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Heuristic (Informed) 
Search

(Where we try to be smarter in 
h   h   lt ti )

1

how we choose among alternatives)

R&N III: Chapter 3.5
R&N II: Chap. 4, Sect. 4.1–3

Search Algorithm

1. INSERT(initial-node,FRINGE)
2. Repeat:

a. If empty(FRINGE) then return failure
b. n REMOVE(FRINGE)
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c. s STATE(n)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node n’ as a successor of n
ii. INSERT(n’,FRINGE)

Best-First Search
 It exploits state description to estimate 

how promising each search node is
 An evaluation function f maps each search 

node N to positive real number f(N)
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p ( )
 Traditionally, the smaller f(N), the more 

promising N
 Best-first search sorts the fringe in 

increasing f [random order is assumed among 
nodes with equal values of f]

Best-First Search
 It exploits state description to estimate 

how promising each search node is
 An evaluation function f maps every 

search node N to positive real number “Best” only refers to the value of f
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p
f(N)
 Usually, the smaller f(N), the more 

promising N
 Best-first search sorts the fringe in 

increasing f [random order is assumed among 
nodes with equal values of f]

Best  only refers to the value of f,
not to the quality of the actual path.
Best-first search does not generate 
optimal paths in general 

 There are no limitations on f. Any 
function of your choice is acceptable. 
But will it help the search algorithm?

How to construct 
an evaluation function?
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 The classical approach is to construct 
f(N) as an estimator of a solution path 
through N

 The heuristic function h(N) estimates the 
distance of STATE(N) to a goal state 

Its value is independent of the current 
search tree; it depends only on STATE(N) 

Heuristic Function
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p y ( )
and the goal test

 Example:

 h1(N)  = number of misplaced tiles = 6
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Other Examples

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

7

 h1(N)  = number of misplaced tiles = 6
 h2(N) = sum of the (Manhattan) distances of 

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

 h3(N) = sum of permutation inversions
= 4 + 0 + 3 + 1 + 0 + 1 + 0 + 0 = 9

Other Examples 
(Robot Navigation)

yN
N

8

xN xg

yg

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) (Euclidean distance)

h2(N)  =  |xN-xg| + |yN-yg| (Manhattan distance)

8-Puzzle
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f(N) = h(N) = number of misplaced tiles
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8-Puzzle
f(N) = h(N) =  distances of tiles to goal
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Can we Prove Anything?
 If the state space is finite and we discard 

nodes that revisit states, the search is 
complete, but in general is not optimal

If th  st t  s  is fi it  d  d  t 
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 If the state space is finite and we do not 
discard nodes that revisit states, in general 
the search is not complete

 If the state space is infinite, in general the 
search is not complete

Best-First  Efficiency

Local-minimum problem
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f(N) = h(N) = straight distance to the goal
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Classical Evaluation Functions

 h(N): heuristic function
[Independent of search tree]
 g(N): cost of the best path found so far 

between the initial node and N
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between the initial node and N
[Dependent on search tree]

 f(N) = h(N)  greedy best-first search

 f(N) = g(N) + h(N)

1+5
3+3

3+4

2+3

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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Algorithm A Search

• Orders open list according to

F(n) = G(n) + H(n)
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• Must have search package keep a record 
of what the best path found so far is so 
that the G(n) is as accurate as possible.

(go to handout on Algorithm A Search)

Admissible Heuristic

 Let h*(N) be the cost of the optimal path 
from N to a goal node

 The heuristic function h(N) is admissible
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if: 
0  h(N)  h*(N)

 An admissible heuristic function is always 
optimistic !

Admissible Heuristic

 Let h*(N) be the cost of the optimal path 
from N to a goal node

 The heuristic function h(N) is admissible
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if: 
0  h(N)  h*(N)

 An admissible heuristic function is always 
optimistic !

G is a goal node  h(G) = 0

Algorithm A*

• Algorithm A Search where we can prove 
that the heuristic function is admissible.

Thi h i t d t fi d

18

• This search is guaranteed to find an 
optimal solution if a solution exists!
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 h (N)  = number of misplaced tiles = 6

8-Puzzle Heuristics
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 h1(N)  = number of misplaced tiles = 6
is admissible

 h2(N) = sum of the (Manhattan) distances of    
every tile to its goal position

= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13
is admissible

 h3(N) = sum of permutation inversions
= 4 + 0 + 3 + 1 + 0 + 1 + 0 + 0 = 9

is ??? [left as an exercise]

