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Constraint Satisfaction 
Problems (CSP)

(Where we delay difficult decisions 
until they become easier) y )

R&N: Chap. 6
(These slides are primarily from a course 

at Stanford University – any mistakes 
were undoubtedly added by me.)

8-Queens: Search Formulation #1
 States: all arrangements of 0, 

1, 2, ..., or 8 queens on the 
board

 Initial state: 0 queen on the 
board

 Successor function: each of 
the successors is obtained by 
adding one queen in a non-
empty square

 Arc cost: irrelevant
 Goal test: 8 queens are on the 

board, with no two of them 
attacking each other

 64x63x...x53 ~ 3x1014 states

8-Queens: Search Formulation #2
 States: all arrangements of k = 

0, 1, 2, ..., or 8 queens in the k 
leftmost columns with no two 
queens attacking each other

 Initial state: 0 queen on the 
board

 Successor function: each 
successor is obtained by adding 
one queen in any square that is 
not attacked by any queen 
already in the board, in the 
leftmost empty column 

 Arc cost: irrelevant
 Goal test: 8 queens are on the 

board 2,057 states

Issue

 Previous search techniques make choices in an 
often arbitrary order, even if there is still 
little information explicitly available to 
choose well.

 There are some problems (called constraint  There are some problems (called constraint 
satisfaction problems) whose states and goal 
test conform to a standard, structured, and 
very simple representation.

 This representation views the problem as 
consisting of a set of variables in need of 
values that conform to certain constraint.

Issue

 In such problems, the same states can be 
reached independently of the order in which 
choices are made (commutative actions)

 These problems lend themselves to general-
purpose rather than problem specific purpose rather than problem-specific 
heuristics to enable the solution of large 
problems

 Can we solve such problems more efficiently 
by picking the order appropriately? Can we 
even avoid having to make choices?

Constraint Propagation

 Place a queen in a square
 Remove the attacked squares from future 

consideration
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Constraint Propagation
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 Count the number of non-attacked squares in every row 
and column 

 Place a queen in a row or column with minimum number
 Remove the attacked squares from future consideration
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Constraint Propagation
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 Repeat
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Constraint Propagation

1

1

Constraint Propagation

What do we need?

 More than just a successor function and a goal 
test

 We also need:
• A means to propagate the constraints imposed by • A means to propagate the constraints imposed by 

one queen’s position on the the positions of the 
other queens 

• An early failure test

 Explicit representation of constraints
 Constraint propagation algorithms

Constraint Satisfaction Problem (CSP)

 Set of variables {X1, X2, …, Xn}
 Each variable Xi has a domain Di of 

possible values. Usually, Di is finite
 Set of constraints {C1  C2   Cp}Set of constraints {C1, C2, …, Cp}
 Each constraint relates a subset of 

variables by specifying the valid 
combinations of their values 
 Goal: Assign a value to every variable such 

that all constraints are satisfied

8-Queens: Formulation #1
 64 variables Xij, i = 1 to 8, j = 1 to 8
 The domain of each variable is: {1,0}
 Constraints are of the forms:

• X = 1  X = 0  for all k = 1 to 8  kj• Xij = 1  Xik = 0  for all k = 1 to 8, kj
• Xij = 1  Xkj = 0  for all k = 1 to 8, ki
• Similar constraints for diagonals
• i,j[1,8] Xij = 8

Binary constraints
(each constraint relates only 2 variables)

8-Queens: Formulation #2

 8 variables Xi, i = 1 to 8
 The domain of each variable is: {1,2,…,8}
 Constraints are of the forms:

• Xi = k  Xj  k  for all j = 1 to 8, ji
• Similar constraints for diagonals

All constraints are binary
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Map Coloring

WA

NT

SA

Q

NSW
V

WA

NT

SA

Q

NSW
V

 7 variables {WA,NT,SA,Q,NSW,V,T}
 Each variable has the same domain: 

{red, green, blue}
 No two adjacent variables have the same value:

WANT, WASA, NTSA, NTQ, SAQ, 
SANSW, SAV,QNSW, NSWV

TT

Constraint graph

• Constraint graph: nodes are variables, arcs 
are constraints

A Cryptarithmetic Problem

• Here each constraint is a square box 
connected to the variables it constrains

• allDiff; O + O = R + 10 * X1;…

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house Who owns the Zebra?
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Who owns the Zebra?
Who drinks Water?

