
1

Action Planning
(Where logic-based representation of

knowledge makes search problems more
interesting)

R&N: Chap. 10.3, Chap. 11, Sect. 11.1–4
(2nd edition of the book a pdf of chapter 11 can be (2nd edition of the book – a pdf of chapter 11 can be

found on http://aima.cs.berkeley.edu/2nd-ed/
Situation Calculus is 10.4.2 in 3rd edition)

Portions borrowed from Jean-Claude
Latombe, Stanford University; Tom Lenaerts,
IRIDIA, An example borrowed from Ruti
Glick,Bar-Ilan University

 The goal of action planning is to choose actions
and ordering relations among these actions to
achieve specified goals

 Search-based problem solving applied to 8-puzzle
was one example of planning, but our description
f thi bl d ifi d t t t d of this problem used specific data structures and

functions
 Here, we will develop a non-specific, logic-based

language to represent knowledge about actions,
states, and goals, and we will study how search
algorithms can exploit this representation

Planning with situation calculus

Logic and Planning

• In Chapters 7 and 8 we learned how to
represent the wumpus world in
propositional and first-order logic.

• We avoided the problem of representing • We avoided the problem of representing
the actions of the agent – this caused
problems because the agent’s position
changed over time (and the logical
representations were essentially
capturing a ‘snapshot’ of the world).

Representing Actions in Logic

(1) using temporal indices for items that
might change (such as the location and
orientation of the agent in the wumpus
world)world).

(2) using situational calculus which allows
us to capture how certain elements in a
representation might change as a
result of doing an action. These
elements are indexed by the situation
in which they occur.

The Ontology of Situation Calculus
 Need to be able to represent the

current situation and what happens
when actions are applied

 Actions – represented as logical terms
E g Forward Turn(right)E.g., Forward, Turn(right)

 Situations – logical terms consisting of
the initial situation and all situations
generated by applying an action to a
situation. Function Result(a, s) names
the situation that results when action a
is done in situation s.

2

The Ontology of Situation Calculus

• Fluents – functions and predicates that
vary from one situation to the next. By
convention, the situation is always the
last argument E g ¬Holding(G1 S0); last argument. E.g., ¬Holding(G1, S0);
Age(Wumpus, S0)

• Atemporal or eternal predicates and
functions are also allowed – they don’t
have a situation as an argument. E.g.,
Gold(g1); LeftLegOf(Wumpus)

(Sequences of) Actions in Situation
Calculus

• Result([], S) = S
• Result([a|seq],S=Result(seq,Result(a,S))
• We can then describe a world as it

t d d fi b f ti d stands, define a number of actions, and
then attempt to prove there is a
sequence of actions that results in some
goal being achieved.

• An example using the Wumpus World…

Wumpus World

Let’s look at a simplified version of the
Wumpus world where we do not worry
about orientation and the agent can Go
to another location as long as it is to another location as long as it is
adjacent to its current location.

• Suppose agent is at [1,1] and gold is at
[1,2]

• Aim: have gold at [1,1]

• Initial Knowledge: At(Agent, [1,1], S0) ^
At(G1,[1,2],S0)

Must also say that is all we know and what is not
true:
At(S0) [(A t^ [1 1]) V

Wumpus World with 2 Fluents: At(o,x,s)
and Holding(o,s)

• At(o,x,S0) [(o=Agent^x=[1,1]) V
(o=G1^x=[1,2])]

• ¬Holding(o,S0)

Need the gold and what things are Adjacent:
• Gold(G1) ^ Adjacent([1,1],[1,2]) ^

Adjacent([1,2],[1,1])

Goal

Want to be able to prove something like:
• At(G1,[1,1],Result([Go([1,1],[1,2]),

Grab(G1),
Go([1 2] [1 1])] S0)Go([1,2],[1,1])],S0)

Or – more interesting - construct a plan to
get the gold:

)))0,(Re],1,1[,1((SseqsultGAtseq

3

• What has to go in our knowledge base to
prove these things?

• Need to have a description of actions

Describing Actions
• Need 2 axioms for each action: A

possibility Axiom that says when it is
possible to execute, and an effect
axiom that says what happens when the
action is executed.action is executed.

Possibility Axiom:
• Preconditions Poss(a,s)
Effect Axiom:
• Poss(a,s) Changes that result from

taking an action

Possibility Axioms
• At(Agent,x,s) ^ Adjacent(x,y)

Poss(Go(x,y), s)
(an agent can go between adjacent locations)

• Gold(g) ^ At(Agent x s) ^ At(g x s) • Gold(g) At(Agent,x,s) At(g,x,s)
Poss(Grab(g), s)

(an agent can grab a piece of gold in its location)

• Holding(g,s) Poss(Release(g), s)
(an agent can release something it is holding)

Effect Axioms
• Poss(Go(x,y), s)

At(Agent,y, Result(Go(x,y),s))
(going from x to y results in being in y in the new situation)

• Poss(Grab(g) s)Poss(Grab(g), s)
Holding(g, Result(Grab(g),s))

(grabbing g results in holding g in the new situation)

• Poss(Release(g), s)
¬Holding(g, Result(Release(g), s))

(releasing g results in not holding g in the new situation)

Putting the Actions Together…

• At(Agent,x,s) ^ Adjacent(x,y)
At(Agent,y, Result(Go(x,y),s))

• Gold(g) ^ At(Agent x s) ^ At(g x s) Gold(g) At(Agent,x,s) At(g,x,s)
Holding(g, Result(Grab(g),s))

• Holding(g,s)
¬Holding(g, Result(Release(g), s))

Not enough to plan because we don’t know
what stays the same in the result
situations (we have only specified what
changes)changes).

So, after Go([1,1], [1,2]) in S0 we know
• At(Agent,[1,2],Result(Go([1,1],[1,2]),S0))
• But, we don’t know where the gold is in

that new situation.
• This is called the frame problem…

4

Frame Problem

• Problem is that the effect axioms say
what changes, but don’t say what stays
the same. Need Frame axioms that do
say that (for every fluent that doesn’t say that (for every fluent that doesn t
change).

Frame Problem

• One solution: write explicit frame
axioms that say what stays the same.

• If (At(o,x,s) and o is not the agent and g
the agent isn’t holding o), then
At(o,x, Result(Go(y,z),s))

Need such an axiom for each fluent for
each action (where the fluent doesn’t
change)

Part of a Prelims Question

• Planning Your ceiling light is controlled by two
switches. As usual, changing either switch
changes the state of the light. Assume all
bulbs work. The light only works if there is a
b lb h k b h dd bulb in the socket, but you have no way to add
a bulb. Initially the light is off and there is a
bulb in the socket.

