Action Planning

(Where logic-based representation of knowledge makes search problems more interesting)

R\&N: Chap. 10.3, Chap. 11, Sect. 11.1-4 ($2^{\text {nd }}$ edition of the book - a pdf of chapter 11 can be found on http://aima.cs.berkeley.edu/2nd-ed/ Situation Calculus is 10.4.2 in $3^{\text {rd }}$ edition)

Portions borrowed from Jean-Claude Latombe, Stanford University; Tom Lenaerts, IRIDIA, An example borrowed from Ruti Glick,Bar-Ilan University

- The goal of action planning is to choose actions and ordering relations among these actions to achieve specified goals
- Search-based problem solving applied to 8-puzzle was one example of planning, but our description of this problem used specific data structures and functions
- Here, we will develop a non-specific, logic-based language to represent knowledge about actions states, and goals, and we will study how search algorithms can exploit this representation

Planning with situation calculus

Logic and Planning

- In Chapters 7 and 8 we learned how to represent the wumpus world in propositional and first-order logic.
- We avoided the problem of representing the actions of the agent - this caused problems because the agent's position changed over time (and the logical representations were essentially capturing a 'snapshot' of the world).

Representing Actions in Logic
(1) using temporal indices for items that might change (such as the location and orientation of the agent in the wumpus world).
(2) using situational calculus which allows us to capture how certain elements in a representation might change as a result of doing an action. These elements are indexed by the situation in which they occur.

The Ontology of Situation Calculus

- Need to be able to represent the current situation and what happens when actions are applied
- Actions - represented as logical terms E.g., Forward, Turn(right)
- Situations - logical terms consisting of the initial situation and all situations generated by applying an action to a situation. Function Result(a, s) names the situation that results when action a is done in situation s.

Wumpus World

Let's look at a simplified version of the Wumpus world where we do not worry about orientation and the agent can Go to another location as long as it is adjacent to its current location.

- Suppose agent is at $[1,1]$ and gold is a \dagger $[1,2]$
- Aim: have gold at $[1,1]$

The Ontology of Situation Calculus

- Fluents - functions and predicates that vary from one situation to the next. By convention, the situation is always the last argument. E.g., ᄀHolding(G1, SO); Age(Wumpus, SO)
- Atemporal or eternal predicates and functions are also allowed - they don't have a situation as an argument. E.g., Gold(g1): LeftLegOf(Wumpus)

(Sequences of) Actions in Situation

 Calculus- Result([], S) = S
- Result([a|seq],S=Result(seq,Result(a,S))
- We can then describe a world as it stands, define a number of actions, and then attempt to prove there is a sequence of actions that results in some goal being achieved.
- An example using the Wumpus World...

Wumpus World with 2 Fluents: $\operatorname{At}(0, x, s)$ and Holding $(0,5)$

- Initial Knowledge: At(Agent, [1,1], S0) ^ At(G1, $[1,2], S 0)$

Must also say that is all we know and what is not true:

- At $(0, x, S O) \longleftrightarrow\left[\left(0=\right.\right.$ Agent $\left.{ }^{\wedge} x=[1,1]\right) \mathrm{V}$
- At (0, $\left.x, S 0) \longmapsto \underset{\left.\left(0=G 1^{\wedge} x=[1,2]\right)\right]}{\left[\left(0=\text { Agent }^{\wedge}\right.\right.} x=1,1\right]$
- Holding $(0,50)$

Need the gold and what things are Adjacent:

- $\operatorname{Gold}(G 1)^{\wedge}$ Adjacent([1,1][[1,2]) ${ }^{\wedge}$

Adjacent([1,2],[1,1])

Goal

Want to be able to prove something like:

- $\operatorname{At}(G 1,[1,1], \operatorname{Result}([G o([1,1],[1,2])$,
$\operatorname{Grab}(G 1)$,

$$
\mathrm{Go}([1,2],[1,1])], \mathrm{SO})
$$

Or - more interesting - construct a plan to get the gold:
$\exists \operatorname{seq}(\operatorname{At}(G 1,[1,1], \operatorname{Result}($ seq,S0)))

- What has to go in our knowledge base to prove these things?
- Need to have a description of actions

Describing Actions

- Need 2 axioms for each action: A possibility Axiom that says when it is possible to execute, and an effect axiom that says what happens when the action is executed.

Possibility Axiom:

- Preconditions \rightarrow Poss (a, s)

Effect Axiom:

- Poss $(a, s) \rightarrow$ Changes that result from taking an action

Possibility Axioms

- At(Agent, $x, s)^{\wedge}$ Adjacent(x, y)
$\rightarrow \operatorname{Poss}(G o(x, y), s)$
(an agent can go between adjacent locations)
- Gold $(g)^{\wedge}$ At(Agent $\left., x, s\right)^{\wedge} \operatorname{At}(g, x, s)$
$\rightarrow \operatorname{Poss}(\operatorname{Grab}(g), s)$
(an agent can grab a piece of gold in its location)
- Holding $(\mathrm{g}, \mathrm{s}) \rightarrow$ Poss(Release $(\mathrm{g}), \mathrm{s})$ (an agent can release something it is holding)

Effect Axioms

- Poss(Go(x,y), s)

At(Agent, $y, \operatorname{Result}(G o(x, y), s))$
(going from x to y results in being in y in the new situation)

- Poss(Grab(g), s)

Holding(g, Result(Grab(g),s))
(grabbing g results in holding g in the new situation)

- Poss(Release(g), s) \qquad
\rightarrow Holding(g, Result(Release(g), s)) (releasing g results in not holding g in the new situation)

Putting the Actions Together...