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house (Ni = English)  (Ci = Red)
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = Japanese)  (Ji = Painter)

(N1 = Norwegian)

left as an exercise

(Ci = White)  (Ci+1 = Green)
(C5  White)
(C1  Green)

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house (Ni = English)  (Ci = Red)
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = Japanese)  (Ji = Painter)

(N1 = Norwegian)

(Ci = White)  (Ci+1 = Green)
(C5  White)
(C1  Green)

unary constraints
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Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
i,j[1,5], ij, Ni  Nj

i j[1 5]  ij  C  CThe Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

i,j[1,5], ij, Ci  Cj
...

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left  N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk  D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house  C1  Red
The Spaniard has a Dog  A1  Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left  N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk  D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice  J3  Violinist
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Finite vs. Infinite CSP

 Finite CSP: each variable has a finite 
domain of values
 Infinite CSP: some or all variables have 

an infinite domainan infinite domain
E.g., linear programming problems over the 
reals:

 We will only consider finite CSP




ni,ni,1 1 i,2 2 i,0

nj,nj,1 1 j,2 2 j,0

for i = 1, 2, ..., p : a x +a x +...+a x  a
for j = 1, 2, ..., q : b x +b x +...+b x  b

What does CSP Buy You?
 Each of these problems has a standard 

pattern – a set of variables that need to be 
assigned values that conform to a set of 
constraints.

 Successors function and a Goal test predicate p
can be written that works for any such 
problem.

 Generic Heuristics can be used for solving 
that require NO DOMAIN-SPECIFIC 
EXPERTISE

 The constraint graph structure can be used to 
simplify the search process.

CSP as a Search Problem
 n variables X1, ..., Xn
 Valid assignment: 

{Xi1  vi1, ..., Xik  vik},    0 k  n, 
such that the values vi1, ..., vik satisfy all 
constraints relating the variables Xi1, ..., Xik

S  lid i States: valid assignments
 Initial state: empty assignment (k = 0)
 Successor of a state: 

{Xi1vi1, ..., Xikvik}  {Xi1vi1, ..., Xikvik, Xik+1vik+1}
 Goal test: complete assignment (k = n)
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How to solve?
 States: valid assignments
 Initial state: empty assignment (k = 0)
 Successor of a state: 

{Xi1vi1, ..., Xikvik}  {Xi1vi1, ..., Xikvik, Xik+1vik+1}
 Goal test: complete assignment (k = n)Goal test: complete assignment (k  n)

 NOTE: If “regular” search algorithm is used, 
the branching factor is quite large since the 
successor function must try (1) all unassigned 
variables, and (2) for each of those variables, 
try all possible values

A Key property of CSP: 
Commutativity

The order in which variables are assigned values 
has no impact on the assignment reached

Hence:

1) One can generate the successors of a node by 
first selecting one variable and then assigning 
every value in the domain of this variable 
[ big reduction in branching factor]

 4 variables X1, ..., X4
 Let the current assignment be: 

A = {X1  v1, X3  v3} 
 (For example) pick variable X4
 Let the domain of X4 be {v4 1, v4 2, v4 3}4 { 4,1 4,2 4,3}
 The successors of A are

{X1  v1, X3  v3 , X4  v4,1 }
{X1  v1, X3  v3 , X4  v4,2 } 
{X1  v1, X3  v3 , X4  v4,3 } 

A Key property of CSP: 
Commutativity

The order in which variables are assigned values 
has no impact on the assignment reached

Hence:

1) One can generate the successors of a node by 
first selecting one variable and then assigning 
every value in the domain of this variable 
[ big reduction in branching factor]

2) One need not store the path to a node

 Backtracking search algorithm

Backtracking Search

Essentially a simplified depth-first 
algorithm using recursion

Backtracking Search
(3 variables)

Assignment = {}
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Backtracking Search
(3 variables)

X1

v11

Assignment = {(X1,v11)}

Backtracking Search
(3 variables)

X1

v11

X

Assignment = {(X1,v11), (X3,v31)}

v31

X3

Backtracking Search
(3 variables)

X1

v11

X
Then, the  search algorithm 

Assignment = {(X1,v11), (X3,v31)}

v31

X3

X2 Assume that no value of X2
leads to a valid assignment

backtracks to the previous 
variable and tries another value

Backtracking Search
(3 variables)

X1

v11

X

Assignment = {(X1,v11), (X3,v32)}

X3

v32v31

X2

Backtracking Search
(3 variables)

X1

v11

X

The  search algorithm 
backtracks to the previous 
variable (X3) and tries 
another value. But assume 
th t X h s l  t  

