
form of constraint propagation

When a pair (Xv) is added to assignment A do:
For each variable Y not in A do:

For every constraint C relating Y to variables in A do:
Remove all values from Y’s domain that do not satisfy C

14

Forward Checking in Map Coloring

Empty set: the current assignment
{(WA  R), (Q  G), (V  B)}

does not lead to a solution

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward
checking did not detect

Detecting this contradiction requires a more
powerful constraint propagation technique

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

p f p p g q

Constraint Propagation
for Binary Constraints

REMOVE-VALUES(X,Y)
1. removed  false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
th t i t () i ti fi d ththe constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed  true

3. Return removed

Constraint Propagation
for Binary Constraints

AC3
1. contradiction  false
2. Initialize queue Q with all variables
3. While Q   and contradiction do

a. X Remove(Q)
b. For every variable Y related to X by a constraint

do
– If REMOVE-VALUES(X,Y) then

i. If Y’s domain =  then contradiction  true
ii. Insert(Y,Q)

Complexity Analysis of AC3

 n = number of variables
 d = size of initial domains
 s = maximum number of constraints involving a

given variable (s  n-1)given variable (s  n 1)
 Each variables is inserted in Q up to d times
 REMOVE-VALUES takes O(d2) time
 AC3 takes O(n s d3) time
 Usually more expensive than forward checking

15

Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among

binary constraints

X YXY {1 2}{1 2} X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among

binary constraints

X YXY {1 2}{1 2} X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among

binary constraints

X YXY {1 2}{1 2} X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among

binary constraints
X YXY {1 2}{1 2}

 Not all constraints are binary

X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Tradeoff

Generalizing the constraint propagation
algorithm increases its time complexity

Tradeoff between backtracking and Tradeoff between backtracking and
constraint propagation

A good tradeoff is often to combine
backtracking with forward checking and/or
AC3

Modified Backtracking
Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. var-domains  AC3(var-domains)
3. If a variable has an empty domain then return failure
4. X  select a variable not in A
5. D  select an ordering on the domain of X
6. For each value v in D do

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

7. Return failure

16

Modified Backtracking
Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. var-domains  AC3(var-domains)
3. If a variable has an empty domain then return failure
4. X  select a variable not in A
5. D  select an ordering on the domain of X
6. For each value v in D do

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

7. Return failure
AC3 and forward checking prevent the backtracking
algorithm from committing early to some values

A Complete Example:
4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

1) The modified backtracking algorithm starts by
calling AC3, which removes no value

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

2) The backtracking algorithm then selects a variable
and a value for this variable. No heuristic helps in this
selection. X1 and the value 1 are arbitrarily selected

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

3) The algorithm performs forward checking, which
eliminates 2 values in each other variable’s domain

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

X2 = 3 is
inc mp tibl

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X2

incompatible
with any of the
remaining values
of X3

17

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X2, and 2 from the domain of X3

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the
domain of X2, and 2 from the domain of X3, and 4
from the domain of X3

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

5) The domain of X3 is empty  backtracking

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

6) The algorithm removes 1 from X1’s domain and assign
2 to X1

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

7) The algorithm performs forward checking

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

8) The algorithm calls AC3

18

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

8) The algorithm calls AC3, which reduces the domains
of X3 and X4 to a single variable

Dependency-Directed
Backtracking

 Assume that CSP-BACTRACKING has successively
picked values for k-1 variables: X1, then X2, ..., then Xk-1

 It then tries to assign a value to Xk, but each remaining
value in Xk’s domain leads to a contradiction, that is, an
empty domain for another variable

 Chronological backtracking consists of returning to Xk-1
(called the “most recent” variable) and picking another
value for it

 Instead, dependency-directed backtracking consists of:
1. Computing the conflict set made of all the variables involved in

the constraints that have led either to removing values from
Xk’s domain or to the empty domains which have caused the
algorithm to reject each remaining value of Xk

2. Returning to the most recent variable in the conflict set

Exploiting the Structure of CSP
If the constraint graph contains several
components, then solve one independent
CSP per component

T
WA

NT

SA

Q

NSW

V

Exploiting the Structure of CSP
If the constraint graph is a tree, then :
1. Order the variables from the

root to the leaves
 (X1, X2, …, Xn)

2 For j = n n-1 2 call

X

Y Z2. For j = n, n 1, …, 2 call
REMOVE-VALUES(Xj, Xi)
where Xi is the parent of Xj