- $\operatorname{At}(\text { Agent }, x, s)^{\wedge}$ Adjacent (x, y)
$\operatorname{At}($ Agent, $y, \operatorname{Result}(\operatorname{Go}(x, y), s))$
- Gold(g) ^At(Agent, $x, s)^{\wedge} \operatorname{At}(g, x, s) \rightarrow$

Holding(g, Result(Grab(g),s))

- Holding (g, s) -
\rightarrow Holding(g, Result(Release(g), s))

Not enough to plan because we don't know what stays the same in the result situations (we have only specified what changes).
So, after $\operatorname{Go}([1,1],[1,2])$ in SO we know

- At(Agent,[1,2],Result(Go([1,1],[1,2]),S0))
- But, we don't know where the gold is in that new situation.
- This is called the frame problem...

Frame Problem

- Problem is that the effect axioms say what changes, but don't say what stays the same. Need Frame axioms that do say that (for every fluent that doesn't change).

Frame Problem

- One solution: write explicit frame axioms that say what stays the same.
- If $(\operatorname{At}(0, x, s)$ and 0 is not the agent and the agent isn't holding 0), then
At($0, x, \operatorname{Result}(G o(y, z), s))$
Need such an axiom for each fluent for each action (where the fluent doesn' \dagger change)

Part of a Prelims Question

- Planning Your ceiling light is controlled by two switches. As usual, changing either switch changes the state of the light. Assume all bulbs work. The light only works if there is a bulb in the socket, but you have no way to add a bulb. Initially the light is off and there is a bulb in the socket.
- (5 points) Formalize this situation in situational calculus. (Looks like FOPC; don'† plan, just formalize.)

Have unary predicates Switch(x) and On(s) and Bulbin(s), initial state SO, switches x and situations s. Reified action predicate MoveSwitch and new-situation function Do NOTE: the book uses Result instead of Do).

Initial State is SO and we have: Bulbin(SO), ~On(SO) Rules:
(On(s)^Bulbin(s) ^ Switch(x))-> $\sim O n(\operatorname{Do}(M o v e S w i t c h(x, s)))$

On(Do(MoveSwitch($x, s)$)) i; two action rules
(Bulbin(s)) -> (Bulbin(Do(Moveswitch $(x, s)))$) ;i frame axiom

Planning - Does it Scale?

2 types of planning so far

- Regular state space search
- Logic-based situational calculus

These suffer from being overwhelmed by irrelevant actions
Reasoning backwards (goal directed), problem decomposition (nearly decomposable), heuristic functions.

Knowledge Representation Tradeoff

- Expressiveness vs. computational efficiency
- STRIPS: a simple, still reasonably expressive planning language based on propositional logic

1) Examples of planning problems in STRIPS
2) Extensions of STRIPS
3) Planning methods

- Like programming, knowledge representation is still an art

STRIPS Language through Examples

Vacuum-Robot Example

- Two rooms: R_{1} and R_{2}
- A vacuum robot
- Dust

State Representation

$\operatorname{In}\left(\right.$ Robot,$\left.R_{1}\right) \wedge \operatorname{Clean}\left(R_{1}\right)$

State Representation

$\operatorname{In}\left(\right.$ Robot,$\left.R_{1}\right) \wedge$ Clean $\left(R_{1}\right)$

- Conjunction of propositions
- No negated proposition, such as $_$Clean $\left(\mathrm{R}_{2}\right)$
- Closed-world assumption: Every proposition that is not listed in a state is false in that state
- No "or" connective, such as In(Robot, R_{1}) Inn (Roboot, R_{2}) - No variable, e.g., $\exists x$ Clean (x) [literals ground and function free]

Goal Representation

Example: \quad Clean $\left(R_{1}\right) \wedge$ Clean $\left(R_{2}\right)$

- Conjunction of propositions
- No negated proposition
- No "or" connective
- No or conn

A goal G is achieved in a state S if all the propositions in G (called sub-goals) are also in S

A goal is a partial representation of a state

Action Representation

Right

\longrightarrow - Precondition $=\operatorname{In}\left(\right.$ Robot, $\left.\mathrm{R}_{1}\right)$
\rightarrow - Delete-list = In(Robot, R_{1})
\rightarrow - Add-list = In(Robot, R_{2})
$_$Sets of propositions

L_ Same form as a goal: conjunction of propositions

Action Representation

Right

- Precondition $=\operatorname{In}\left(\right.$ Robot, $\left.\mathrm{R}_{1}\right)$
- Delete-list $=\operatorname{In}\left(\right.$ Robot, $\left.\mathrm{R}_{1}\right)$
- Add-list = In(Robot, R_{2})

Action Representation

Right

- Precondition $=\operatorname{In}\left(\right.$ Robot, $\left.R_{1}\right)$
- Delete-list $=\operatorname{In}\left(\right.$ Robot, $\left.R_{1}\right)$
- Add-list = In(Robot, R2)
- An action A is applicable to a state S if the propositions in its precondition are all in S (this may involve unifying variables)
- The application of A to S is a new state obtained by (1) applying the variable obtained by (1) applying the variable substitutions required to make the
preconditions true, (2) deleting the propositions in the delete list from S, and (3) adding those in the add list

Other Actions

Left

- $P=\operatorname{In}\left(\right.$ Robot, $\left.R_{2}\right)$
- $D=\operatorname{In}\left(\right.$ Robot,$\left.R_{2}\right)$
- $A=\operatorname{In}\left(\right.$ Robot,$\left.R_{1}\right)$

Suck(r)