Assignment = {(X1,v11), (X3,v32)}

X3

v32

X2

Assume again that no value of 
X2 leads to a valid assignment

that X3 has only two 
possible values. The 
algorithm backtracks to X1v31

X2

Backtracking Search
(3 variables)

X1

v11

X

v12

Assignment = {(X1,v12)}

X3

v32

X2

v31

X2
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Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21)}

X3

v32

X2

v31

X2

v21

X2

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21)}

X3

v32

X2

v31

X2

v21

X2

The algorithm need not consider
the variables in the same order in
this sub-tree as in the other

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3
The algorithm need 
not consider the values
of X3 in the same order 
in this sub-tree

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3
Since there are only
three variables, the
assignment is complete

Backtracking Algorithm
CSP-BACKTRACKING(A)

1. If assignment A is complete then return A
2. X select a variable not in A
3. D  select an ordering on the domain of X
4. For each value v in D do 

dd ( )  a. Add (Xv) to A
b. If A is valid then

i. result  CSP-BACKTRACKING(A)
ii. If result  failure then return result

5. Return failure

Call CSP-BACKTRACKING({})
[This recursive algorithm keeps too much data in memory. 
An iterative version could save memory (left as an exercise)]
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Map Coloring

{}

WA=red WA=green WA=blue

WA=red
NT=green

WA=red
NT=blue

WA=red
NT=green
Q=red

WA=red
NT=green
Q=blue

WA

NT

SA

Q

NSW
V

T

Critical Questions for the 
Efficiency of CSP-Backtracking 

CSP-BACKTRACKING(a)
1. If assignment A is complete then return A
2 X  select a variable not in A2. X  select a variable not in A
3. D  select an ordering on the domain of X
4. For each value v in D do 

a. Add (Xv) to A
b. If a is valid then

i. result  CSP-BACKTRACKING(A)
ii. If result  failure then return result

5. Return failure

Critical Questions for the 
Efficiency of CSP-Backtracking 

1) Which variable X should be assigned a value 
next?
The current assignment may not lead to any solution, 
but the algorithm still does know it. Selecting the 
right variable to which to assign a value may help g g y p
discover the contradiction more quickly

2) In which order should X’s values be assigned?
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help 
discover this solution more quickly

More on these questions in a short while ...

1) Which variable X should be assigned a value 
next?
The current assignment may not lead to any solution, 
but the algorithm still does not know it. Selecting the 
right variable to which to assign a value may help 

Critical Questions for the 
Efficiency of CSP-Backtracking 

g g y p
discover the contradiction more quickly.

2) In which order should X’s values be assigned?
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help 
discover this solution more quickly.

More on these questions in a short while ...

1) Which variable X should be assigned a value 
next?
The current assignment may not lead to any solution, 
but the algorithm still does not know it. Selecting the 
right variable to which to assign a value may help 

Critical Questions for the 
Efficiency of CSP-Backtracking 

g g y p
discover the contradiction more quickly.

2) In which order should X’s values be assigned?
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help 
discover this solution more quickly.

More on these questions in a short while ...

Critical Questions for the 
Efficiency of CSP-Backtracking 

1) Which variable X should be assigned a value 
next?
The current assignment may not lead to any solution, 
but the algorithm still does not know it. Selecting the 
right variable to which to assign a value may help g g y p
discover the contradiction more quickly.

2) In which order should X’s values be assigned?
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help 
discover this solution more quickly.

More on these questions in a short while ...
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Propagating Information Through 
Constraints

• Our search algorithm considers the 
constraints on a variable only at the time 
that the variable is chosen to be given a 
valuevalue.

• If we can we look at constraints earlier, we 
might be able to drastically reduce the 
search space.

Forward Checking

Assigning the value 5 to X1
l d  t  i  l  f  

1
2
3

A simple constraint-propagation technique:

leads to removing values from 
the domains of X2, X3, ..., X8

3
4
5
6
7
8

X1 X2 X3 X4 X5 X6 X7 X8

A simple constraint-propagation technique:
Forward Checking

Assigning the value 5 to X1
leads to removing values from 
the domains of X2, X3, ..., X8

1
2
3
4
5
6
7

Whenever a variable X is assigned, forward 
checking looks at each unassigned variable Y 
that is connected to X by a constraint, and 
removes from Y’s domain any value that is 
inconsistent with the value chosen for x.