3. Assign any valid value to X1
4. For j = 2, …, n do

Assign any value to Xj
consistent with the value
assigned to Xi, where Xi is
the parent of Xj

Y Z

U V

W

 (X, Y, Z, U, V, W)

Exploiting the Structure of CSP

Whenever a variable is assigned a value
by the backtracking algorithm, propagate
this value and remove the variable from
th st i t hthe constraint graph

WA

NT

SA

Q

NSW

V

Exploiting the Structure of CSP

Whenever a variable is assigned a value
by the backtracking algorithm, propagate
this value and remove the variable from
th st i t h

WA

NT
Q

NSW

V

the constraint graph
If the graph becomes
a tree, then proceed
as shown in previous
slide

19

Finally, don’t forget local search
(see slides on Heuristic Search)

Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q it in its column to minimize the number of attacking

queens is minimum  new S [min-conflicts heuristic]q m m m [m f]
3) Return failure

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Applications of CSP

 CSP techniques are widely used
 Applications include:

• Crew assignments to flights
• Management of transportation fleetManagement of transportation fleet
• Flight/rail schedules
• Job shop scheduling
• Task scheduling in port operations
• Design, including spatial layout design
• Radiosurgical procedures

Constraint Propagation

• The following shows how a more
complicated problem (with constraints
among 3 variables) can be solved by
constraint satisfactionconstraint satisfaction.

• It is merely an example from some old
Stanford Slides just to see how it works…

Semi-Magic Square
 9 variables X1, ..., X9, each with domain

{1, 2, 3}
 7 constraints

X1 X2 X3
This row must
sum to 6

X4 X5 X6
This row must
sum to 6

X7 X8 X9
This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

Semi-Magic Square

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

Semi-Magic Square
 We select the value 1 for X1

 Forward checking can’t eliminate any value
[only one variable has been assigned a value and every
constraint involves 3 variables]

1 1, 2, 3 1, 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

20

C.P. in Semi-Magic Square
 But the only remaining valid triplets for X1,

X2, and X3 are (1, 2, 3) and (1, 3, 2)

1 1, 2, 3 1, 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. in Semi-Magic Square
 But the only remaining valid triplets for X1,

X2, and X3 are (1, 2, 3) and (1, 3, 2)
 So, X2 and X3 can no longer take the value 1

1 2, 3 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. Semi-Magic Square
 In the same way, X4 and X7 can no longer take

the value 1

1 2, 3 2, 3 This row must
sum to 6

2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

2, 3 1, 2, 3 1, 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. Semi-Magic Square
 In the same way, X4 and X7 can no longer take

the value 1
 ... nor can X5 and X9

1 2, 3 2, 3 This row must
sum to 6

2, 3 2, 3 1, 2, 3 This row must
sum to 6

2, 3 1, 2, 3 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. Semi-Magic Square
 Consider now a constraint that involves

variables whose domains have been reduced

1 2, 3 2, 3 This row must
sum to 6

2, 3 2, 3 1, 2, 3 This row must
sum to 6

2, 3 1, 2, 3 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. Semi-Magic Square
 For instance, take the 2nd column: the only

remaining valid triplets are (2, 3, 1) and (3, 2, 1)

1 2, 3 2, 3 This row must
sum to 6

2, 3 2, 3 1, 2, 3 This row must
sum to 6

2, 3 1, 2, 3 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

21

Semi-Magic Square
 For instance, take the 2nd column: the only

remaining valid triplets are (2, 3, 1) and (3, 2, 1)
 So, the remaining domain of X8 is {1}

1 2, 3 2, 3 This row must
sum to 6

2, 3 2, 3 1, 2, 3 This row must
sum to 6

2, 3 1 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. Semi-Magic Square
 In the same way, we can reduce the domain of

X6 to {1}

1 2, 3 2, 3 This row must
sum to 6

2, 3 2, 3 1 This row must
sum to 6

2, 3 1 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. Semi-Magic Square
 We can’t eliminate more values
 Let us pick X2 = 2

1 2, 3 2, 3 This row must
sum to 6

2, 3 2, 3 1 This row must
sum to 6

2, 3 1 2, 3 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

C.P. Semi-Magic Square
 Constraint propagation reduces the domains of

X3, ..., X9 to a single value
 Hence, we have a solution

1 2 3 This row must
sum to 6

2 3 1 This row must
sum to 6

3 1 2 This row must
sum to 6

This column
must sum to 6

This column
must sum to 6

This column
must sum to 6

This diagonal
must sum to 6