- $P=\operatorname{In}($ Robot, $r)$
- $D=\varnothing$ [empty list]
- $A=C l e a n(r)$

Action Schema

It describes several actions, here: $\operatorname{Suck}\left(R_{1}\right)$ and $\operatorname{Suck}\left(R_{2}\right)$
Parameter that will get "instantiated" by
matching the precondition against a state

Suck(r)

- $P=\operatorname{In}($ Robot, r)
- $D=\varnothing$
- $A=$ Clean(r

Action Schema

$\operatorname{In}\left(\right.$ Robot,$\left.R_{1}\right) \wedge \operatorname{Clean}\left(R_{1}\right)$
$\operatorname{In}\left(\right.$ Robot, $\left.R_{1}\right) \wedge$ Clean $\left(R_{1}\right)$

Suck(r)

$r \leftarrow R_{1} \quad \bullet P=\operatorname{In}($ Robot,$r)$

- $D=\varnothing$
- $A=C l e a n(r)$

- A robot hand can move blocks on a table
- The hand cannot hold more than one block at a time
- The hand cannot hold more than one block at a tim
- The table is arbitrarily large

Action Unstack(x, y) $P=$ Handempty $\wedge \operatorname{Block}(x) \wedge \operatorname{Block}(y) \wedge C l e a r(x) \wedge O n(x, y)$ $D=$ Handempty, Clear $(x), \operatorname{On}(x, y)$ $A=H$ olding (x), Clear (y)

Unstack(x, y)
 All Actions

$=$ Handempty \quad Bock (x))
 $D=$ Handempty $\wedge \operatorname{Block}(x) \wedge \operatorname{Block}(y) \wedge \operatorname{Clear}(x) \wedge \operatorname{On}(x, y)$

$D=$ Handempty, Clear $(x), \operatorname{On}(x, y)$
$A=$ Holding (x), Clear((y)

Stack (x, y)

P Holding $(x) \wedge \operatorname{Block}(x) \wedge \operatorname{Block}(y) \wedge C l e a r(y)$
$=$ Holding $(x) \wedge$ Block (x)
$=$ Clear (y), Holding (x)
$A=\operatorname{On}(x, y)$, Clear (x), Handempty
Pickup (x)
$P=$ Handempty $\wedge \operatorname{Block}(x) \wedge \operatorname{Clear}(x) \wedge \operatorname{On}(x$, Table $)$
$P=$ Handempty $\hat{D}=$ Handempty, $\hat{\text { Blear }}(x), _$On $(x$, Table $) ~$
$D=$ Handempty
$A=H$ Holding (x)
Putdown (x)
$P=\operatorname{Holding}(x), \wedge \operatorname{Block}(x)$
$P=$ Holding (x)
$D=$ Holding (x)
$A=\operatorname{On}(x$, Table), Clear (x), Handempty

All Actions

Unstack(x, y)
$P=\operatorname{Handempty} \wedge \operatorname{Block}(x) \wedge \operatorname{Block}(y) \wedge \operatorname{Clear}(x) \wedge \operatorname{On}(x, y)$
$D=$ Handempty, Clear $(x), O n(x, y)$
$A=$ Holding (x), Clear (y)

Stack (x, y) $P=H o l d i n g(x)$

$=$ Holding $(x) \wedge \operatorname{Block}(x) \wedge \operatorname{Block}(y) \wedge$ Clear (y)
$D=$ Clear (y), Holding (x).
$A=O n(x, y)$, Clear (x), Handempty
Pickup(x)
$P=$ Handempty \wedge Block $(x) \wedge$ Clear $(x) \wedge \operatorname{On}(x$, Table $)$ $P=$ Handempty \wedge Block $(x) \cdot \hat{C l e a r}(x)$
$D=$ Handempty, $\operatorname{Clear}(x)$ On $(\bar{x}$, Table $)$
$A=$ Holding $(x) \quad \Longleftrightarrow \quad$ Hear $(x), \operatorname{On}\left(x_{1}\right.$,Table
Putdown (x) A block can
$P=$ Holding (x)
$P=$ Holling $(x), \wedge$ Block (x)
$A=\operatorname{On}(x$, Table $)$, Clear (x), Handempty

Key-in-Box Example

- The robot must lock the door and put the key in the box
- But, once the door is locked, the robot can't unlock it - Once the key is in the box, the robot can't get it back

Initial State

$\operatorname{In}\left(\right.$ Robot,$\left.R_{2}\right) \wedge \operatorname{In}\left(\right.$ Key,$\left.R_{2}\right) \wedge$ Unlocked(Door)

Extensions of STRIPS 1. Negated propositions in a state

$\operatorname{In}\left(\right.$ Robot, $\left.R_{1}\right) \wedge \neg \operatorname{In}\left(\right.$ Robot, $\left.R_{2}\right) \wedge$ Clean $\left(R_{1}\right) \wedge \neg \operatorname{Clean}\left(R_{2}\right)$ Dump-Dirt(r)

Suck(r)
$P=\operatorname{In}($ Robot,$r) \wedge _$Clean (r) $E=-$ Clean (r)
$r) \wedge C l e a n(r)$ $E=\operatorname{Clean}(r)$
Q in E means delete $-Q$ and add Q to the state
$\rightarrow Q$ in E means delete Q and add $\neg Q$
Open world assumption: A proposition in a state is true if it appears positively
and false otherwise. A non-present proposition is unknown Planning methods can be extended rather easily to handle negated proposition
(see RQN), but state descriptions are often much longer (e.g. imagine if there (lanning methods can be extended rather easily to handie negated propopsition
see RRN, but state descriptions areo often much longer (e.g., imagine if there
were 10 rooms in the above example)