• (5 points) Formalize this situation in
situational calculus. (Looks like FOPC; don't
plan, just formalize.)

Have unary predicates Switch(x) and On(s) and Bulbin(s),
initial state S0, switches x and situations s. Reified action
predicate MoveSwitch and new-situation function Do
(NOTE: the book uses Result instead of Do).

Initial State is S0 and we have: Bulbin(S0), ~On(S0)(), ()

Rules:
• (On(s) ^ Bulbin(s) ^ Switch(x)) ->

~On(Do(MoveSwitch(x,s)))
• (~On(s) ^ Bulbin(s) ^ Switch(x)) ->

On(Do(MoveSwitch(x,s))) ;; two action rules
• (Bulbin(s)) -> (Bulbin(Do(Moveswitch(x,s)))) ;; frame axiom

Planning – Does it Scale?

2 types of planning so far
• Regular state space search
• Logic-based situational calculus

These suffer from being overwhelmed by
irrelevant actions

Reasoning backwards (goal directed),
problem decomposition (nearly
decomposable), heuristic functions.

Knowledge Representation Tradeoff
 Expressiveness vs. computational efficiency
 STRIPS: a simple, still

reasonably expressive
planning language based
on propositional logic

SHAKEY
the robot

on propositional logic
1) Examples of planning

problems in STRIPS
2) Extensions of STRIPS
3) Planning methods

 Like programming, knowledge representation
is still an art

5

STRIPS Language
through Examples

Vacuum-Robot Example

R1 R2

 Two rooms: R1 and R2

 A vacuum robot
 Dust

State Representation

R1 R2

Propositions
that “hold”
(i.e. are true)
in the state

Logical “and”
connective

In(Robot, R1)  Clean(R1)

State Representation

In(Robot R)  Clean(R)

R1 R2

In(Robot, R1)  Clean(R1)

 Conjunction of propositions
 No negated proposition, such as Clean(R2)
 Closed-world assumption: Every proposition that is

not listed in a state is false in that state
 No “or” connective, such as In(Robot,R1)In(Robot,R2)
 No variable, e.g., x Clean(x) [literals ground and
function free]

Goal Representation

Example: Clean(R1)  Clean(R2)
 Conjunction of propositions
 No negated proposition

N “ ”

A goal G is achieved in a state S if all
the propositions in G (called sub-goals)
are also in S

A goal is a partial representation of a state

 No “or” connective
 No variable

Action Representation

Right
 Precondition = In(Robot, R1)
 Delete-list = In(Robot, R1)
 Add-list = In(Robot, R2)2

Same form as a goal: conjunction of propositions

Sets of propositions

6

Action Representation

Right
 Precondition = In(Robot, R1)
 Delete-list = In(Robot, R1)
 Add-list = In(Robot, R2)2

R1 R2 R1 R2

In(Robot, R1)  Clean(R1) In(Robot, R2)  Clean(R1)

Right

Action Representation

 An action A is applicable to a state S if the

Right
 Precondition = In(Robot, R1)
 Delete-list = In(Robot, R1)
 Add-list = In(Robot, R2)

An act on A s appl cable to a state S f the
propositions in its precondition are all in S
(this may involve unifying variables)

 The application of A to S is a new state
obtained by (1) applying the variable
substitutions required to make the
preconditions true, (2) deleting the
propositions in the delete list from S, and
(3) adding those in the add list

Other Actions

Left
 P = In(Robot, R2)
 D = In(Robot, R2)
 A = In(Robot, R1)1

Suck(r)
 P = In(Robot, r)
 D =  [empty list]
 A = Clean(r)

Action Schema

Left
 P = In(Robot, R2)
 D = In(Robot, R2)
 A = In(Robot, R1)

Parameter that will get “instantiated” by
matching the precondition against a state

It describes several actions, here: Suck(R1) and Suck(R2)

1

Suck(r)
 P = In(Robot, r)
 D = 
 A = Clean(r)

Action Schema

Left
 P = In(Robot, R2)
 D = In(Robot, R2)
 A = In(Robot, R1)

R1 R2

I (R b t R) Cl (R)

R1 R2

In(Robot R)  Clean(R)

Suck(R2)

1

Suck(r)
 P = In(Robot, r)
 D = 
 A = Clean(r)

In(Robot, R2)  Clean(R1) In(Robot, R2)  Clean(R1)
 Clean(R2)

r  R2

Action Schema

Left
 P = In(Robot, R2)
 D = In(Robot, R2)
 A = In(Robot, R1)I (R b t R) Cl (R)

R1 R2

In(Robot R)  Clean(R)

Suck(R1)
R1 R2

1

Suck(r)
 P = In(Robot, r)
 D = 
 A = Clean(r)

In(Robot, R1)  Clean(R1) In(Robot, R1)  Clean(R1)

r  R1

7

Blocks-World Example

C

 A robot hand can move blocks on a table
 The hand cannot hold more than one block at a time
 No two blocks can fit directly on the same block
 The table is arbitrarily large

A B
TABLE

State

C

Block(A)  Block(B)  Block(C) 
On(A,Table)  On(B,Table)  On(C,A) 
Clear(B)  Clear(C)  Handempty

A B
TABLE

Goal

B
C

A

On(A,TABLE)  On(B,A)  On(C,B)  Clear(C)

Goal

B
C

A

On(A,TABLE)  On(B,A)  On(C,B)  Clear(C)

Goal

C B
C

A B

On(A,Table)  On(C,B)

A

Action
Unstack(x,y)
P = Handempty Block(x)  Block(y)  Clear(x)  On(x,y)
D = Handempty, Clear(x), On(x,y)
A = Holding(x), Clear(y)

8

Action
Unstack(x,y)
P = Handempty Block(x)  Block(y)  Clear(x)  On(x,y)
D = Handempty, Clear(x), On(x,y)
A = Holding(x), Clear(y)

Block(A)  Block(B)  Block(C) 

A B
C

Block(A)  Block(B)  Block(C) 
On(A,Table)  On(B,Table)  On(C,A)
 Clear(B)  Clear(C)  Handempty

Unstack(C,A)
P = Handempty Block(C)  Block(A)  Clear(C)  On(C,A)
D = Handempty, Clear(C), On(C,A)
A = Holding(C), Clear(A)

Action
Unstack(x,y)
P = Handempty Block(x)  Block(y)  Clear(x)  On(x,y)
D = Handempty, Clear(x), On(x,y)
A = Holding(x), Clear(y)

