Constraint Satisfaction Problems (CSP)
 (Where we delay difficult decisions until they become easier)

R\&N: Chap. 6
(These slides are primarily from a course at Stanford University - any mistakes were undoubtedly added by me.)

8-Queens: Search Formulation \#1

- States: all arrangements of 0, $1,2, \ldots$, or 8 queens on the board

- Initial state: 0 queen on the board
- Successor function: each of the successors is obtained by adding one queen in a nonempty square
- Arc cost: irrelevant
- Goal test: 8 queens are on the board, with no two of them attacking each other
$\rightarrow 64 \times 63 \times \ldots \times 53 \sim 3 \times 10^{14}$ states

Issue

- In such problems, the same states can be reached independently of the order in which choices are made (commutative actions)
- These problems lend themselves to generalpurpose rather than problem-specific heuristics to enable the solution of large problems
- Can we solve such problems more efficiently by picking the order appropriately? Can we even avoid having to make choices?

Constraint Propagation

- Place a queen in a square
- Remove the attacked squares from future consideration

Constraint Propagation

- Count the number of non-attacked squares in every row and column
- Place a queen in a row or column with minimum number
- Remove the attacked squares from future consideration

Constraint Propagation

- Repeat

Constraint Propagation

Constraint Propagation

What do we need?

- More than just a successor function and a goal test
- We also need:
- A means to propagate the constraints imposed by one queen's position on the the positions of the other queens
- An early failure test
\rightarrow Explicit representation of constraints
\rightarrow Constraint propagation algorithms

Constraint Propagation

Constraint Satisfaction Problem (CSP)

- Set of variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
- Each variable X_{i} has a domain D_{i} of possible values. Usually, D_{i} is finite
- Set of constraints $\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$
- Each constraint relates a subset of variables by specifying the valid combinations of their values
- Goal: Assign a value to every variable such that all constraints are satisfied

8-Queens: Formulation \#2

- 8 variables $X_{i}, i=1$ to 8
- The domain of each variable is: $\{1,2, \ldots, 8\}$
- Constraints are of the forms:
$\left\{\cdot X_{i}=k \rightarrow X_{j} \neq k\right.$ for all $j=1$ to $8, j \neq i$
- Similar constraints for diagonals

All constraints are binary

Constraint graph

- Constraint graph: nodes are variables, arcs are constraints

A Cryptarithmetic Problem

- Here each constraint is a square box connected to the variables it constrains
- allDiff; $\mathrm{O}+\mathrm{O}=\mathrm{R}+10$ * $\mathrm{X}_{1 ; \ldots}$
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$C_{i}=\{$ Red, Green, Whe, Milk, Fruit-juice, Water $\}$
$J_{i}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor $\}$
$A_{i}=\{D o g$, Snails, Fox, Horse, Zebra $\}$
The Englishman lives in the Red house
The Spaniard has a Dog
Who owns the Zebra? Who drinks Water?
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{N}_{\mathrm{i}}=\{$ English, Spaniard, Japanese, Italian, Norwegian $\}$
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water $\}$
$J_{i}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra $\}$
The Englishman lives in the Red house $\cdots \cdots\left(N_{i}=\right.$ English $) \Leftrightarrow\left(C_{i}=\right.$ Red $)$
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left $\ldots-\cdots\left(N_{1}=\right.$ Norwegian $)$
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Diplomat lives in the Y
The owner of the middle Yollow house The owner of the middle house drinks Milk The Norwegian lives next door to the Blue house The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's \quad left as an exercise The Horse is next to the Diplomat's

Street Puzzle

1	2	3	4	5

$\mathrm{N}_{\mathrm{i}}=\{$ English, Spaniard, Japanese, Italian, Norwegian\}
$C_{\mathrm{i}}=\{$ Red, Green, White, Yellow, Blue $\}$
$\mathrm{D}_{\mathrm{i}}=\{$ Tea, Coffee, Milk, Fruit-juice, Water $\}$
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra $\}$
The Englishman lives in the Red house ….... $\left(N_{i}=\right.$ English $) \Leftrightarrow\left(C_{i}=\right.$ Red $)$
The Spaniard has a Dog
The Japanese is a Painter

The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$c_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water $\}$
$\mathrm{J}_{\mathrm{i}}=$ \{Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra $\} \quad \forall i, j \in[1,5], i \neq j, N_{i} \neq N_{j}$
The Englishman lives in the Red house $\quad \forall i, j \in[1,5], i \neq j, C_{i} \neq C_{j}$
The Spaniard has a Dog
The Spaniard has a Dog
The Italian drinks Tea
The Norwegian lives in the first house on the lef
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