Extensions of STRIPS

 2. Equality/Inequality Predicates
Blocks world:

Move (x, y, z)
$=\begin{gathered}\text { Block }(x) \wedge \operatorname{Clear}(z) \wedge(x \neq z) \\ \operatorname{Block}(y) \wedge \operatorname{Block}(z) \wedge \operatorname{On}(x, y) \wedge \operatorname{Clear}(x) \\ \text { (}\end{gathered}$ $D=\operatorname{On}(x, y), \operatorname{Clear}(z)$
$A=\operatorname{On}(x, z), \operatorname{Clear}(y)$
Move (x, Table, z)
$P=\operatorname{Block}(x) \wedge \operatorname{Block}(z) \wedge \operatorname{On}(x$, Table $) \wedge \operatorname{Clear}(x)$
$\hat{\wedge} \hat{C l e a r}(z) \wedge(x \neq z)$
$D=\operatorname{On}(x, y)$,
$A=\operatorname{On}(x, z)$
Move $(x, y$, Table
$P=\operatorname{Block}(x) \wedge \operatorname{Block}(y) \wedge \operatorname{On}(x, y) \wedge \operatorname{Clear}(x)$
$D=\operatorname{On}(x, y)$
$A=\operatorname{On}(x$, Table $)$, Clear (y)

Extensions of STRIPS 2. Equality/Inequality Predicates

Blocks world:

Move(x, y, z)
$\underset{\wedge}{\text { Blocear }(z) \wedge(x \neq z)}$ Block $(x) \wedge \operatorname{Block}(z) \wedge \operatorname{On}(x, y) \wedge \operatorname{Clear}(x)$
$D=\operatorname{On}(x, y), \operatorname{Clear}(z)$
$D=\operatorname{On}(x, y), \operatorname{Clear}(z)$
$A=\operatorname{On}(x, z), \operatorname{lear}(y)$
Move $(x$, Table z) Planning methods simply evaluate $\underset{P=\operatorname{Block}(x)}{\operatorname{Move}(x, T a l} \quad(x \neq z)$ when the two variables are $\begin{aligned} &= \operatorname{Block}(x) \\ & \wedge \operatorname{Clear}(z) \wedge(x \neq z) \\ & \text { Block }(z) \\ & \text { instantiated }\end{aligned}$
$D=\hat{O}(x, y), C \operatorname{lear}(z)$
$A=\operatorname{On}(x, z)$
Move $\left(x, y, y^{\prime}\right.$ Table)
$P=\operatorname{Block}(x) \wedge B l$
$P=\operatorname{Block}(x)$
$D=\operatorname{On}(x, y)$
$A=\operatorname{On}(x$, Table), Clear(y) ... are implicitly in every state

Extensions of STRIPS (not covered)

 3. Algebraic expressionsTwo flasks F_{1} and F_{2} have volume capacities of 30 and 50 , respectively
F_{1} contains volume 20 of some liquid
F_{2} contains volume 15 of this liquid
State:
$\operatorname{Cap}\left(F_{1}, 30\right) \wedge \operatorname{Cont}\left(F_{1}, 20\right) \wedge \operatorname{Cap}\left(F_{2}, 50\right) \wedge \operatorname{Cont}\left(F_{2}, 15\right)$
Action of pouring a flask into the other:
Pour(f,f')
$P=\operatorname{Cont}(f, x) \wedge \operatorname{Cap}\left(f, c^{\prime}\right) \wedge \operatorname{Cont}\left(f^{\prime}, y\right)$
$D=\operatorname{Cont}(f, x), \operatorname{Cont}\left(f^{\prime}, y\right)$,
$A=\operatorname{Cont}\left(f, \max \left\{x+y-c^{\prime}, 0\right\}\right), \operatorname{Cont}\left(f^{\prime}, \min \left\{x+y, c^{\prime}\right\}\right)$

Extensions of STRIPS (not covered) 3. Algebraic expressions

Two flasks F_{1} and F_{2} have volume capacities of 30 and 50 , respectively
F_{1} contains volume 20 of some liquid
$F_{2} \subset 0$ This extension requires some planning Stat methods to be equipped with algebraic c manipulation capabilities
Action of pouring a flask into the other:

Pour(f,f')

$P=\operatorname{Cont}(f, x) \wedge \operatorname{Cap}\left(f, c^{\prime}\right) \wedge \operatorname{Cont}\left(f^{\prime}, y\right)$
$D=\operatorname{Cont}(f, x), \operatorname{Cont}\left(f^{\prime}, y\right)$,
$A=\operatorname{Cont}\left(f, \max \left\{x+y-c^{\prime}, 0\right\}\right), \operatorname{Cont}\left(f^{\prime}, \min \left\{x+y, c^{\prime}\right\}\right)$

Extensions of STRIPS (not covered) 4. State Constraints

State:
$\operatorname{Adj}(1,2) \wedge \operatorname{Adj}(2,1) \wedge \ldots \wedge \operatorname{Adj}(8,9) \wedge \operatorname{Adj}(9,8) \wedge$ $\operatorname{At}(h, 1) \wedge \operatorname{At}(b, 2) \wedge \operatorname{At}(c, 4) \wedge \ldots \wedge \operatorname{At}(f, 9) \wedge \operatorname{Empty}(3)$

Move (x, y)

$P=\operatorname{At}(x, y) \wedge \operatorname{Empty}(z) \wedge \operatorname{Adj}(y, z)$
$D=A t(x, y), \operatorname{Empty}(z)$
$A=A t(x, z), E m p t y(y)$