8
X1 X2 X3 X4 X5 X6 X7 X8

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

Forward checking removes the value Red of NT and of SA

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB



11

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring

Empty set: the current assignment 
{(WA  R), (Q  G), (V  B)}

does not lead to a solution

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking (General Form)

When a pair (Xv) is added to assignment A do:
For each variable Y not in A do:

For every constraint C relating Y to   
X do:X do:

Remove all values from Y’s domain  
that do not satisfy C 

Modified Backtracking 
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X  select a variable not in A
3. D  select an ordering on the domain of X. D g m f X
4. For each value v in D do 

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

5. Return failure

Modified Backtracking 
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X  select a variable not in A
3. D  select an ordering on the domain of X. D g m f X
4. For each value v in D do 

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

5. Return failure

No need any more to 
verify that A is valid

Modified Backtracking 
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X  select a variable not in A
3. D  select an ordering on the domain of X. D g m f X
4. For each value v in D do 

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

5. Return failure
Need to pass down the 
updated variable domains
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1) Which variable Xi should be assigned a value next?
Most-constrained-variable heuristic
(also called minimum remaining values heuristic)
 Most-constraining-variable heuristic

2) In which order should its values be assigned?
 Least-constraining-value heuristicg

Keep in mind that all variables must eventually 
get a value, while only one value from a domain 
must be assigned to each variable.

The general idea with 1) is, if you are going to 
fail, do so as quickly as possible.  With 2) it is 
give yourself the best chance for success.

Most-Constrained-Variable 
Heuristic 

1) Which variable Xi should be assigned a value 
next?

Select the variable with the smallest 
 dremaining domain

[Rationale: Minimize the branching factor]

8-Queens

New assignment

Forward checking

4       3      2  3  4 Numbers
of values for
each un-assigned
variable

8-Queens

Forward checking

4       2          1  3 New numbers
of values for
each un-assigned
variable

New assignment

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

SA

 SA’s remaining domain has size 1 (value Blue remaining)
 Q’s remaining domain has size 2
 NSW’s, V’s, and T’s remaining domains have size 3

 Select SA

V

T

Most-Constraining-Variable 
Heuristic 

1) Which variable Xi should be assigned a value 
next?

Among the variables with the smallest 
remaining domains (ties with respect to remaining domains (ties with respect to 
the most-constrained variable heuristic), 
select the one that appears in the 
largest number of constraints on 
variables not in the current assignment
[Rationale: Increase future elimination of 
values, to reduce branching factors]
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Map Coloring

WA

NT

SA

Q

NSWSA
V

T

 Before any value has been assigned, all 
variables have a domain of size 3, but SA is 
involved in more constraints (5) than any other 
variable

 Select SA and assign a value to it (e.g., Blue)

Least-Constraining-Value Heuristic 
2) In which order should X’s values be assigned?

Select the value of X that removes the 
smallest number of values from the 
domains of those variables which are 
not in the current assignmentnot in the current assignment

[Rationale: Since only one value will eventually 
be assigned to X, pick the least-constraining 
value first, since it is the most likely one not 
to lead to an invalid assignment]
[Note: Using this heuristic requires performing a 
forward-checking step for every value, not just for 
the selected value]

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

{}
V

T

 Q’s domain has two remaining values: Blue and Red
 Assigning Blue to Q would leave 0 value for SA, while 

assigning Red would leave 1 value

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

{Blue}
V

T

 Q’s domain has two remaining values: Blue and Red
 Assigning Blue to Q would leave 0 value for SA, while 

assigning Red would leave 1 value
 So, assign Red to Q

Constraint Propagation …

… is the process of determining how the 
constraints and the possible values of one 
variable affect the possible values of other 
variables

It is an important form of “least-commitment” 
reasoning

Forward checking is only one simple 
form of constraint propagation

When a pair (Xv) is added to assignment A do:
For each variable Y not in A do:

For every constraint C relating Y to variables in A do:
Remove all values from Y’s domain that do not satisfy C 
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Forward Checking in Map Coloring

Empty set: the current assignment 
{(WA  R), (Q  G), (V  B)}

does not lead to a solution

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward 
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward 
checking did not detect

Detecting this contradiction requires a more 
powerful constraint propagation technique

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

p f p p g q

Constraint Propagation 
for Binary Constraints

REMOVE-VALUES(X,Y)
1. removed  false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that 
th  t i t  ( ) i  ti fi d ththe constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed  true