Block(A)  Block(B)  Block(C) Block(A)  Block(B)  Block(C) 
On(A,Table)  On(B,Table)  On(C,A)
 Clear(B)  Clear(C)  Handempty
 Holding(A)  Clear(A)

Unstack(C,A)
P = Handempty Block(C)  Block(A)  Clear(C)  On(C,A)
D = Handempty, Clear(C), On(C,A)
A = Holding(C), Clear(A)

C
A B

All Actions
Unstack(x,y)
P = Handempty  Block(x)  Block(y)  Clear(x)  On(x,y)
D = Handempty, Clear(x), On(x,y)
A = Holding(x), Clear(y)

Stack(x,y)
P = Holding(x)  Block(x)  Block(y)  Clear(y)
D = Clear(y), Holding(x)
A = On(x y) Clear(x) HandemptyA = On(x,y), Clear(x), Handempty

Pickup(x)
P = Handempty  Block(x)  Clear(x)  On(x,Table)
D = Handempty, Clear(x), On(x,Table)
A = Holding(x)

Putdown(x)
P = Holding(x),  Block(x)
D = Holding(x)
A = On(x,Table), Clear(x), Handempty

All Actions
Unstack(x,y)
P = Handempty  Block(x)  Block(y)  Clear(x)  On(x,y)
D = Handempty, Clear(x), On(x,y)
A = Holding(x), Clear(y)

Stack(x,y)
P = Holding(x)  Block(x)  Block(y)  Clear(y)
D = Clear(y), Holding(x),
A = On(x y) Clear(x) HandemptyA = On(x,y), Clear(x), Handempty

Pickup(x)
P = Handempty  Block(x)  Clear(x)  On(x,Table)
D = Handempty, Clear(x), On(x,Table)
A = Holding(x)

Putdown(x)
P = Holding(x),  Block(x)
D = Holding(x)
A = On(x,Table), Clear(x), Handempty

A block can always fit
on the table

Key-in-Box Example

R1 R2

 The robot must lock the door and put the key in the box
 But, once the door is locked, the robot can’t unlock it
 Once the key is in the box, the robot can’t get it back

Initial State

R1 R2

In(Robot,R2)  In(Key,R2)  Unlocked(Door)

9

Actions
Grasp-Key-in-R2

P = In(Robot,R2)  In(Key,R2)
D = 
A = Holding(Key)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)

R1 R2

D = Unlocked(Door)
A = Locked(Door)

Move-Key-from-R2-into-R1
P = In(Robot,R2)  Holding(Key)  Unlocked(Door)
D = In(Robot,R2), In(Key,R2)
A = In(Robot,R1), In(Key,R1)

Put-Key-Into-Box
P = In(Robot,R1)  Holding(Key)
D = Holding(Key), In(Key,R1)
A = In(Key,Box)

Goal

R1 R2

Locked(Door)  In(Key,Box)

[The robot’s location isn’t specified in the goal]

Some Extensions of STRIPS
Language

Extensions of STRIPS
1. Negated propositions in a state

Dump-Dirt(r)
P I (R b t) Cl ()

R1 R2

In(Robot, R1)  In(Robot, R2)  Clean(R1)  Clean(R2)
Suck(r)

P I (R b t) Cl ()P = In(Robot, r)  Clean(r)
E = Clean(r)

• Q in E means delete Q and add Q to the state
• Q in E means delete Q and add Q

Open world assumption: A proposition in a state is true if it appears positively
and false otherwise. A non-present proposition is unknown

Planning methods can be extended rather easily to handle negated proposition
(see R&N), but state descriptions are often much longer (e.g., imagine if there
were 10 rooms in the above example)

P = In(Robot, r)  Clean(r)
E = Clean(r)

Blocks world:

Move(x,y,z)
P = Block(x)  Block(y)  Block(z)  On(x,y)  Clear(x)

 Clear(z)  (xz)
D = On(x,y), Clear(z)
A = On(x,z), Clear(y)

M (T bl)

Extensions of STRIPS
2. Equality/Inequality Predicates

Move(x,Table,z)
P = Block(x)  Block(z)  On(x,Table)  Clear(x)

 Clear(z)  (xz)
D = On(x,y), Clear(z)
A = On(x,z)

Move(x, y, Table)
P = Block(x)  Block(y)  On(x,y)  Clear(x)
D = On(x,y)
A = On(x,Table), Clear(y)

Blocks world:

Move(x,y,z)
P = Block(x)  Block(y)  Block(z)  On(x,y)  Clear(x)

 Clear(z)  (xz)
D = On(x,y), Clear(z)
A = On(x,z), Clear(y)

M (T bl)

Extensions of STRIPS
2. Equality/Inequality Predicates

Planning methods simply evaluate
Move(x,Table,z)

P = Block(x)  Block(z)  On(x,Table)  Clear(x)
 Clear(z)  (xz)

D = On(x,y), Clear(z)
A = On(x,z)

Move(x, y, Table)
P = Block(x)  Block(y)  On(x,y)  Clear(x)
D = On(x,y)
A = On(x,Table), Clear(y)

(xz) when the two variables are
instantiated

This is equivalent to considering
that propositions (A  B) , (A  C) ,
... are implicitly in every state

10

Extensions of STRIPS (not covered)
3. Algebraic expressions

Two flasks F1 and F2 have volume capacities of 30 and 50,
respectively
F1 contains volume 20 of some liquid
F2 contains volume 15 of this liquid

State:
Cap(F1,30)  Cont (F1,20)  Cap(F2, 50)  Cont (F2,15)

Action of pouring a flask into the other:

Pour(f,f’)
P = Cont(f,x)  Cap(f,’c’)  Cont(f’,y)
D = Cont(f,x), Cont(f’,y),
A = Cont(f,max{x+y-c’,0}), Cont(f’,min{x+y,c’})

Extensions of STRIPS (not covered)
3. Algebraic expressions

Two flasks F1 and F2 have volume capacities of 30 and 50,
respectively
F1 contains volume 20 of some liquid
F2 contains volume 15 of this liquid

State:
This extension requires some planning
methods to be equipped with algebraic

Cap(F1,30)  Cont (F1,20)  Cap(F2, 50)  Cont (F2,15)

Action of pouring a flask into the other:

Pour(f,f’)
P = Cont(f,x)  Cap(f,’c’)  Cont(f’,y)
D = Cont(f,x), Cont(f’,y),
A = Cont(f,max{x+y-c’,0}), Cont(f’,min{x+y,c’})

manipulation capabilities

Extensions of STRIPS (not covered)
4. State Constraints

State:
Adj(1,2)  Adj(2,1)  ...  Adj(8,9)  Adj(9,8) 

a

b
c d
e f

g
h

Adj(1,2)  Adj(2,1)  ...  Adj(8,9)  Adj(9,8) 
At(h,1)  At(b,2)  At(c,4)  ...  At(f,9)  Empty(3)

Move(x,y)
P = At(x,y)  Empty(z)  Adj(y,z)
D = At(x,y), Empty(z)
A = At(x,z), Empty(y)

Extensions of STRIPS (not covered)
4. State Constraints

State:
Adj(1,2)  Adj(2,1)  ...  Adj(8,9)  Adj(9,8) 

a

b
c d
e f

g
h

Adj(1,2)  Adj(2,1)  ...  Adj(8,9)  Adj(9,8) 
At(h,1)  At(b,2)  At(c,4)  ...  At(f,9)  Empty(3)

State constraint:
Adj(x,y)  Adj(y,x)

Move(x,y)
P = At(x,y)  Empty(z)  Adj(y,z)
D = At(x,y), Empty(z)
A = At(x,z), Empty(y)

More Complex State Constraints
(not covered) in 1st-Order Predicate Logic

Blocks world:

(x)[Block(x)  (y)On(y,x)  Holding(x)]  Clear(x)

(x)[Block(x)  Clear(x)] (y)On(y,x)  Holding(x)

Handempty  (x)Holding(x)

would simplify greatly the description of the actions

State constraints require equipping planning
methods with logical deduction capabilities to
determine whether goals are achieved or
preconditions are satisfied

Planning Methods

11

R1 R2 R1 R2
Right

Forward Planning

Left

Suck(R1)

R1 R2

Suck(R2)
Initial state

Goal: Clean(R1)  Clean(R2)

Forward Planning

A B
C

A

C
B

A

B
C

Unstack(C,A))

Pickup(B)

Goal: On(B,A)  On(C,B)

A B
C

A B C A C

B

A C
B

A

C
B

A B

C

Need for an Accurate Heuristic
 Forward planning simply searches the space of

world states from the initial to the goal state
 Imagine an agent with a large library of

actions, whose goal is G, e.g., G = Have(Milk)
 In general many actions are applicable to any In general, many actions are applicable to any

given state, so the branching factor is huge
 In any given state, most applicable actions are

irrelevant to reaching the goal Have(Milk)
 Fortunately, an accurate consistent heuristic

can be computed using planning graphs (we’ll
come back to that!)

 Forward planning still suffers from an
excessive branching factor

 In general, there are many fewer
actions that are relevant to achieving a
goal than actions that are applicable to g pp
a state

 How to determine which actions are
relevant? How to use them?

  Backward planning

Goal-Relevant Action

 An action is relevant to achieving a goal
if a proposition in its add list matches a
sub-goal proposition
 For example:For example

Stack(B,A)
P = Holding(B)  Block(B)  Block(A)  Clear(A)
D = Clear(A), Holding(B),
A = On(B,A), Clear(B), Handempty

is relevant to achieving On(B,A)On(C,B)

Regression of a Goal

The regression of a goal G through an
action A is the least constraining
precondition R[G,A] such that:

If a state S achieves R[G,A] then:
1. The precondition of A is achieved in S
2. Applying A to S yields a state that

achieves G

12

Example

 G = On(B,A)  On(C,B)

 Stack(C,B)
P = Holding(C)  Block(C)  Block(B)  Clear(B)
D = Clear(B), Holding(C)
A = On(C,B), Clear(C), Handempty

 R[G,Stack(C,B)] =
On(B,A) 
Holding(C)  Block(C)  Block(B)  Clear(B)

Example

 G = On(B,A)  On(C,B)

 Stack(C,B)
P = Holding(C)  Block(C)  Block(B)  Clear(B)
D = Clear(B), Holding(C)
A = On(C,B), Clear(C), Handempty

 R[G,Stack(C,B)] =
On(B,A) 
Holding(C)  Block(C)  Block(B)  Clear(B)

Another Example

 G = In(key,Box)  Holding(Key)

 Put-Key-Into-Box
P = In(Robot,R1)  Holding(Key)
D = Holding(Key), In(Key,R1)
A I (K B)

R1 R
2

A = In(Key,Box)

 R[G,Put-Key-Into-Box] = False
where False is the un-achievable goal

 This means that In(key,Box)  Holding(Key) can’t
be achieved by executing Put-Key-Into-Box

Computation of R[G,A]

1. If any sub-goal of G is in A’s delete list
then return False

2. Else
G’  P diti f Aa. G’  Precondition of A

b. For every sub-goal SG of G do
c. If SG is not in A’s add list then add SG to

G’
3. Return G’

Backward Planning

On(B,A)  On(C,B)

A B
C

Initial state

Backward Planning

On(B,A)  On(C,B)
Stack(C,B)

On(B,A)  Holding(C)  Clear(B)

Stack(B A)

Pickup(C)
On(B,A)  Clear(B)  Handempty  Clear(C)  On(C,Table)

A B
C

Initial state

Clear(C)  On(C,Table)  Clear(A)  Handempty  Clear(B)  On(B,Table)

Clear(C)  On(C,TABLE)  Holding(B)  Clear(A)
Stack(B,A)

Pickup(B)

Putdown(C)

Clear(A)  Clear(B)  On(B,Table)  Holding(C)
Unstack(C,A)

Clear(B)  On(B,Table)  Clear(C)  Handempty  On(C,A)

13

Backward Planning

On(B,A)  On(C,B)
Stack(C,B)

On(B,A)  Holding(C)  Clear(B)

Stack(B A)

Pickup(C)
On(B,A)  Clear(B)  Handempty  Clear(C)  On(C,Table)

A B
C

Initial state

Clear(C)  On(C,Table)  Clear(A)  Handempty  Clear(B)  On(B,Table)

Clear(C)  On(C,TABLE)  Holding(B)  Clear(A)
Stack(B,A)

Pickup(B)

Putdown(C)

Clear(A)  Clear(B)  On(B,Table)  Holding(C)
Unstack(C,A)

Clear(B)  On(B,Table)  Clear(C)  Handempty  On(C,A)

 Backward planning searches a space of goals
from the original goal of the problem to a goal
that is satisfied in the initial state

 There are often many fewer actions relevant

Search Tree

y
to a goal than there are actions applicable to
a state  smaller branching factor than in
forward planning