Extensions of STRIPS (not covered) 4. State Constraints

State:
$\operatorname{Adj}(1,2) \wedge \operatorname{Adj}(2,1) \wedge \ldots \wedge \operatorname{Adj}(8,9) \wedge \operatorname{Adj}(9,8) \wedge$ $\operatorname{At}(\mathrm{h}, 1) \wedge \operatorname{At}(\mathrm{b}, 2) \wedge \operatorname{At}(c, 4) \wedge \ldots \wedge \operatorname{At}(f, 9) \wedge \operatorname{Empty}(3)$
State constraint:
$\operatorname{Adj}(x, y) \rightarrow \operatorname{Adj}(y, x)$
Move (x, y)
$P=\operatorname{At}(x, y) \wedge \operatorname{Empty}(z) \wedge \operatorname{Adj}(y, z)$
$D=\operatorname{At}(x, y), E m p t y(z)$
$A=\operatorname{At}(x, z), E m p t y(y)$

More Complex State Constraints (not covered) in $1^{\text {st }}$-Order Predicate Logic

Blocks world

$(\forall x)[\operatorname{Block}(x) \wedge \neg(\exists y) \operatorname{On}(y, x) \wedge \neg$ Holding $(x)] \rightarrow \operatorname{Clear}(x)$ $(\forall x)[\operatorname{Block}(x) \wedge C l e a r(x)] \rightarrow \neg(\exists y) O n(y, x) \wedge \neg$ Holding (x) Handempty $\leftrightarrow \neg(\exists x)$ Holding (x)
would simplify greatly the description of the actions
State constraints require equipping planning methods with logical deduction capabilities to determine whether goals are achieved or preconditions are satisfied

Planning Methods

Need for an Accurate Heuristic

- Forward planning simply searches the space of world states from the initial to the goal state
- Imagine an agent with a large library of actions, whose goal is G, e.g., $G=\operatorname{Have}$ (Milk)
- In general, many actions are applicable to any given state, so the branching factor is huge
- In any given state, most applicable actions are irrelevant to reaching the goal Have(Milk)
- Fortunately, an accurate consistent heuristic can be computed using planning graphs (we'll come back to that!)
- Forward planning still suffers from an excessive branching factor
- In general, there are many fewer actions that are relevant to achieving a goal than actions that are applicable to a state
- How to determine which actions are relevant? How to use them?
- \rightarrow Backward planning

Goal-Relevant Action

- An action is relevant to achieving a goal if a proposition in its add list matches a sub-goal proposition
- For example:

Stack(B,A)

$P=\operatorname{Holding}(B) \wedge \operatorname{Block}(B) \wedge \operatorname{Block}(A) \wedge \operatorname{Clear}(A)$
$D=C l e a r(A)$, Holding (B),
$A=\operatorname{On}(B, A), C l e a r(B)$, Handempty
is relevant to achieving On $(B, A) \wedge O n(C, B)$

Regression of a Goal

The regression of a goal G through an action A is the least constraining precondition $R[G, A]$ such that:

If a state S achieves $R[G, A]$ then:

1. The precondition of A is achieved in S
2. Applying A to S yields a state that achieves G

Example

- $G=O n(B, A) \wedge \operatorname{On}(C, B)$
- Stack(C,B)
$P=\operatorname{Holding}(C) \wedge \operatorname{Block}(C) \wedge \operatorname{Block}(B) \wedge \operatorname{Clear}(B)$ $D=\operatorname{Clear}(B)$ Holding (C)
$A=\operatorname{On}(C, B), C l e a r(C)$, Handempty
- $R[G, S t a c k(C, B)]=$

On(B,A) ^
Holding $(C) \wedge \operatorname{Block}(C) \wedge \operatorname{Block}(B) \wedge \operatorname{Clear}(B)$

Example

- $G=O n(B, A) \wedge O n(C, B)$
- Stack(C,B)
$P=\operatorname{Holding}(C) \wedge \operatorname{Block}(C) \wedge \operatorname{Block}(B) \wedge \operatorname{Clear}(B)$
$D=\operatorname{Clear}(B)$, Holding (C)
$A=\operatorname{On}(C, B), C l e a r(C)$, Handempty
- $R[G, S t a c k(C, B)]=$

On $(B, A) \wedge$
Holding $(C) \wedge \operatorname{Block}(C) \wedge \operatorname{Block}(B) \wedge \operatorname{Clear}(B)$

Another Example

- $G=I n($ key, Box) \wedge Holding(Key)
- Put-Key-Into-Box
$P=\operatorname{In}\left(\right.$ Robot,$\left.R_{1}\right) \wedge$ Holding (Key)
$D=\operatorname{Holding}($ Key $), \operatorname{In}\left(\right.$ Key, $\left.\mathrm{R}_{1}\right)$
$A=\operatorname{In}($ Key, Box)
- R[G,Put-Key-Into-Box] = False where False is the un-achievable goal
- This means that In(key,Box) ^Holding(Key) can't be achieved by executing Put-Key-Into-Box

Computation of $\mathrm{R}[\mathrm{G}, \mathrm{A}]$

1. If any sub-goal of G is in A^{\prime} s delete list then return False
2. Else
a. $G^{\prime} \leftarrow$ Precondition of A
b. For every sub-goal $S G$ of G do
c. If $S G$ is not in A^{\prime} s add list then add $S G$ to G^{\prime}
3. Return \mathbf{G}^{\prime}

Search Tree

- Backward planning searches a space of goals from the original goal of the problem to a goal that is satisfied in the initial state
- There are often many fewer actions relevant to a goal than there are actions applicable to a state \rightarrow smaller branching factor than in forward planning
- The lengths of the solution paths are the same