Robot Navigation Heuristics
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Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y )

h2(N)  =  |xN-xg| + |yN-yg|
are both admissible

A* Search
(most popular algorithm in AI)

 f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function

21

 for all arcs: 0 <   c(N,N’)
 “modified” search algorithm is used

 Best-first search is called A* search

Result #1

A* is complete and optimal

[This result holds if nodes revisiting 
states are not discarded]
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states are not discarded]

Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution

For each node N on the fringe, f(N)d(N), 
where d(N) is the depth of N in the tree
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p

As long as A* hasn’t terminated, a node K on 
the fringe lies on a solution path

Since each node expansion increases the 
length of one path, K will eventually be 
selected for expansion

Proof (2/2)
2) Whenever A* chooses to expands a goal 

node, the path to this node is optimal

C*= h*(initial-node)

G’: non optimal goal node in the fringe
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G : non-optimal goal node in the fringe
f(G’) = g(G’) + h(G’) = g(G’)  C*

A node K in the fringe lies on an optimal path:
f(K) = g(K) + h(K)  C*

So, G’ is not be selected for expansion
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Time Limit Issue
 When a problem has no solution, A* runs for ever if 

the state space is infinite or states can be revisited 
an arbitrary number of times (the search tree can 
grow arbitrarily large). In other case, it may take a 
huge amount of time to terminate 

 So, in practice, A* must be given a time limit. If it 
has not found a solution within this limit, it stops. 
Th  th  i    t  k  if th  bl  h   
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Then there is no way to know if the problem has no 
solution or A* needed more time to find it

 In the past, when AI systems were “small” and solving 
a single search problem at a time, this was not too 
much of a concern. As AI systems become larger, 
they have to solve a multitude of search problems 
concurrently. Then, a question arises: What should 
be the time limit for each of them? More on this in 
the lecture on Motion Planning ...

Time Limit Issue
 When a problem has no solution, A* runs for ever if 

the state space is infinite or states can be revisited 
an arbitrary number of times (the search tree can 
grow arbitrarily large). In other case, it may take a 
huge amount of time to terminate 

 So, in practice, A* must be given a time limit. If it 
has not found a solution within this limit, it stops. 
Th  th  i    t  k  if th  bl  h   

Hence, the usefulness of a simple test,  
like in the (2n-1)-puzzle, that determines 
if the goal is reachable

26

Then there is no way to know if the problem has no 
solution or A* needed more time to find it

 In the past, when AI systems were “small” and solving 
a single search problem at a time, this was not too 
much of a concern. As AI systems become larger, 
they have to solve a multitude of search problems 
concurrently. Then, a question arises: What should 
be the time limit for each of them? More on this in 
future lectures ...

Unfortunately, such a test rarely exists
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f(N) = g(N) + h(N) 
with h(N) = number of misplaced tiles
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Robot Navigation
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Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)
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Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)
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Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

58 7 46 23 3 54 68+38+3 7+47+4 6+56+3 5+65+6 4+74+7 3+83+8 2+92+9 3+10
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How to create an admissible h?

 An admissible heuristic can usually be seen as 
the cost of an optimal solution to a relaxed
problem (one obtained by removing constraints)

 In robot navigation:

32

g
• The Manhattan distance corresponds to removing the 

obstacles 
• The Euclidean distance corresponds to removing both 

the obstacles and the constraint that the robot 
moves on a grid

 More on this topic later 

What to do with revisited states?

c = 1 2

h = 100 1 The heuristic h is 

33

100

21

0

90
clearly admissible

What to do with revisited states?

c = 1 2

h = 100 1 f = 1+100 2+1
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?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

1 2

100 1 1+100 2+1

What to do with revisited states?
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Instead, if we do not discard nodes revisiting 
states, the search terminates with an optimal 
solution

But ...
If we do not discard nodes revisiting 
states, the size of the search tree can be 
exponential in the number of visited states
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 It is not harmful to discard a node revisiting 
a state if the new path to this state has 
higher cost than the previous one

 A* remains optimal, but the size of the 
search tree can still be exponential in the 

37

p
worst case

 Fortunately, for a large family of admissible 
heuristics – consistent heuristics – there is a 
much easier way of dealing with revisited 
states

Consistent Heuristic
A heuristic h is consistent if 
1) for each node N and each child N’ of N:

h(N)  c(N,N’) + h(N’)
[Intuition: h gets more and more 

N
c(N,N’)

38

[ g
precise as we get deeper in the 
search tree]

2) for each goal node G:
h(G) = 0

The heuristic is also said to be monotone

N’ h(N)

h(N’)

(triangle inequality)

Consistency Violation

N
c(N,N’)

If h tells that N is 
100 units from the 
goal,  then moving 
from N along an arc 

 10  

39

N’ h(N)

h(N’)