$N_{i}=\{$ English, Spaniard, Japanese, Italian, Norwegian\}
$c_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water
$J_{i}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{D o g$, Snails, Fox, Horse, Zebra $\}$
The Englishman lives in the Red house
The Spaniard has a Dog
The Italian drinks Tea
The Norwegian lives in the first house on the left $\rightarrow N_{1}=$ Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk $\rightarrow D_{3}=$ Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

$\mathrm{N}_{\mathrm{i}}=\{$ English, Spaniard, Japanese, Italian, Norwegian\}
$C_{\mathrm{i}}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water $\}$
$J_{i}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{D \circ g$, Snails, Fox, Horse, Zebra $\}$
The Englishman lives in the Red house $\rightarrow C_{1} \neq$ Red
The Spaniard has a Dog $\rightarrow A_{1} \neq \operatorname{Dog}$,
The Japanese is a Pain
The Italian drinks Tea
The Norwegian lives in the first house on the left $\rightarrow N_{1}=$ Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Diplomat breeds Snails
The owner of the middle house drinks Milk $\rightarrow D_{3}=$ Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice $\rightarrow J_{3} \neq$ Violinis
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Finite vs. Infinite CSP

- Finite CSP: each variable has a finite domain of values
- Infinite CSP: some or all variables have an infinite domain
E.g., linear programming problems over the reals:
for $i=1,2, \ldots, p: a_{i, 1} x_{1}+a_{i, 2} x_{2}+\ldots+a_{i, n} x_{n}=a_{i, 0}$
for $j=1,2, \ldots, q: b_{j, 1} x_{1}+b_{j, 2} x_{2}+\ldots+b_{j, n} x_{n} \leq b_{j, 0}$
- We will only consider finite CSP

What does CSP Buy You?

- Each of these problems has a standard pattern - a set of variables that need to be assigned values that conform to a set of constraints.
- Successors function and a Goal test predicate can be written that works for any such problem.
- Generic Heuristics can be used for solving that require NO DOMAIN-SPECIFIC EXPERTISE
- The constraint graph structure can be used to simplify the search process.

CSP as a Search Problem

- n variables X_{1}, \ldots, X_{n}
- Valid assignment:
$\left\{X_{i 1} \leftarrow v_{i 1}, \ldots, X_{i k} \leftarrow v_{i k}\right\}, \quad 0 \leq k \leq n$,
such that the values $v_{i 1}, \ldots, v_{i k}$ satisfy all
constraints relating the variables $X_{i 1}, \ldots, X_{i k}$
- States: valid assignments
- Initial state: empty assignment ($k=0$)
- Successor of a state:
$\left\{X_{i 1} \leftarrow v_{i 1}, \ldots, X_{i k} \leftarrow v_{i k}\right\} \rightarrow\left\{X_{i 1} \leftarrow v_{i 1}, \ldots, X_{i k} \leftarrow v_{i k}, X_{i k+1} \leftarrow v_{i k+1}\right\}$
- Goal test: complete assignment ($k=n$)

How to solve?

- States: valid assignments
- Initial state: empty assignment ($k=0$)
- Successor of a state:
$\left\{X_{i 1} \leftarrow v_{i 1}, \ldots, X_{i k} \leqslant v_{i k}\right\} \rightarrow\left\{X_{i 1} \leqslant v_{i 1}, \ldots, X_{i k} \leftarrow v_{i k}, X_{i k+1} \leftarrow v_{i k+1}\right\}$
- Goal test: complete assignment ($k=n$)
- NOTE: If "regular" search algorithm is used, the branching factor is quite large since the successor function must try (1) all unassigned variables, and (2) for each of those variables, try all possible values

A Key property of CSP: Commutativity

The order in which variables are assigned values has no impact on the assignment reached
Hence:

1) One can generate the successors of a node by first selecting one variable and then assigning every value in the domain of this variable [\rightarrow big reduction in branching factor]