 The lengths of the solution paths are the
same

How Does Backward Planning Detect
Dead-Ends? (not covered)

On(B,A)  On(C,B)
Stack(B,A)

Holding(B)  Clear(A)  On(C,B)
Stack(C,B)

Holding(B)  Clear(A)  Holding(C)  Clear (B)
Pick(B) [delete list contains Clear(B)]

False

How Does Backward Planning Detect
Dead-Ends? (not covered)

On(B,A)  On(C,B)
Stack(B,A)

Holding(B)  Clear(A)  On(C,B)

A state constraint such as
Holding(x)  (y)On(y,x)
would have made it possible
to prune the path earlier

Drawbacks of Forward and Backward Planning

 Along any path of the search tree, they
commit to a total ordering on selected
actions (linear planning)
 They do not take advantage of possible

(almost) independence among sub-goals,
nor do they deal well with interferences
among sub-goals

Independent Sub-Goals
 Example:

Clean(Room)  Have(Newspaper)

 Two sub-goals G1 and G2 are independent if two plans P1
and P2 can be computed independently of each other to
achieve G1 and G2, respectively, and executing the two 1 2, p y, g
plans in any order, e.g., P1 then P2, achieves G1  G2

 Sub-goals are often (almost) independent

 By not breaking a goal into sub-goals, forward and
backward planning methods may increase the size of
the search tree. They may also produce plans that
oddly oscillate between goals

14

Independent Sub-Goals
 Example:

Clean(Room)  Have(Newspaper)

 Two sub-goals G1 and G2 are independent if two plans P1
and P2 can be computed independently of each other to
achieve G1 and G2, respectively, and executing the two

Clean(Room)  Have(Newspaper)

1 2, p y, g
plans in any order, e.g., P1 then P2, achieves G1  G2

 Sub-goals are often (almost) independent

 By not breaking a goal into sub-goals, forward and
backward planning methods may increase the size of
the search tree. They may also produce plans that
oddly oscillate between goals

Buy(Newspaper)Suck(Room)

Interference Among Sub-Goals
Sussman anomaly:

A B
C

C

A
B

On(B C)  On(A B)On(B,C)  On(A,B)

If we achieve On(B,C) first, we reach:

Then, to achieve On(A,B) we need to undo On(B,C)
A

B
C

Interference Among Sub-Goals
Sussman anomaly:

A B
C

C

A
B

On(B C)  On(A B)On(B,C)  On(A,B)

Instead, if we achieve On(A,B) first, we reach:

Then, to achieve On(B,C) we new to undo On(A,B)

A
B C

Interference Among Sub-Goals
Sussman anomaly:

A B
C

C

A
B

On(B C)  On(A B)On(B,C)  On(A,B)

To solve this problem, one must interweave
actions aimed at one sub-goal and actions
aimed at the other sub-goal

Interference Among Sub-Goals
Key-in-box example:

R1 R2 R1 R2

Locked(Door)  In(Key,Box)

Here, achieving a sub-goal before the other leads to
the loss of a “resource” – the key or the door – that
prevents the robot from achieving the other sub-goal

Nonlinear (Partial-Order) Planning

 Idea: Avoid any ordering on actions until
interferences have been detected
 Form of “least” commitment reasoningForm of least commitment reasoning

15

 Nonlinear planning searches a space of plans
 Choices are made to achieve open preconditions

and eliminate threat
 An open precondition is achieved by:
 either using a potential achiever already in the

Search Tree

Search method Search space

F d l i St t either using a potential achiever already in the
current plan (and introducing appropriate ordering
constraints)

 or adding a new action
 A threats is eliminated by:
 constraining the ordering among the actions
 or by adding a new actions

Forward planning States

Backward planning Goals

Nonlinear planning Plans

Partial-order planning

• Progression and regression planning are
totally ordered plan search forms.
– They cannot take advantage of problem

decompositiondecomposition.
• Decisions must be made on how to sequence

actions on all the subproblems

• Least commitment strategy:
– Delay choice during search

Shoe example

Goal(RightShoeOn  LeftShoeOn)
Init()
Action(RightShoe, PRECOND: RightSockOn

EFFECT: RightShoeOn)
Action(RightSock, PRECOND:

EFFECT: RightSockOn)EFFECT RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn

EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND:

EFFECT: LeftSockOn)

Planner: combine two action sequences
(1)leftsock, leftshoe (2)rightsock, rightshoe
that can be independently derived.

Partial-order planning
• Any planning algorithm that can place

two actions into a plan without which
comes first is a POL.

POL as a search problem

• States (or our search) are (mostly unfinished)
plans.
– Initial state: the empty plan contains only start

and finish actions.

– Actions refine the plan (adding to it) until we come
up with a complete plan that solves the problem.

– Actions on plans: add a step, impose an ordering,
instantiate a variable, etc…

POL as a search problem through plans

• Each plan has 4 components:
– A set of actions (steps of the plan)
– A set of ordering constraints: A < B

• Cycles represent contradictions.
– A set of causal linksA set of causal links

• Read: A achieves p for B
• The plan may not be extended by adding a new action C

that conflicts with the causal link. (if the effect of C is
¬p and if C could come after A and before B)

– A set of open preconditions.
• If precondition is not achieved by action in the plan.
• Planners will work to reduce the set of open precondtions

to the empty set, without introducing a contradition

A p B

16

POL as a search problem

• A plan is consistent iff there are no cycles in
the ordering constraints and no conflicts with
the causal links.

• A consistent plan with no open preconditions p p p
is a solution.

• A partial order plan is executed by repeatedly
choosing any of the possible next actions.
– This flexibility is a benefit in non-cooperative

environments.

Solving POL
• Assume propositional planning problems:

– The initial plan contains Start and Finish,
the ordering constraint Start < Finish, no
causal links, all the preconditions in Finish
are openare open.

– Successor function :
• picks one open precondition p on an action B and
• generates a successor plan for every possible

consistent way of choosing action A that
achieves p.

– Test goal

Enforcing consistency

• When generating successor plan:
– The causal link A--p->B and the ordering

constraint A < B are added to the plan.
• If A is new also add start < A and A < finish to If A is new also add start A and A finish to

the plan
– Resolve conflicts between new causal link

and all existing actions (i.e., if C “undoes” p
then order by adding either B<C or C<A)

– Resolve conflicts between action A (if new)
and all existing causal links.

Process summary

• Operators on partial plans
– Add link from existing plan to open

precondition.
– Add a step to fulfill an open condition.
– Order one step w.r.t another to remove

possible conflicts
• Gradually move from incomplete/vague

plans to complete/correct plans
• Backtrack if an open condition is

unachievable or if a conflict is
unresolvable.