(triangle inequality)

costing 10 units 
should not lead to a 
node N’ that h 
estimates to be 10 
units away from the 
goal

 A consistent heuristic is also admissible

 An admissible heuristic may not be 
nsist nt  b t m n  dmissibl  h isti s 

Admissibility and Consistency

40

consistent, but many admissible heuristics 
are consistent

8-Puzzle
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STATE(N) goal

 h1(N)  = number of misplaced tiles
 h2(N) = sum of the (Manhattan) distances 

of every tile to its goal position
are both consistent

Robot navigation

42

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x ) +(y -y )

h2(N)  =  |xN-xg| + |yN-yg|
are both consistent
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If h is consistent, then whenever A* 
expands a node, it has already found 
an optimal path to this node’s state

Result #2

43

N N1
S S1

The path to N 
is the optimal 
path to S 

N2

N2 can be 
discarded

Proof
1) Consider a node N and its child N’ 

Since h is consistent: h(N)  c(N,N’)+h(N’)

f(N) = g(N)+h(N)  g(N)+c(N,N’)+h(N’) = f(N’)
So, f is non-decreasing along any path
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2) If K is selected for expansion, then any other 
node K’ in the fringe verifies f(K’)  f(K)

So, if one node K’ lies on another path to the 
state of K, the cost of this other path is no 
smaller than the path to K

Revisited States with 
Consistent Heuristic

 When a node is expanded, store its state 
into CLOSED 
 When a new node N is generated:
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• If STATE(N) is in CLOSED, discard N
• If there exits a node N’ in the fringe 

such that STATE(N’) = STATE(N), 
discard the node – N or N’ – with the 
largest f

Worst-Case Complexity of A* 
when State Space is Finite (1/3)
 Assume a state graph of n states and r arcs
 Two cases:

a) If the number of successors of any state is O(n), 
then r = O(n2); the state graph is dense

46

b) If it is O(1), then r = O(n); the graph is sparse
[In most search problem, the graph is sparse]

 CLOSED is implemented as a hash-table with 
O(1) access time

 Heuristic h is consistent

Worst-Case Complexity of A* 
when State Space is Finite (2/3)
 The fringe is implemented as a list
 linear scan to find best node

 Number of attempted add-to-fringe operations: O(r)
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 Time to add a node to the fringe: O(1)
 Number of node expansions: O(n)
 Time to select a node from the fringe: O(n)
 Total time complexity:                       O(r + n2) = O(n2)
 Space complexity: O(n)

[A node need not pointing to its children]

Worst-Case Complexity of A* 
when State Space is Finite (3/3)

 The fringe is implemented as a priority queue

 Number of attempted add-to-fringe operations: O(r)
 Time to add a node to the fringe                    O(log n)

48

Time to add a node to the fringe                    O(log n)
 Number of node expansions O(n)
 Time to select a node from the fringe            O(log n)
 Total time complexity:                     O(r log n + n log n)

• If dense state graph:                              O(n2 log n)
• If sparse state graph:                              O(n log n)

 Space complexity: O(n)
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Worst-Case Complexity of A* 
when State Space is Finite (3/3)

 The fringe is implemented as a priority queue

 Number of attempted add-to-fringe operations: O(r)
 Time to add a node to the fringe                    O(log n)
So, for large state spaces with reasonable 
b hi  f t  (  t t  h )  

49

Time to add a node to the fringe                    O(log n)
 Number of node expansions O(n)
 Time to select a node from the fringe            O(log n)
 Total time complexity:                     O(r log n + n log n)

• If dense state graph:                              O(n2 log n)
• If sparse state graph:                              O(n log n)

 Space complexity: O(n)

branching factors ( sparse state graphs), 
it is preferable to implement the fringe as 

a priority queue

Is A* with some consistent 
heuristic all what we need?

No !
 The previous result only says that A*’s worst-

case time complexity is low-polynomial in the 
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case time complexity is low-polynomial in the 
size of the state space, but this size may be 
exponential in other parameters (e.g., path 
lengths) depending on the input description

 The state space can even be infinite 
 There are very dumb consistent heuristics

h  0

 It is consistent (hence, admissible) !
 A* with h0 is uniform-cost search

B dth fi t d if t  

51

 Breadth-first and uniform-cost are 
particular cases of A*

Heuristic Accuracy
Let h1 and h2 be two consistent heuristics such 
that for all nodes N: 

h1(N)  h2(N)
h2 is said to be more accurate (or more informed)

52

2 ( f )
than h1

 h1(N) = number of misplaced 
tiles 

 h2(N) = sum of distances of 
every tile to its goal position

 h2 is more accurate than h1
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Result #3

 Let h2 be more informed than h1

 Let A1* be A* using h1 and A2* be A* 
using h2

Wh   l ti  i t  ll th  
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 Whenever a solution exists, all the 
nodes expanded by A2*, except possibly 
the goal node, are also expanded by A1* 

Proof
 C* = h*(initial-node)
 Every node N such that f(N)  C* is 

eventually expanded
 Every node N such that h(N)  C*g(N) 

i  ll  d d 
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is eventually expanded 
 Since h1(N)  h2(N), every non-goal node 

expanded by A2* is also expanded by A1*
 If f(N) = C*, N is a goal node; only one 

such node is expanded [it may not be the 
same one for A1* and A2*]
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Effective Branching Factor

 It is used as a measure the effectiveness 
of a heuristic
 Let n be the total number of nodes 

generated by A* for a particular problem 

55

generated by A* for a particular problem 
and d the depth of the solution
 The effective branching factor b* is 

defined by n = 1 + b* + (b*)2 +...+ (b*)d

Experimental Results
(see R&N for details)

 8-puzzle with:
 h1 = number of misplaced tiles
 h2 = sum of distances of tiles to their goal positions

 Random generation of many problem instances
 Average branching factors (number of expanded nodes):

56

g g ( p )

d IDS A1* A2*
2 2.45 1.79 1.79
6 2.73 1.34 1.30
12 2.78 (3,644,035) 1.42 (227) 1.24 (73)
16 -- 1.45 1.25
20 -- 1.47 1.27
24 -- 1.48 (39,135) 1.26 (1,641)

 By solving relaxed problems at each node
 In the 8-puzzle, the sum of the distances of 

each tile to its goal position (h2) corresponds to 
solving 8 simple problems:

How to create good heuristic?

5 8 1 2 3

57 It ignores negative interactions among tiles 
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 For example, we could consider two more complex 
relaxed problems:

Can we do better?
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  h = d1234 + d5678 [disjoint pattern heuristic]
 These distances could have been precomputed in a 

database [left as an exercise]
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 For example, we could consider two more complex 
relaxed problems:

Can we do better?
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Several order-of-magnitude speedups 
have been obtained this way for the 
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  h = d1234 + d5678

 These distances could have been precomputed [left as 
an exercise]
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have been obtained this way for the 
15- and 24-puzzle (see R&N)

On Completeness and Optimality
 A* with a consistent heuristic has nice 

properties: completeness, optimality, no need 
to revisit states

 Theoretical completeness does not mean 
“practical” completeness if you must wait too 

60

p p y
long to get a solution (remember the time 
limit issue)

 So, if one can’t design an accurate consistent 
heuristic, it may be better to settle for a 
non-admissible heuristic that “works well in 
practice”, even completeness and optimality 
are no longer guaranteed 
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Iterative Deepening A* (IDA*)
 Idea: Reduce memory requirement of 

A* by applying cutoff on values of f
 Consistent heuristic h
 Algorithm IDA*:
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 Algorithm IDA :
1. Initialize cutoff to f(initial-node)
2. Repeat:

a. Perform depth-first search by expanding all 
nodes N such that f(N)  cutoff

b. Reset cutoff to smallest value f of non-
expanded (leaf) nodes

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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f(N) = g(N) + h(N) 
with h(N) = number of misplaced tiles
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f(N) = g(N) + h(N) 
with h(N) = number of misplaced tiles

66

4

4

6

Cutoff=4

6

5



12

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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Advantages/Drawbacks of IDA*

 Advantages:
• Still complete and optimal
• Requires less memory than A*
• Avoid the overhead to sort the fringe

74

• Avoid the overhead to sort the fringe
 Drawbacks:

• Can’t avoid revisiting states not on the 
current path

• Available memory is poorly used

SMA*
(Simplified Memory-bounded A*)

 Works like A* until memory is full
 Then SMA* drops the node in the fringe with the 

largest f value and “backs up” this value to its parent
 When all children of a node N have been dropped, the 

smallest backed up value replaces f(N)
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p p ( )
 In this way, SMA* the root of an erased subtree 

remembers the best path in that subtree
 SMA* will regenerate this subtree only if all other 

nodes in the fringe have greater f values 
 SMA* generates the best solution path that fits in 

memory
 SMA* can’t completely avoid revisiting states, but it 

can do a better job at this that IDA*

Search problems

Blind search

Heuristic search: 
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Heuristic search: 
best-first and A*

Construction of heuristics Local searchVariants of A*

When to Use Search Techniques?

1) The search space is small, and
• No other technique is available, or
• Develop a more efficient technique is not 

worth the effort 
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worth the effort 

2) The search space is large, and
• No other available technique is available, and
• There exist “good” heuristics