- 4 variables X_{1}, \ldots, X_{4}
- Let the current assignment be:

$$
A=\left\{X_{1} \leftarrow v_{1}, X_{3} \leftarrow v_{3}\right\}
$$

- (For example) pick variable X_{4}
- Let the domain of X_{4} be $\left\{v_{4,1}, v_{4,2}, v_{4,3}\right\}$
- The successors of A are

$$
\begin{aligned}
& \left\{X_{1} \leftarrow v_{1}, X_{3} \leftarrow v_{3}, X_{4} \leftarrow v_{4,1}\right\} \\
& \left\{X_{1} \leftarrow v_{1}, X_{3} \leftarrow v_{3}, X_{4} \leftarrow v_{4,2}\right\} \\
& \left\{X_{1} \leftarrow v_{1}, X_{3} \leftarrow v_{3}, X_{4} \leftarrow v_{4,3}\right\}
\end{aligned}
$$

A Key property of CSP: Commutativity

The order in which variables are assigned values has no impact on the assignment reached

Hence:

1) One can generate the successors of a node by first selecting one variable and then assigning every value in the domain of this variable [\rightarrow big reduction in branching factor]
2) One need not store the path to a node
\rightarrow Backtracking search algorithm

Backtracking Search

(3 variables)

Backtracking Algorithm

```
CSP-BACKTRACKING(A)
    1. If assignment }A\mathrm{ is complete then return }
    2. X< select a variable not in A
    3. }D\leftarrow\mathrm{ select an ordering on the domain of }
    4. For each value v in D do
            a. Add (X<v) to A
            b. If A is valid then
            i. result <CSP-BACKTRACKING(A)
            ii. If result }\not=\mathrm{ failure then return resul
```

 5. Return failure
 Call CSP-BACKTRACKING(\{\})
[This recursive algorithm keeps too much data in memory. An iterative version could save memory (left as an exercise)]

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next?
2) In which order should X 's values be assigned?

Critical Questions for the Efficiency of CSP-Backtracking

CSP-BACKTRACKING(a)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
a. Add $(X \in v)$ to A
b. If a is valid then
i. result \leftarrow CSP-BACKTRACKING(A)
ii. If resul $\dagger \neq$ failure then return result
5. Return failure

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next?
The current assignment may not lead to any solution, but the algorithm still does not know it. Selecting the right variable to which to assign a value may help discover the contradiction more quickly.
2) In which order should X's values be assigned?

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next?
The current assignment may not lead to any solution, but the algorithm still does not know it. Selecting the right variable to which to assign a value may help discover the contradiction more quickly.
2) In which order should X 's values be assigned? The current assignment may be part of a solution. Selecting the right value to assign to X may help discover this solution more quickly.

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next?
The current assignment may not lead to any solution, but the algorithm still does not know it. Selecting the right variable to which to assign a value may help discover the contradiction more quickly.
2) In which order should X 's values be assigned? The current assignment may be part of a solution. Selecting the right value to assign to X may help discover this solution more quickly.

More on these questions in a short while ...

Propagating Information Through Constraints

- Our search algorithm considers the constraints on a variable only at the time that the variable is chosen to be given a value.
- If we can we look at constraints earlier, we might be able to drastically reduce the search space.

Forward Checking
A simple constraint-propagation technique:

Assigning the value 5 to X_{1} leads to removing values from the domains of $X_{2}, X_{3}, \ldots, X_{8}$

Whenever a variable X is assigned, forward checking looks at each unassigned variable Y that is connected to X by a constraint, and removes from Y 's domain any value that is inconsistent with the value chosen for x.

Forward Checking

A simple constraint-propagation technique:

Assigning the value 5 to X_{1} leads to removing values from the domains of $X_{2}, X_{3}, \ldots, X_{8}$

Forward Checking in Map Coloring

$W A$	$N T$	Q	$N S W$	V	$S A$	T
$R G B$						

Forward Checking in Map Coloring

$W A$	$N T$	Q	$N S W$	V	$S A$	T
$R G B$						
R	$\not \subset G B$	$R G B$	$R G B$	$R G B$	$\swarrow G B$	$R G B$

Forward checking removes the value Red of NT and of SA

Forward Checking in Map Coloring

$W A$	$N T$	Q	$N S W$	V	$S A$	T
$R G B$						
R	$G B$	$R G B$	$R G B$	$R G B$	$G B$	$R G B$
R	$\not \subset B$	G	$R \not \subset B$	$R G B$	$\not \subset B$	$R G B$

Forward Checking in Map Coloring

$W A$	$N T$	Q	$N S W$	V	$S A$	T
$R G B$						
R	$G B$	$R G B$	$R G B$	$R G B$	$G B$	$R G B$
R	B	G	$R B$	$R G B$	B	$R G B$
R	B	G	$R \nless$	B	\nless	$R G B$