How Does Backward Planning Detect Dead-Ends? (not covered)
$O n(B, A) \wedge O n(C, B)$
$\downarrow \operatorname{Stack}(B, A)$
Holding (B) ^Clear(A) ^On (C, B)

\downarrow Pick(B) [delete list contains Clear(B)]

How Does Backward Planning Detect
Dead-Ends? (not covered)
$O n(B, A) \wedge O n(C, B)$
Stack(B,A)
Holding $(B) \wedge$ Clear $(A) \wedge O n(C, B)$
A state constraint such as Holding $(x) \rightarrow \neg(\exists y) O n(y, x)$ would have made it possible to prune the path earlier

Drawbacks of Forward and Backward Planning

- Along any path of the search tree, they commit to a total ordering on selected actions (linear planning)
- They do not take advantage of possible (almost) independence among sub-goals, nor do they deal well with interferences among sub-goals

Independent Sub-Goals

- Example:

Clean(Room) ^ Have(Newspaper)

- Two sub-goals G_{1} and G_{2} are independent if two plans P and P_{2} can be computed independently of each other to achieve G_{1} and G_{2}, respectively, and executing the two plans in any order, e.g., P_{1} then P_{2}, achieves $G_{1} \wedge G_{2}$
- Sub-goals are often (almost) independent

Interference Among Sub-Goals

If we achieve $\operatorname{On}(B, C)$ first, we reach:

Then, to achieve $\operatorname{On}(A, B)$ we need to undo $\operatorname{On}(B, C)$

Interference Among Sub-Goals

Instead, if we achieve $\operatorname{On}(A, B)$ first, we reach:

Then, to achieve $\operatorname{On}(B, C)$ we new to undo $\operatorname{On}(A, B)$

Interference Among Sub-Goals

Key-in-box example:

Here, achieving a sub-goal before the other leads to the loss of a "resource" - the key or the door - that prevents the robot from achieving the other sub-goal

Nonlinear (Partial-Order) Planning

- Idea: Avoid any ordering on actions until interferences have been detected
- Form of "least" commitment reasoning

To solve this problem, one must interweave actions aimed at one sub-goal and actions aimed at the other sub-goal

Search Tree

- Nonlinear planning searches a space of plans

Search method	Search space
Forward planning	States
Backward planning	Goals
Nonlinear planning	Plans

Partial-order planning

- Any planning algorithm that can place two actions into a plan without which comes first is a POL.

Partial-order planning

- Progression and regression planning are totally ordered plan search forms.
- They cannot take advantage of problem decomposition.
- Decisions must be made on how to sequence actions on all the subproblems
- Least commitment strategy:
- Delay choice during search

Shoe example

Goal(RightShoeOn \wedge LeftShoeOn)
Init()
Action(RightShoe PRECOND: RightSockOn
EFFECT: RightShoeOn)
Action(RightSock, PRECOND
EFFECT: RightSockOn)
Action(LeftShoe,
EFFECT: LeftShoeOn)
EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND
EFFECT: LeftSockOn)
Planner: combine two action sequences (1)leftsock, leftshoe (2)rightsock, rightshoe that can be independently derived.

POL as a search problem

- States (or our search) are (mostly unfinished) plans.
- Initial state: the empty plan contains only star and finish actions.

Actions refine the plan (adding to it) until we come up with a complete plan that solves the problem.

Actions on plans: add a step, impose an ordering, instantiate a variable, etc...

POL as a search problem through plans

- Each plan has 4 components:
- A set of actions (steps of the plan)
- A set of ordering constraints: $A<B$
- Cycles represent contradictions.
- A set of causal links
- Read: A achieves p for B

The plan may not be extended by adding a new action C that conflicts with the causal link. (if he eeffect of C is A set of open preconditions.
A set of open preconditions.

- If precondition is not achieved by action in the plan.
- Planners will work to reduce the set of open precondtions to the empty set, without introducing a contradition

POL as a search problem

- A plan is consistent iff there are no cycles in the ordering constraints and no conflicts with the causal links.
- A consistent plan with no open preconditions is a solution.
- A partial order plan is executed by repeatedly choosing any of the possible next actions.
- This flexibility is a benefit in non-cooperative environments.

Solving POL

- Assume propositional planning problems:
- The initial plan contains Start and Finish, the ordering constraint Start < Finish, no causal links, all the preconditions in Finish are open.
- Successor function:
- picks one open precondition p on an action B and - generates a successor plan for every possible consistent way of choosing action A that achieves p.
- Test goal

Enforcing consistency

- When generating successor plan:
- The causal link $A--p->B$ and the ordering constraint $A<B$ are added to the plan.
- If A is new also add start $<A$ and $A<$ finish to the plan
- Resolve conflicts between new causal link and all existing actions (i.e., if C "undoes" p then order by adding either $B<C$ or $C<A$)
- Resolve conflicts between action A (if new) and all existing causal links.

Process summary

- Operators on partial plans
- Add link from existing plan to open precondition.
- Add a step to fulfill an open condition.
- Order one step w.r.t another to remove possible conflicts
- Gradually move from incomplete/vague plans to complete/correct plans
- Backtrack if an open condition is unachievable or if a conflict is unresolvable.