3. Return removed

Constraint Propagation 
for Binary Constraints

AC3
1. contradiction  false
2. Initialize queue Q with all variables
3. While Q   and contradiction do

a. X Remove(Q)
b. For every variable Y related to X by a constraint 

do
– If REMOVE-VALUES(X,Y) then 

i. If Y’s domain =  then contradiction  true
ii. Insert(Y,Q)

Complexity Analysis of AC3

 n = number of variables
 d = size of initial domains
 s = maximum number of constraints involving a 

given variable (s  n-1)given variable (s  n 1)
 Each variables is inserted in Q up to d times
 REMOVE-VALUES takes O(d2) time
 AC3 takes O(n s d3) time
 Usually more expensive than forward checking
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Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among 

binary constraints

X YXY {1  2}{1  2} X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among 

binary constraints

X YXY {1  2}{1  2} X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among 

binary constraints

X YXY {1  2}{1  2} X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Is AC3 all that we need?
 No !!
 AC3 can’t detect all contradictions among 

binary constraints
X YXY {1  2}{1  2}

 Not all constraints are binary

X

Z

Y

XZ YZ

{1, 2}

{1, 2}{1, 2}

Tradeoff

Generalizing the constraint propagation 
algorithm increases its time complexity

Tradeoff between backtracking and Tradeoff between backtracking and 
constraint propagation

A good tradeoff is often to combine 
backtracking with forward checking and/or 
AC3

Modified Backtracking 
Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. var-domains  AC3(var-domains)
3. If a variable has an empty domain then return failure
4. X  select a variable not in A
5. D  select an ordering on the domain of X
6. For each value v in D do 

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

7. Return failure
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Modified Backtracking 
Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. var-domains  AC3(var-domains)
3. If a variable has an empty domain then return failure
4. X  select a variable not in A
5. D  select an ordering on the domain of X
6. For each value v in D do 

a. Add (Xv) to A
b. var-domains  forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result  CSP-BACKTRACKING(A, var-domains)
e. If result  failure then return result

7. Return failure
AC3 and forward checking prevent the backtracking 
algorithm from committing early to some values

A Complete Example:
4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

1) The modified backtracking algorithm starts by 
calling AC3, which removes no value

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

2) The backtracking algorithm then selects a variable 
and a value for this variable. No heuristic helps in this 
selection. X1 and the value 1 are arbitrarily selected

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

3) The algorithm performs forward checking, which 
eliminates 2 values in each other variable’s domain

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

X2 = 3 is
inc mp tibl

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the 
domain of X2

incompatible
with any of the 
remaining values
of X3
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4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the 
domain of X2, and 2 from the domain of X3

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the 
domain of X2, and 2 from the domain of X3, and 4 
from the domain of X3

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

5) The domain of X3 is empty  backtracking

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

6) The algorithm removes 1 from X1’s domain and assign 
2 to X1

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

7) The algorithm performs forward checking

4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

8) The algorithm calls AC3
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4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

3

2

4 X3
{1,2,3,4}

X4
{1,2,3,4}

8) The algorithm calls AC3, which reduces the domains 
of X3 and X4 to a single variable

Dependency-Directed 
Backtracking

 Assume that CSP-BACTRACKING has successively 
picked values for k-1 variables: X1, then X2, ..., then Xk-1

 It then tries to assign a value to Xk, but each remaining 
value in Xk’s domain leads to a contradiction, that is, an 
empty domain for another variable

 Chronological backtracking consists of returning to Xk-1
(called the “most recent” variable) and picking another 
value for it

 Instead, dependency-directed backtracking consists of:
1. Computing the conflict set made of all the variables involved in 

the constraints that have led either to removing values from 
Xk’s domain or to the empty domains which have caused the 
algorithm to reject each remaining value of Xk

2. Returning to the most recent variable in the conflict set

Exploiting the Structure of CSP 
If the constraint graph contains several 
components, then solve one independent 
CSP per component

T
WA

NT

SA

Q

NSW

V

Exploiting the Structure of CSP 
If the constraint graph is a tree, then :
1. Order the variables from the 

root to the leaves 
 (X1, X2, …, Xn)

2 For j = n  n-1   2 call

X

Y Z2. For j = n, n 1, …, 2 call
REMOVE-VALUES(Xj, Xi) 
where Xi is the parent of Xj

3. Assign any valid value to X1
4. For j = 2, …, n do

Assign any value to Xj
consistent with the value 
assigned to Xi, where Xi is 
the parent of Xj

Y Z

U V

W

 (X, Y, Z, U, V, W)