Forward Checking in Map Coloring
Empty set: the current assignment $\{(W A \leftarrow R),(Q \leftarrow G),(V \leftarrow B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	T
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	B	G	RB	RGB	B	RGB
R	B	G	R\&	B	$\not \subset$	RGB

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result \leftarrow CSP-BACKTRACKING(A, var-domains)
e. If resul $\dagger \neq$ failure then return result
5. Return failure

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do No need any more to a. Add $(X<v)$ to $A \cdots \cdots-\cdots$ verify that A is valid
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result \leftarrow CSP-BACKTRACKING(A, var-domains)
e. If result \neq failure then return result
5. Return failure

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result \leftarrow CSP-BACKTRACKING(A, var-domains)
e. If result \neq failure then return result, "
5. Return failure

Need to pass down the updated variable domains

1) Which variable X_{i} should be assigned a value next? \rightarrow Most-constrained-variable heuristic (also called minimum remaining values heuristic)
\rightarrow Most-constraining-variable heuristic
2) In which order should its values be assigned?
\rightarrow Least-constraining-value heuristic
Keep in mind that all variables must eventually get a value, while only one value from a domain must be assigned to each variable.

The general idea with 1) is, if you are going to fail, do so as quickly as possible. With 2) it is give yourself the best chance for success.

Most-Constrained-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Select the variable with the smallest remaining domain
[Rationale: Minimize the branching factor]

Map Coloring

T

- SA's remaining domain has size 1 (value Blue remaining)
- Q's remaining domain has size 2
- NSW's, V's, and T's remaining domains have size 3
\rightarrow Select SA

Most-Constraining-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Among the variables with the smallest remaining domains (ties with respect to the most-constrained variable heuristic), select the one that appears in the largest number of constraints on variables not in the current assignment
[Rationale: Increase future elimination of values, to reduce branching factors]

Map Coloring

T

- Before any value has been assigned, all variables have a domain of size 3, but SA is involved in more constraints (5) than any other variable
\rightarrow Select SA and assign a value to it (e.g., Blue)

Least-Constraining-Value Heuristic

2) In which order should X 's values be assigned?

Select the value of X that removes the smallest number of values from the domains of those variables which are not in the current assignment
[Rationale: Since only one value will eventually be assigned to X, pick the least-constraining value first, since it is the most likely one not to lead to an invalid assignment]
[Note: Using this heuristic requires performing a forward-checking step for every value, not just for the selected value]

- Q's domain has two remaining values: Blue and Red
- Assigning Blue to Q would leave 0 value for SA, while assigning Red would leave 1 value

Map Coloring

- Q's domain has two remaining values: Blue and Red
- Assigning Blue to Q would leave 0 value for SA, while assigning Red would leave 1 value
\rightarrow So, assign Red to Q

Forward checking is only one simple

 form of constraint propagationWhen a pair $(X \leftarrow v)$ is added to assignment A do:
For each variable Y not in A do:
For every constraint C relating Y to variables in A do: Remove all values from Y 's domain that do not satisfy C constraints and the possible values of one variable affect the possible values of other variables

It is an important form of "least-commitment" reasoning

Forward Checking in Map Coloring

Empty set: the current assignment $\{(W A \leftarrow R),(Q \leftarrow G),(V \leftarrow B)\}$ does not lead to a solution

$W A$	$N T$	Q	$N S W$	V	$S A$	T
$R G B$						
R	$G B$	$R G B$	$R G B$	$R G B$	$G B$	$R G B$
R	B	G	$R B$	$R G B$	B	R
R	B	G	$R \not \subset$	B	$\not \subset$	$R G B$

Forward Checking in Map Coloring

Contradiction that forward checking did not detect

Forward Checking in Map Coloring

Contradiction that forward checking did not detect

Detecting this contradiction requires a more powerful constraint propagation technique

$W A$	$N T$	Q	$\not \subset S W$	V	$S A$	T
$R G B$						
R	$G B$	$R G B$	$R G B$	$R G B$	$G B$	$R G B$
R	B	G	$R B$	$R G B$	B	$R G B$
R	B	G	$R \not \subset$	B	\varnothing	$R G B$

Constraint Propagation for Binary Constraints

AC3

1. contradiction \leftarrow false
2. Initialize queue Q with all variables
3. While $Q \neq \varnothing$ and \neg contradiction do
a. $\quad X \leftarrow \operatorname{Remove}(Q)$
b. For every variable Y related to X by a constraint do

- If REMOVE-VALUES (X, Y) then
i. If Y 's domain $=\varnothing$ then contradiction \leftarrow true
ii. Insert (Y, Q)

Constraint Propagation for Binary Constraints

REMOVE-VALUES (X, Y)

1. removed \leftarrow false
2. For every value v in the domain of y do

- If there is no value u in the domain of X such that the constraint on (x, y) is satisfied then
a. Remove v from Y 's domain
b. removed \leftarrow true

3. Return removed

Complexity Analysis of AC3

- $n=$ number of variables
- $d=$ size of initial domains
- s = maximum number of constraints involving a given variable ($s \leq n-1$)
- Each variables is inserted in Q up to d times
- REMOVE-VALUES takes $O\left(\mathrm{~d}^{2}\right)$ time
- AC3 takes $O\left(n s d^{3}\right)$ time
- Usually more expensive than forward checking

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among

REMOVE-VALUES (X, Y, Z)

1. removed \leftarrow false
2. For every value w in the domain of Z do

- If there is no pair (u, v) of values in the domains of X and Y verifying the constraint on (X, Y) such that the constraints on (X, Z) and (Y, Z) are satisfied then
a. Remove w from Z 's domain
b. removed \leftarrow true

3. Return removed

Tradeoff

Generalizing the constraint propagation algorithm increases its time complexity
\rightarrow Tradeoff between backtracking and constraint propagation
A good tradeoff is often to combine backtracking with forward checking and/or AC3

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

- Not all constraints are binary
Tradeoff
Generalizing the constraint propagation
algorithm increases its time complexity
\rightarrow Tradeoff between backtracking and
constraint propagation
A good tradeoff is often to combine
backtracking with forward checking and/or
AC3

Modified Backtracking Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. var-domains $\leftarrow A C 3$ (var-domains)
3. If a variable has an empty domain then return failure
4. $X \leftarrow$ select a variable not in A
5. $D \leftarrow$ select an ordering on the domain of X
6. Foreach value v in D do
a. Add $\left(X^{\prime}-v\right)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A) c. If a variable his an empty domain then return failure d. result \leftarrow CSP-BACKTRACKING(A, var-domains)

AC3 and forward checking prevent the backtracking algorithm from committing early to some values

A Complete Example: 4-Queens Problem

1) The modified backtracking algorithm starts by calling AC3, which removes no value

4-Queens Problem

2) The backtracking algorithm then selects a variable and a value for this variable. No heuristic helps in this selection. X_{1} and the value 1 are arbitrarily selected

4-Queens Problem

3) The algorithm performs forward checking, which eliminates 2 values in each other variable's domain

4-Queens Problem

4) The algorithm calls AC3, which eliminates 3 from the domain of X_{2}

4-Queens Problem

4) The algorithm calls AC3, which eliminates 3 from the domain of X_{2}, and 2 from the domain of X_{3}, and 4 from the domain of X_{3}

6) The algorithm removes 1 from X_{1} 's domain and assign 2 to X_{1}

4-Queens Problem

8) The algorithm calls AC3

Dependency-Directed
 Backtracking

- Assume that CSP-BACTRACKING has successively picked values for $k-1$ variables: X_{1}, then X_{2}, \ldots, then X_{k-1}
- It then tries to assign a value to X_{k}, but each remaining value in X_{k} 's domain leads to a contradiction, that is, an empty domain for another variable
- Chronological backtracking consists of returning to X_{k-1} (called the "most recent" variable) and picking another value for it
- Instead, dependency-directed backtracking consists of

1. Computing the conflict set made of all the variables involved in the constraints that have led either to removing values from X_{k} 's domain or to the empty domains which have caused the algorithm to reject each remaining value of X_{k}
2. Returning to the most recent variable in the conflict set

Exploiting the Structure of CSP

If the constraint graph contains several components, then solve one independent CSP per component

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the backtracking algorithm, propagate this value and remove the variable from the constraint graph

Exploiting the Structure of CSP

If the constraint graph is a tree, then :

1. Order the variables from the root to the leaves $\rightarrow\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
2. For $j=n, n-1, \ldots, 2$ call REMOVE-VALUES $\left(X_{j}, X_{i}\right)$ where $X i$ is the parent of X_{j}
3. Assign any valid value to X_{1}
4. For $j=2, \ldots, n$ do Assign any value to $X_{j} \quad \rightarrow(X, Y, Z, U, V, W)$ consistent with the value assigned to X_{i}, where X_{i} is
 the parent of X_{j}