Example: Spare tire problem

Init(At(Flat, Axle)  At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)
EFFECT: ¬At(Spare,Trunk)  At(Spare,Ground))

Action(Remove(Flat,Axle)
PRECOND: At(Flat Axle)PRECOND: At(Flat,Axle)
EFFECT: ¬At(Flat,Axle)  At(Flat,Ground))

Action(PutOn(Spare,Axle)
PRECOND: At(Spare,Groundp) ¬At(Flat,Axle)
EFFECT: At(Spare,Axle)  ¬Ar(Spare,Ground))

Action(LeaveOvernight
PRECOND:
EFFECT: ¬ At(Spare,Ground)  ¬ At(Spare,Axle)  ¬ At(Spare,trunk) 

¬ At(Flat,Ground)  ¬ At(Flat,Axle))

Solving the problem

• Intial plan: Start with EFFECTS and Finish
with PRECOND.

17

Solving the problem

• Intial plan: Start with EFFECTS and Finish with
PRECOND.

• Pick an open precondition: At(Spare, Axle)
• Only PutOn(Spare, Axle) is applicable
• Add causal link:
• Add constraint : PutOn(Spare, Axle) < Finish

PutOn(Spare,Axle) At(Spare,Axle)  Finish

Solving the problem

• Pick an open precondition: At(Spare, Ground)
• Only Remove(Spare, Trunk) is applicable
• Add causal link:

• Add constraint : Remove(Spare, Trunk) <
PutOn(Spare,Axle)

Re move(Spare,Trunk) At(Spare,Ground)  PutOn(Spare, Axle)

Solving the problem

• Pick an open precondition: ¬At(Flat, Axle)
• LeaveOverNight is applicable
• Conflict:
• To resolve, add constraint : LeaveOverNight <

Remove(Spare, Trunk)

),(),(Re),(AxleSparePutOnTrunkSparemove GroundSpareAt  

Solving the problem

• Pick an open precondition: ¬At(Flat, Axle)
• LeaveOverNight is applicable
• conflict:
• To resolve, add constraint : LeaveOverNight <

Remove(Spare, Trunk)
• Add causal link:

Remove(Spare,Trunk) At(Spare,Ground)  PutOn(Spare, Axle)

LeaveOverNight At(Spare,Ground)  PutOn(Spare, Axle)

Solving the problem

• Pick an open precondition: At(Spare, Trunk)
• Only Start is applicable
• Add causal link:

• Conflict: of causal link with effect At(Spare,Trunk) in LeaveOverNight
– No re-ordering solution possible.

• backtrack

Start At(Spare,Trunk)  Re move(Spare,Trunk)

Solving the problem

• Remove LeaveOverNight, Remove(Spare, Trunk)
and causal links

• Repeat step with Remove(Spare,Trunk)
• Add also RemoveFlatAxle and finish

18

Some details …

• What happens when a first-order
representation that includes variables is
used?
– Complicates the process of detecting and p p g

resolving conflicts.
– Can be resolved by introducing inequality

constrainst.
• CSP’s most-constrained-variable

constraint can be used for planning
algorithms to select a PRECOND.

Key-in-Box Example

R1 R2

Initial state:
In(Robot,R2)  In(Key,R2)  Unlocked(Door)

Goal:
Locked(Door)  In(Key,Box)

Actions
Grasp-Key-in-R2

P = In(Robot,R2)  In(Key,R2)
D = 
A = Holding(Key)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A Locked(Door)A = Locked(Door)

Move-Key-from-R2-into-R1
P = In(Robot,R2)  Holding(Key)  Unlocked(Door)
D = In(Robot,R2), In(Key,R2)
A = In(Robot,R1), In(Key,R1)

Put-Key-Into-Box
P = In(Robot,R1)  Holding(Key)
D = Holding(Key), In(Key,R1)
A = In(Key,Box)

P = 
D = 
A = In(Robot,R2)

In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

D = 
A = 

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Achiever

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

19

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)Open preconditions

The plan is incomplete
Achiever

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

Threat

The threat can be eliminated by
requiring that Put-Key-Into-Box be
executed before Grasp-Key-in-R2 ...

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Potential
achiever

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

The threat can be eliminated by
requiring that Put-Key-Into-Box be
executed before Grasp-Key-in-R2 ...

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

20

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

Threat

The threat can be eliminated by
requiring that Put-Key-Into-Box be
executed before Grasp-Key-in-R2 ...
or that Put-Key-Into-Box be
executed after Lock-Door

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Potential
achiever

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

The threat can be eliminated by
requiring that Put-Key-Into-Box be
executed before Grasp-Key-in-R2 ...
or that Put-Key-Into-Box be
executed after Lock-Door

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Achiever

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Move-Key-from-R2-into-R1
P = In(Robot,R2)

Holding(Key)
Unlocked(Door)

D = In(Robot,R2)
In(Key,R2)

A = In(Robot,R1)
In(Key,R1)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Move-Key-from-R2-into-R1
P = In(Robot,R2)

Holding(Key)
Unlocked(Door)

D = In(Robot,R2)
In(Key,R2)

A = In(Robot,R1)
In(Key,R1)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

Threat

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Move-Key-from-R2-into-R1
P = In(Robot,R2)

Holding(Key)
Unlocked(Door)

D = In(Robot,R2)
In(Key,R2)

A = In(Robot,R1)
In(Key,R1)

Potential
achiever

21

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

Threat

We can’t eliminate the threat by
requiring that Move-Key be
executed before the start action.
The only way to proceed is to add
an ordering constraint that places
Move-Key after Grasp-Key ...