Exploiting the Structure of CSP 

Whenever a variable is assigned a value 
by the backtracking algorithm, propagate 
this value and remove the variable from 
th  st i t hthe constraint graph

WA

NT

SA

Q

NSW

V

Exploiting the Structure of CSP 

Whenever a variable is assigned a value 
by the backtracking algorithm, propagate 
this value and remove the variable from 
th  st i t h

WA

NT
Q

NSW

V

the constraint graph
If the graph becomes 
a tree, then proceed 
as shown in previous
slide



19

Finally, don’t forget local search
(see slides on Heuristic Search)

Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random 
c) Move Q it in its column to minimize the number of attacking 

queens is minimum  new S [min-conflicts heuristic]q m m m [m f ]
3) Return failure

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Applications of CSP

 CSP techniques are widely used
 Applications include: 

• Crew assignments to flights
• Management of transportation fleetManagement of transportation fleet
• Flight/rail schedules
• Job shop scheduling 
• Task scheduling in port operations
• Design, including spatial layout design
• Radiosurgical procedures

Constraint Propagation

• The following shows how a more 
complicated problem (with constraints 
among 3 variables) can be solved by 
constraint satisfactionconstraint satisfaction.

• It is merely an example from some old 
Stanford Slides just to see how it works…

Semi-Magic Square
 9 variables X1, ..., X9, each with domain 

{1, 2, 3}
 7 constraints 

X1 X2 X3
This row must 
sum to 6

X4 X5 X6
This row must 
sum to 6

X7 X8 X9
This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

Semi-Magic Square

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

Semi-Magic Square
 We select the value 1 for X1

 Forward checking can’t eliminate any value 
[only one variable has been assigned a value and every 
constraint involves 3 variables]

1 1, 2, 3 1, 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6
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C.P. in Semi-Magic Square
 But the only remaining valid triplets for X1, 

X2, and X3 are (1, 2, 3) and (1, 3, 2)

1 1, 2, 3 1, 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. in Semi-Magic Square
 But the only remaining valid triplets for X1, 

X2, and X3 are (1, 2, 3) and (1, 3, 2)
 So, X2 and X3 can no longer take the value 1

1 2, 3 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

1, 2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. Semi-Magic Square
 In the same way, X4 and X7 can no longer take 

the value 1

1 2, 3 2, 3 This row must 
sum to 6

2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

2, 3 1, 2, 3 1, 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. Semi-Magic Square
 In the same way, X4 and X7 can no longer take 

the value 1
 ... nor can X5 and X9

1 2, 3 2, 3 This row must 
sum to 6

2, 3 2, 3 1, 2, 3 This row must 
sum to 6

2, 3 1, 2, 3 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. Semi-Magic Square
 Consider now a constraint that involves 

variables whose domains have been reduced

1 2, 3 2, 3 This row must 
sum to 6

2, 3 2, 3 1, 2, 3 This row must 
sum to 6

2, 3 1, 2, 3 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. Semi-Magic Square
 For instance, take the 2nd column: the only 

remaining valid triplets are (2, 3, 1) and (3, 2, 1)

1 2, 3 2, 3 This row must 
sum to 6

2, 3 2, 3 1, 2, 3 This row must 
sum to 6

2, 3 1, 2, 3 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6
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Semi-Magic Square
 For instance, take the 2nd column: the only 

remaining valid triplets are (2, 3, 1) and (3, 2, 1)
 So, the remaining domain of X8 is {1}

1 2, 3 2, 3 This row must 
sum to 6

2, 3 2, 3 1, 2, 3 This row must 
sum to 6

2, 3 1 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. Semi-Magic Square
 In the same way, we can reduce the domain of 

X6 to {1}

1 2, 3 2, 3 This row must 
sum to 6

2, 3 2, 3 1 This row must 
sum to 6

2, 3 1 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. Semi-Magic Square
 We can’t eliminate more values
 Let us pick X2 = 2

1 2, 3 2, 3 This row must 
sum to 6

2, 3 2, 3 1 This row must 
sum to 6

2, 3 1 2, 3 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6

C.P. Semi-Magic Square
 Constraint propagation reduces the domains of 

X3, ..., X9 to a single value
 Hence, we have a solution

1 2 3 This row must 
sum to 6

2 3 1 This row must 
sum to 6

3 1 2 This row must 
sum to 6

This column 
must sum to 6

This column 
must sum to 6

This column 
must sum to 6

This diagonal 
must sum to 6