Example: Spare tire problem

Goal(At(Spare, Axle))
Action(Remove(Spare,
PRECOND: At(Spare, Trunk)

Action(Remove(Flat,AXle)
PRECOND: $A t($ Flat, AXle)
EFFECT: : At(Flat,Axle) $\wedge A+($ Flat, Ground $)$
Action(Puton(Spare, Axle)
PRECOND: At(Spare, Groundp) 1 A At(Flat,Axle)
EFFECT: At(Spare A×(e)
Action(LeaveOvernight
PRECOND:
EFFECT:
EFFECT: $\neg A t($ Spare, Ground $) \wedge \neg A t($ Spare,$A \times$ le) $\wedge \neg A t$ (Spare, trunk) \rightarrow At(Flat, Ground) $\wedge \rightarrow$ At (Flat,Axle))

- Intial plan: Start with EFFECTS and Finish with PRECOND.

Intial plan. Start with EFFECTS and Finish with PRECOND
Pick an open precondition: At(Spare, Ax/e)

- Only PutOn(Spare, Axle) is applicable
- Add causal link: PutOn(Spare,Axle) $\xrightarrow{\text { Ar(Ssore Axte })}$ Finish
- Add constraint : PutOn(Spare, Axle) < Finish

- Pick an open precondition: \neg At(Flat, Axle)
- LeaveOverNight is applicable
- Conflict: Remove(Spare,Trunk) $\xrightarrow{\text { Anspare, Griomand) }}$ PutOn(Spare, Axle)
- To resolve, add constraint : LeaveOverNight s Remove(Spare, Trunk)

Solving the problem

-. Pick an open precondition: At(Spare, Trunk)
Only Start is applicable
Add causal link: Start $\xrightarrow{\text { Al(spere,Trunk) }}$ Re move(Spare,Trunk)

- Conflict: of causal link with effect At(Spare, Trunk) in LeaveOverNight - Nocktrack reordering solution possible.

Solving the problem

- Remove LeaveOverNight, Remove(Spare, Trunk) and causal links
- Repeat step with Remove(Spare,Trunk)
- Add also RemoveFlatAxle and finish

Some details ...

- What happens when a first-order representation that includes variables is used?
- Complicates the process of detecting and resolving conflicts.
- Can be resolved by introducing inequality constrainst.
- CSP's most-constrained-variable constraint can be used for planning algorithms to select a PRECOND.

Initial state:
$\operatorname{In}\left(\right.$ Robot,$\left.R_{2}\right) \wedge \operatorname{In}\left(\right.$ Key, $\left.R_{2}\right) \wedge$ Unlocked(Door) Goal:

Locked(Door) ^In(Key,Box)

Actions

Grasp-Key-in-R
$P=\operatorname{In}\left(\right.$ Robot,$\left.R_{2}\right) \wedge \operatorname{In}\left(\right.$ Key,$\left.R_{2}\right)$
$\begin{aligned} D & =\varnothing \\ A & =\text { Holding(Key) }\end{aligned}$
Lock-Door
$\begin{aligned} P & =\text { Holding(Key) }\end{aligned}$
$\begin{aligned} & D=\text { Unlocked(Door) } \\ & A=\text { Locked(Door) }\end{aligned}$
Move-Key-from-R
Move-Key-from-R \mathbf{R}_{2}-into- \mathbf{R}_{1}
$P=\operatorname{In}\left(\right.$ Robot, $\left.R_{2}\right) \wedge$ Holding (Key) \wedge Unlocked(Door) $D=\operatorname{In}\left(\right.$ Robot R_{2} 2 $), \operatorname{In}\left(\right.$ Key,$\left.R_{2}\right)$
$A=\operatorname{In}\left(\right.$ Robot,,$\left.R_{1}\right), \operatorname{In}\left(\right.$ Key,$\left.R_{1}\right)$
Put-Key-Into-Box

$A=\operatorname{In}($ Key,$B o x)$)

Consistent Plans

- A nonlinear plan is consistent if it contains no cycle and no threat
- A consistent plan is complete if every precondition of all actions (except the start one) has an achiever, that is, there is no open precondition
- Every linear plan allowed by a complete plan is a solution

Heuristics for Partial Order Planning

- Clear advantage over total order planning in that POP can decompose problems into subproblems.
- Disadvantage - difficult to come up with heuristics since it doesn't represent a state directly.
- How far is a partial plan to achieving the goal?

Where can heuristics be used?

- Select a partial plan to refine - this is not really shown in our examples
- Choose the partial plan with the fewest open preconditions
- Overestimates cost when there are actions that achieve multiple preconditions
Underestimates cost when there are negative interactions between steps

Example: a set of predonditions P1, P2, P3 where P1 is satisfied in the initial state. But, action for achieving P2 has -P1 as one of its effect, so now must plan for an action for achieving P1.

Where (else) can heuristics be used?

- Selecting the open precondition to work on in a partial plan
- Most constrained precondition heuristic: select the open precondition for which there are the fewest actions for achieving it.
- Allows you to fail early (if no action can achieve it, need to find out fast)
- Need to eventually achieve it, so might as well achieve it early because it might place further constraints on other actions.

Planning Graph to Compute (Better) Heuristics

- Plan graph consists of levels corresponding to time steps in a plan.
- Level $0=$ initial state
- Each level consists of
- Literals that could be true at that time step (depending on which actions were executed in prior state)
- Actions that could have their preconditions satisfied at that time step
- Note: The GRAPHPLAN algorithm extracts a solution directly from a plan graph..

Planning Graph

- May be optimistic about the minimum number of time steps needed to achieve a literal (because doesn't record all negative interactions)
- Does provide a good estimate of how difficult it is to achieve a given literal from the initial state.
- NOTE: assume all actions cost 1 - so want to make a plan with fewest actions!
- Works for proposition planning problems only - NO VARIABLES

Vacuum Cleaning Robot

Initial State:
$\operatorname{In}\left(\right.$ Robot, $\left.R_{1}\right) \wedge \operatorname{Clean}\left(R_{1}\right)$

GOAL:
Clean $\left(R_{1}\right)^{\wedge}$ Clean $\left(R_{2}\right)$

Action Representation

Right

- Precondition = In (Robot, $\left.\mathrm{R}_{1}\right)$
- Delete-list = In $\left(\right.$ Robot, $\left.R_{1}\right)$
- Add-list $=\operatorname{In}\left(\right.$ Robot, $\left.\mathrm{R}_{2}\right)$

Other Actions

Left

- $P=\operatorname{In}\left(\right.$ Robot, $\left.R_{2}\right)$
- $D=\operatorname{In}\left(\right.$ Robot, $\left.R_{2}\right)$
- $A=\operatorname{In}\left(\right.$ Robot,$\left.R_{1}\right)$

Suck(r)

- $P=\operatorname{In}($ Robot, $r)$
- $D=\varnothing$ [empty list]
- A = Clean(r)

Planning Graph for Another State

- The level cost of the goal is 1 , which again is the actual length of the shortest path to the goal

- So contains the state's propositions (here, the initial state)
- A_{0} contains all actions whose preconditions appear in S_{0}.
S_{1} contains all propositions that were in S_{0} or are contained in the
So, S_{1} contains all proposition
reached after the first action may be true in the state
A_{1} contains all actions whose preconditions appear in S, hence that may be executed in the state reached after executing the first
action. Etc...!
NOTE: Right, and Suck(R1) should be in A1!!!
- The value of i such that S_{i} contains all the goal propositions is called the level cost of the goal (here $i=2$)
By construction of the planning graph, it is a lower bound on the number of actions needed to reach the goal
In this case, 2 is the
- In this case, 2 is the actual length of the shortest path to the goal

Application of Planning Graphs to Forward Planning

- Compute the planning graph of each generated state [simply update the graph plan at parent node]
- Stop computing the planning graph when

Either the goal propositions are in a set S_{i}
then i is the level cost of the goal]
Or when $S_{i+1}=S$
[then the current state is not on a solution path]

- Set the heuristic $h(N)$ of a node N to the level cost of the goal
- h is a consistent heuristic for unit-cost actions - Hence, A^{*} using h yields a solution with minimum number of actions

Improvement of Planning Graph: Mutual Exclusions (mutex links)

- Goal: Refine the level cost of the goal to be a more accurate estimate of the number of actions needed to reach it
- Method: Detect obvious exclusions among actions at the same level and among propositions at the same level

a. Two actions at the same level are mutually exclusive if the same proposition appears in the add list of one and the delete list of the other
b. Two propositions in S_{k} are mutually exclusive if no single action in A_{k-1} contains both of them in its add list and every pair of actions in A_{k-1} that could achieve them are mutually exclusive

Mutex Relations Between Actions

- Inconsistent effects. one action negates an effect of the other. E.g., Eat(Cake) and Have(Cake)
- Inteference: one of the effects of one action is the negation of a preconditon of the other. E.g. Eat(Cake) interferes with the persistence of Have(Cake)
Competing Needs: one of the preconditions of one action is mutually exclusive with a precondition of another. E.g., Bake(Cake) and Eat(Cake) are mutex because they compete for the Have(Cake) precondition.

2 literals are mutex if...

A mutex relation holds between two literals at the same level if:

- One is the negation of the other or
- If each possible pair of actions that could achieve the two literals is mutually exclusive

A new action is inserted in A_{k} only if its preconditions are in S_{k} and no two of them are mutually exclusive

- The computation of the planning graph ends when: Either the goal propositions are in a set S_{i} and no two of them are mutually exclusive
Or when two successiv ropositions with the sets S_{i+1} and S_{i} contain the same propositions with the same mutual exclusions

Any two non-persistence actions at the same level are mutually exclusive (\rightarrow serial planning graph)
Then an action may re-appear at a new level if it leads to removing mutual exclusions among propositions

- In general, the more mutual exclusions, the longer and the bigger the planning graph

Heuristics

- Pre-compute the planning graph of the initial state until it levels off
- For each node N added to the search tree, set $h(N)$ to the maximum level cost of any open precondition in the plan associated with N or to the sum of these level costs

Consistent Heuristic for Backward Planning

A consistent heuristic can be computed as follows:

1. Pre-compute the planning graph of the initial state until it levels off
2. For each node N added to the search tree, set $h(N)$ to the level cost of the goal associated with N
If the goal associated with N can't be satisfied in any set S_{k} of the planning graph, it can't be achieved (prune it!)

Only one planning graph is pre-computed

- Mutual exclusions in planning graphs only deal with very simple interferences
- State constraints may help detect early some interferences in backward planning
- In general, however, interferences lead linear planning to explore un-fructuous paths

Extracting a Plan - Search Problem

- Try to do if all goal literals true and not mutex at ending level Si.
- Initial State: level Si along with goals
- Actions: select any conflict-free subset of the action in Ai-1 whose effects cover the goals in the state. (New State is Si-1 with preconditions of selected actions.)
- Goal: reach state at level SO such that goals satisfied.

Another example...

By

Ruti Glick

Bar-Ilan University

- World predicates
- garbage
- cleanhands
- quiet
- present
- Dinner
- initial state:
- s0: \{garbage, cleanHands, quiet\}
- Goal
- g : \{dinner, present, ~garbage\}

Possible solutions

Two sets of actions for the goals at state-level 1 Two sets of actions for the goals at state-level 1
Neither works: both sets contain actions that are mutex: \{wrap, cook, dolly\} / \{wrap, cook, carry\}