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Move-Key-from-R2-into-R1
P = In(Robot,R2)

Holding(Key)
Unlocked(Door)

D = In(Robot,R2)
In(Key,R2)

A = In(Robot,R1)
In(Key,R1)

Potential
achiever

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

Threat

We can’t eliminate the threat by
requiring that Move-Key be
executed before the start action.
The only way to proceed is to add
an ordering constraint that places
Move-Key after Grasp-Key ...
But there is another threat ...
The only way to eliminate
both threats is to place
Move-Key after Grasp-Key and
before Lock-Door

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Move-Key-from-R2-into-R1
P = In(Robot,R2)

Holding(Key)
Unlocked(Door)

D = In(Robot,R2)
In(Key,R2)

A = In(Robot,R1)
In(Key,R1)

Potential
achiever

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

We can’t eliminate the threat by
requiring that Move-Key be
executed before the start action.
The only way to proceed is to add
an ordering constraint that places
Move-Key after Grasp-Key ...
But there is another threat ...
The only way to eliminate
both threats is to place
Move-Key after Grasp-Key and
before Lock-Door

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Move-Key-from-R2-into-R1
P = In(Robot,R2)

Holding(Key)
Unlocked(Door)

D = In(Robot,R2)
In(Key,R2)

A = In(Robot,R1)
In(Key,R1)

Lock-Door
P = Holding(Key)
D = Unlocked(Door)
A = Locked(Door)

Grasp-Key-in-R2
P = In(Robot,R2)

In(Key,R2)
D = 
A = Holding(Key)

The plan is now complete: All
preconditions are achieved and
there are no threats

A = In(Robot,R2)
In(Key,R2)
Unlocked(Door)

P = Locked(Door)
In(Key,Box)

Put-Key-Into-Box
P = In(Robot,R1)

Holding(Key)
D = Holding(Key)

In(Key,R1)
A = In(Key,Box)

Move-Key-from-R2-into-R1
P = In(Robot,R2)

Holding(Key)
Unlocked(Door)

D = In(Robot,R2)
In(Key,R2)

A = In(Robot,R1)
In(Key,R1)

 A nonlinear plan is consistent if it
contains no cycle and no threat
 A consistent plan is complete if every

precondition of all actions (except the

Consistent Plans

precondition of all actions (except the
start one) has an achiever, that is,
there is no open precondition
 Every linear plan allowed by a complete

plan is a solution

Heuristics for Partial Order Planning

• Clear advantage over total order
planning in that POP can decompose
problems into subproblems.

• Disadvantage difficult to come up with • Disadvantage – difficult to come up with
heuristics since it doesn’t represent a
state directly.

• How far is a partial plan to achieving the
goal?

22

Where can heuristics be used?

• Select a partial plan to refine – this is
not really shown in our examples
– Choose the partial plan with the fewest

open preconditions
• Overestimates cost when there are actions that

achieve multiple preconditions
• Underestimates cost when there are negative

interactions between steps
– Example: a set of predonditions P1, P2, P3 where P1 is

satisfied in the initial state. But, action for achieving
P2 has ¬P1 as one of its effect, so now must plan for
an action for achieving P1.

Where (else) can heuristics be used?

• Selecting the open precondition to work
on in a partial plan
– Most constrained precondition heuristic:

select the open precondition for which select the open precondition for which
there are the fewest actions for achieving
it.
• Allows you to fail early (if no action can achieve

it, need to find out fast)
• Need to eventually achieve it, so might as well

achieve it early because it might place further
constraints on other actions.

Planning Graph to Compute (Better)
Heuristics

• Plan graph consists of levels corresponding to
time steps in a plan.

• Level 0 = initial state.
• Each level consists ofEach level consists of

– Literals that could be true at that time step
(depending on which actions were executed in prior
state)

– Actions that could have their preconditions
satisfied at that time step

• Note: The GRAPHPLAN algorithm extracts a
solution directly from a plan graph…

Planning Graph
• May be optimistic about the minimum

number of time steps needed to achieve
a literal (because doesn’t record all
negative interactions)

• Does provide a good estimate of how Does provide a good estimate of how
difficult it is to achieve a given literal
from the initial state.

• NOTE: assume all actions cost 1 – so
want to make a plan with fewest actions!

• Works for proposition planning problems
only – NO VARIABLES!

Vacuum Cleaning Robot

R1 R2

Initial State:
In(Robot, R1)  Clean(R1)

GOAL:
Clean(R1) ^ Clean(R2)

Action Representation

Right
 Precondition = In(Robot, R1)
 Delete-list = In(Robot, R1)
 Add-list = In(Robot, R2)2

23

Other Actions

Left
 P = In(Robot, R2)
 D = In(Robot, R2)
 A = In(Robot, R1)1

Suck(r)
 P = In(Robot, r)
 D =  [empty list]
 A = Clean(r)

R1 R2

Planning Graph for a State of the Vacuum
Robot

In(Robot,R1)
Clean(R1)
In(Robot,R2)
Clean(R2)

Left

A1 S2

In(Robot,R1)
Clean(R1)

S0

Right

In(Robot,R1)
Clean(R1)
In(Robot,R2)

S1A0

persistence
i

Suck(R2)Suck(R1)
 S0 contains the state’s propositions (here, the initial state)
 A0 contains all actions whose preconditions appear in S0
 S1 contains all propositions that were in S0 or are contained in the

add lists of the actions in A0
 So, S1 contains all propositions that may be true in the state

reached after the first action
 A1 contains all actions whose preconditions appear in S1, hence that

may be executed in the state reached after executing the first
action. Etc...

 NOTE: Right, and Suck(R1) should be in A1!!!

actions

Planning Graph for a State of the Vacuum
Robot

In(Robot,R1)
Clean(R1)
In(Robot,R2)
Clean(R2)

Left

A1 S2

In(Robot,R1)
Clean(R1)

S0

Right

In(Robot,R1)
Clean(R1)
In(Robot,R2)

S1A0

Suck(R2)Suck(R1)

 The value of i such that Si contains all the goal propositions is
called the level cost of the goal (here i=2)

 By construction of the planning graph, it is a lower bound on the
number of actions needed to reach the goal

 In this case, 2 is the actual length of the shortest path to the goal

Planning Graph for Another State

In(Robot,R2)
Clean(R1)

S0

Left

In(Robot,R2)
Clean(R1)
In(Robot,R1)
Clean(R2)

S1A0

R1 R2

Suck(R2)

 The level cost of the goal is 1, which again is the actual length of
the shortest path to the goal

Application of Planning Graphs to Forward
Planning

 Compute the planning graph of each generated
state [simply update the graph plan at parent node]

 Stop computing the planning graph when:
• Either the goal propositions are in a set Si

[then i is the level cost of the goal][then i is the level cost of the goal]
• Or when Si+1 = Si

[then the current state is not on a solution path]
 Set the heuristic h(N) of a node N to the level

cost of the goal
 h is a consistent heuristic for unit-cost actions
 Hence, A* using h yields a solution with minimum

number of actions

Size of Planning Graph

In(Robot,R1)
Clean(R1)
In(Robot,R2)
Clean(R2)

Left

A1 S2

In(Robot,R1)
Clean(R1)

S0

Right

In(Robot,R1)
Clean(R1)
In(Robot,R2)

S1A0

Suck(R2)Suck(R1)