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the backtracking algorithm, propagate this value and remove the variable from the constraint graph

If the graph becomes a tree, then proceed as shown in previous slide

Finally, don't forget local search (see slides on Heuristic Search)
Repeat n times:

1) Pick an initial state S at random with one queen in each column
2) Repeat k times
a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q it in its column to minimize the number of attacking queens is minimum \rightarrow new S [min-conflicts heuristic]
3) Return failure

Constraint Propagation

- The following shows how a more complicated problem (with constraints among 3 variables) can be solved by constraint satisfaction.
- It is merely an example from some old Stanford Slides just to see how it works...

Semi-Magic Square

- We select the value 1 for X_{1}
- Forward checking can't eliminate any value [only one variable has been assigned a value and every constraint involves 3 variables]

1	$1,2,3$	$1,2,3$	This row must sum to 6
$1,2,3$	$1,2,3$	$1,2,3$	This row must sum to 6
$1,2,3$	$1,2,3$	$1,2,3$	This row must sum to 6
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

C.P. in Semi-Magic Square

- But the only remaining valid triplets for X_{1}, X_{2}, and X_{3} are $(1,2,3)$ and $(1,3,2)$

1	,	1, 2, 3	
1, 2, 3	1,2,3	1, 2	
1, 2, 3	1,2,3	1,2,3	
his column	This column must sum to 6	This column must sum to 6	

C.P. in Semi-Magic Square

- But the only remaining valid triplets for X_{1}, X_{2}, and X_{3} are $(1,2,3)$ and $(1,3,2)$
- So, X_{2} and X_{3} can no longer take the value 1

1	2, 3	2, 3	
1, 2, 3	1, 2, 3	1, 2,	
1, 2, 3	1,2,3	1,2,3	
This column must sum to 6	This column must sum to 6	This column must sum to 6	

C.P. Semi-Magic Square

- In the same way, X_{4} and X_{7} can no longer take the value 1
- ... nor can X_{5} and X_{9}

1	2,3	2,3	$\underbrace{\text { Sump }}_{\text {This }}$
2,3	2,3	1, 2, 3	This fow must
2,3	1, 2, 3	2,3	This fow ust
${ }_{\substack{\text { andis }}}^{\text {This coumm }}$	$\underbrace{\substack{\text { must unfo }}}_{\text {This colum }}$		This diganal

C.P. Semi-Magic Square

- For instance, take the $2^{\text {nd }}$ column: the only remaining valid triplets are $(2,3,1)$ and $(3,2,1)$

1	2,3	2,3	This row must sum to 6
2,3	2,3	$1,2,3$	This row must sum to 6
2,3	$1,2,3$	2,3	This row must sum to 6
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

C.P. Semi-Magic Square

- Consider now a constraint that involves variables whose domains have been reduced

1	2, 3	2, 3	s row
2, 3	2, 3	1,2,3	$\begin{aligned} & \text { s row must } \\ & \text { t to } 6 \end{aligned}$
2, 3	1, 2, 3	2,3	
This column must sum to 6	This column must sum to 6	This column must sum to 6	$\underline{\text { Ist suif }}$

Semi-Magic Square

- For instance, take the $2^{\text {nd }}$ column: the only remaining valid triplets are $(2,3,1)$ and $(3,2,1)$
- So, the remaining domain of X_{8} is $\{1\}$

C.P. Semi-Magic Square

- We can't eliminate more values
- Let us pick $X_{2}=2$

1	2, 3	2, 3	This row must sum to 6
2,3	2,3	1	s row must to
2, 3	1	2, 3	must
This column must sum to 6	This column must sum to 6	This column must sum to 6	must sum

C.P. Semi-Magic Square

- In the same way, we can reduce the domain of X_{6} to $\{1\}$

1	2,3	2,3	This row must sum to 6
2,3	2,3	1	This row must sum to 6
2,3	1	2,3	This row must sum to 6
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

C.P. Semi-Magic Square

- Constraint propagation reduces the domains of X_{3}, \ldots, X_{9} to a single value
- Hence, we have a solution

1	2	3	This row must sum to 6
2	3	1	This row must sum to 6
3	1	2	This row must summ to 6
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