 An action appears at most once (delete)
 A proposition is added at most once and each Sk (k  i)

is a strict superset of Sk-1
 So, the number of levels is bounded by

Min{number of actions, number of propositions}
 In contrast, the state space can be exponential in the

number of propositions
 The computation of the planning graph may save a lot

of unnecessary search work

24

Improvement of Planning Graph:
Mutual Exclusions (mutex links)

 Goal: Refine the level cost of the goal to
be a more accurate estimate of the
number of actions needed to reach it
 Method: Detect obvious exclusions

among actions at the same level and
among propositions at the same level

Improvement of Planning Graph:
Mutual Exclusions

In(Robot,R1)
Clean(R1)
In(Robot,R2)
Clean(R2)

A1 S2

In(Robot,R1)
Clean(R1)

S0

In(Robot,R1)
Clean(R1)
In(Robot,R2)

S1A0

a
a

b
b

b

a. Two actions at the same level are mutually exclusive if the same
proposition appears in the add list of one and the delete list of the
other

b. Two propositions in Sk are mutually exclusive if no single action in
Ak-1 contains both of them in its add list and every pair of actions in
Ak-1 that could achieve them are mutually exclusive

Left

Suck(R2)

Right

Suck(R1)

Mutex Relations Between Actions
• Inconsistent effects: one action negates an

effect of the other. E.g., Eat(Cake) and
Have(Cake)

• Inteference: one of the effects of one action is
the negation of a preconditon of the other E g the negation of a preconditon of the other. E.g.,
Eat(Cake) interferes with the persistence of
Have(Cake)

• Competing Needs: one of the preconditions of
one action is mutually exclusive with a
precondition of another. E.g., Bake(Cake) and
Eat(Cake) are mutex because they compete for
the Have(Cake) precondition.

2 literals are mutex if…

A mutex relation holds between two
literals at the same level if:

• One is the negation of the other
or
• If each possible pair of actions that

could achieve the two literals is mutually
exclusive

Improvement of Planning Graph:
Mutual Exclusions

In(Robot,R1)
Clean(R1)
In(Robot,R2)
Clean(R2)

A1 S2

In(Robot,R1)
Clean(R1)

S0

In(Robot,R1)
Clean(R1)
In(Robot,R2)

S1A0

a
a

b
b

b

 A new action is inserted in Ak only if its preconditions
are in Sk and no two of them are mutually exclusive

 The computation of the planning graph ends when:
• Either the goal propositions are in a set Si and no two of them

are mutually exclusive
• Or when two successive sets Si+1 and Si contain the same

propositions with the same mutual exclusions

Left

Suck(R2)

Right

Suck(R1)

Another Possible Mutual Exclusion (NOT
COVERED)

In(Robot,R1)
Clean(R1)
In(Robot,R2)
Clean(R2)

A1 S2

In(Robot,R1)
Clean(R1)

S0

In(Robot,R1)
Clean(R1)
In(Robot,R2)

S1A0

 Any two non-persistence actions at the same level are
mutually exclusive ( serial planning graph)

 Then an action may re-appear at a new level if it leads to
removing mutual exclusions among propositions

 In general, the more mutual exclusions, the longer and
the bigger the planning graph

Left

Suck(R2)

Right

Suck(R1)

25

Heuristics

 Pre-compute the planning graph of the
initial state until it levels off
 For each node N added to the search

tree set h(N) to the maximum level tree, set h(N) to the maximum level
cost of any open precondition in the plan
associated with N or to the sum of
these level costs

A consistent heuristic can be computed as
follows :

1. Pre-compute the planning graph of the initial state
until it levels off

2 F h d N dd d t th h t t

Consistent Heuristic for Backward
Planning

2. For each node N added to the search tree, set
h(N) to the level cost of the goal associated with N

If the goal associated with N can’t be satisfied in
any set Sk of the planning graph, it can’t be
achieved (prune it!)

Only one planning graph is pre-computed

 Mutual exclusions in planning graphs only
deal with very simple interferences

 State constraints may help detect early
some interferences in backward planningp

 In general, however, interferences lead
linear planning to explore un-fructuous
paths

Extracting a Plan – Search Problem

• Try to do if all goal literals true and not
mutex at ending level Si.

• Initial State: level Si along with goals
• Actions: select any conflict-free subset Actions: select any conflict free subset

of the action in Ai-1 whose effects
cover the goals in the state. (New State
is Si-1 with preconditions of selected
actions.)

• Goal: reach state at level S0 such that
goals satisfied.

Another example…

By
Ruti Glick

Bar-Ilan University

Example - Dinner

• World predicates
– garbage
– cleanhands
– quiet

t– present
– Dinner

• initial state:
– s0: {garbage, cleanHands, quiet}

• Goal
– g: {dinner, present, ~garbage}

26

Example - continued

• Actions
– Define actions as:
Action Preconditions Effects
cook() cleanHands dinner()
wrap() quiet present
carry() - ~garbage, ~cleanHands
dolly() - ~garbage, ~quiet

– Also have the “maintenance actions”

Example – the Planning Graph

garbage

cleanhands

s0
carry

dolly

a0
These actions

have no
preconditions

quiet
cook

wrap

Example - continued

garbage

~garbage

cleanhands

cleanhands

garbage

cleanhands

s0 a0 s1

carry

dolly

quiet

~quiet

dinner

present

quiet
cook

wrap

Example - continued

Carry, dolly are mutex with several
maintenance actions (inconsistent effects)

s0 a0 s1

garbage

~garbage

cleanhands

garbage

cleanhands

carry

dolly is mutex with wrap
Interference (about

quiet)
Cook is nutex with

carry about cleanhands

~quiet is mutex with present,
~cleanhands is mutex with dinner

inconsistent support

~cleanhands

quiet

~quiet

dinner

present

quiet

dolly

cook

wrap

garbage

~garbage

cleanhands

garbage

l h d

carry

The goal is:{~garbage, dinner, present}
All are prossible in s1.
None are mutex with each other.

Do we have a solution?

cleanhands

~cleanhands

quiet

~quiet

dinner

present

cleanhands

quiet

dolly

cook

wrap

garbage

~garbage

garbage

carry

Possible solutions
Two sets of actions for the goals at state-level 1

Neither works: both sets contain actions that are mutex:
{wrap, cook, dolly} / {wrap, cook, carry}

cleanhands

~cleanhands

quiet

~quiet

dinner

present

cleanhands

quiet

dolly

cook

wrap

27

Add new step… Do we have a solution?
Several of the combinations look OK at level

2. Here’s one of them:

Another solution:

