
1

Heuristic (Informed)
Search

(Where we try to be smarter in
h h lt ti)

1

how we choose among alternatives)

R&N III: Chapter 3.5
R&N II: Chap. 4, Sect. 4.1–3

Search Algorithm

1. INSERT(initial-node,FRINGE)
2. Repeat:

a. If empty(FRINGE) then return failure
b. n REMOVE(FRINGE)

2

c. s STATE(n)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node n’ as a successor of n
ii. INSERT(n’,FRINGE)

Best-First Search
 It exploits state description to estimate

how promising each search node is
 An evaluation function f maps each search

node N to positive real number f(N)

3

p ()
 Traditionally, the smaller f(N), the more

promising N
 Best-first search sorts the fringe in

increasing f [random order is assumed among
nodes with equal values of f]

Best-First Search
 It exploits state description to estimate

how promising each search node is
 An evaluation function f maps every

search node N to positive real number “Best” only refers to the value of f

4

p
f(N)
 Usually, the smaller f(N), the more

promising N
 Best-first search sorts the fringe in

increasing f [random order is assumed among
nodes with equal values of f]

Best only refers to the value of f,
not to the quality of the actual path.
Best-first search does not generate
optimal paths in general

 There are no limitations on f. Any
function of your choice is acceptable.
But will it help the search algorithm?

How to construct
an evaluation function?

5

 The classical approach is to construct
f(N) as an estimator of a solution path
through N

 The heuristic function h(N) estimates the
distance of STATE(N) to a goal state

Its value is independent of the current
search tree; it depends only on STATE(N)

Heuristic Function

6

p y ()
and the goal test

 Example:

 h1(N) = number of misplaced tiles = 6

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

2

Other Examples

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

7

 h1(N) = number of misplaced tiles = 6
 h2(N) = sum of the (Manhattan) distances of

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

 h3(N) = sum of permutation inversions
= 4 + 0 + 3 + 1 + 0 + 1 + 0 + 0 = 9

Other Examples
(Robot Navigation)

yN
N

8

xN xg

yg

2 2
g g1 N Nh (N) = (x -x) +(y -y) (Euclidean distance)

h2(N) = |xN-xg| + |yN-yg| (Manhattan distance)

8-Puzzle

5
3

4

3 4
3

f(N) = h(N) = number of misplaced tiles

9

4

5

3

4

4

2 1

2

0

4

3

6 5

8-Puzzle
f(N) = h(N) = distances of tiles to goal

10

5

6

4

4

2 1

2

0

5

3

Can we Prove Anything?
 If the state space is finite and we discard

nodes that revisit states, the search is
complete, but in general is not optimal

If th st t s is fi it d d t

11

 If the state space is finite and we do not
discard nodes that revisit states, in general
the search is not complete

 If the state space is infinite, in general the
search is not complete

Best-First Efficiency

Local-minimum problem

12

f(N) = h(N) = straight distance to the goal

3

Classical Evaluation Functions

 h(N): heuristic function
[Independent of search tree]
 g(N): cost of the best path found so far

between the initial node and N

13

between the initial node and N
[Dependent on search tree]

 f(N) = h(N) greedy best-first search

 f(N) = g(N) + h(N)

1+5
3+3

3+4

2+3

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

14

0+4

1+5

1+3

3+4

3+4

3+2 4+1

5+2

5+0

2+4

2+3

Algorithm A Search

• Orders open list according to

F(n) = G(n) + H(n)

15

• Must have search package keep a record
of what the best path found so far is so
that the G(n) is as accurate as possible.

(go to handout on Algorithm A Search)

Admissible Heuristic

 Let h*(N) be the cost of the optimal path
from N to a goal node

 The heuristic function h(N) is admissible

16

if:
0 h(N) h*(N)

 An admissible heuristic function is always
optimistic !

Admissible Heuristic

 Let h*(N) be the cost of the optimal path
from N to a goal node

 The heuristic function h(N) is admissible

17

if:
0 h(N) h*(N)

 An admissible heuristic function is always
optimistic !

G is a goal node h(G) = 0

Algorithm A*

• Algorithm A Search where we can prove
that the heuristic function is admissible.

Thi h i t d t fi d

18

• This search is guaranteed to find an
optimal solution if a solution exists!

4

 h (N) = number of misplaced tiles = 6

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

19

 h1(N) = number of misplaced tiles = 6
is admissible

 h2(N) = sum of the (Manhattan) distances of
every tile to its goal position

= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13
is admissible

 h3(N) = sum of permutation inversions
= 4 + 0 + 3 + 1 + 0 + 1 + 0 + 0 = 9

is ??? [left as an exercise]

Robot Navigation Heuristics

20

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y)

h2(N) = |xN-xg| + |yN-yg|
are both admissible

A* Search
(most popular algorithm in AI)

 f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function

21

 for all arcs: 0 < c(N,N’)
 “modified” search algorithm is used

 Best-first search is called A* search

Result #1

A* is complete and optimal

[This result holds if nodes revisiting
states are not discarded]

22

states are not discarded]

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution

For each node N on the fringe, f(N)d(N),
where d(N) is the depth of N in the tree

23

p

As long as A* hasn’t terminated, a node K on
the fringe lies on a solution path

Since each node expansion increases the
length of one path, K will eventually be
selected for expansion

Proof (2/2)
2) Whenever A* chooses to expands a goal

node, the path to this node is optimal

C*= h*(initial-node)

G’: non optimal goal node in the fringe

24

G : non-optimal goal node in the fringe
f(G’) = g(G’) + h(G’) = g(G’) C*

A node K in the fringe lies on an optimal path:
f(K) = g(K) + h(K) C*

So, G’ is not be selected for expansion

5

Time Limit Issue
 When a problem has no solution, A* runs for ever if

the state space is infinite or states can be revisited
an arbitrary number of times (the search tree can
grow arbitrarily large). In other case, it may take a
huge amount of time to terminate

 So, in practice, A* must be given a time limit. If it
has not found a solution within this limit, it stops.
Th th i t k if th bl h

25

Then there is no way to know if the problem has no
solution or A* needed more time to find it

 In the past, when AI systems were “small” and solving
a single search problem at a time, this was not too
much of a concern. As AI systems become larger,
they have to solve a multitude of search problems
concurrently. Then, a question arises: What should
be the time limit for each of them? More on this in
the lecture on Motion Planning ...

Time Limit Issue
 When a problem has no solution, A* runs for ever if

the state space is infinite or states can be revisited
an arbitrary number of times (the search tree can
grow arbitrarily large). In other case, it may take a
huge amount of time to terminate

 So, in practice, A* must be given a time limit. If it
has not found a solution within this limit, it stops.
Th th i t k if th bl h

Hence, the usefulness of a simple test,
like in the (2n-1)-puzzle, that determines
if the goal is reachable

26

Then there is no way to know if the problem has no
solution or A* needed more time to find it

 In the past, when AI systems were “small” and solving
a single search problem at a time, this was not too
much of a concern. As AI systems become larger,
they have to solve a multitude of search problems
concurrently. Then, a question arises: What should
be the time limit for each of them? More on this in
future lectures ...

Unfortunately, such a test rarely exists

88--PuzzlePuzzle

1+5
3+3

3+4

2+3

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

27

0+4

1+5

1+3

3+4

3+4

3+2 4+1

5+2

5+0

2+4

2+3

Robot Navigation

28

Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

29

0 211

7

3

7

7

6 3 2

8

6

45

36 5 24 43 5

5

6

4

5

Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

30

0 211

7

3

7

7

6 3 2

8

6

45

36 5 24 43 5

5

6

4

57

0

6

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

58 7 46 23 3 54 68+38+3 7+47+4 6+56+3 5+65+6 4+74+7 3+83+8 2+92+9 3+10

31

0 211

7

3

7

7

6 3 2

8

6

45

36 5 24 43 5

5

6

4

57+0

6+1

6+1

8+1

7+0

7+2

6+1

7+2

6+1

8+1

7+2

7+2 6+36+3 5+45+4 4+54+5 3+63+6 2+7

5+6

2+7 3+8

4+7 3+8

2+9

3+8

2+9 1+101+10 0+110+11

How to create an admissible h?

 An admissible heuristic can usually be seen as
the cost of an optimal solution to a relaxed
problem (one obtained by removing constraints)

 In robot navigation:

32

g
• The Manhattan distance corresponds to removing the

obstacles
• The Euclidean distance corresponds to removing both

the obstacles and the constraint that the robot
moves on a grid

 More on this topic later

What to do with revisited states?

c = 1 2

h = 100 1 The heuristic h is

33

100

21

0

90
clearly admissible

What to do with revisited states?

c = 1 2

h = 100 1 f = 1+100 2+1

34

100

21

0

90

104

4+90

?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

1 2

100 1 1+100 2+1

What to do with revisited states?

35

100

21

0

90

104

4+902+90

102

Instead, if we do not discard nodes revisiting
states, the search terminates with an optimal
solution

But ...
If we do not discard nodes revisiting
states, the size of the search tree can be
exponential in the number of visited states

36

1

2

11

1

2

1

1

1+1 1+1

2+1 2+1 2+1 2+1

4 4 4 4 4 4 4 4

7

 It is not harmful to discard a node revisiting
a state if the new path to this state has
higher cost than the previous one

 A* remains optimal, but the size of the
search tree can still be exponential in the

37

p
worst case

 Fortunately, for a large family of admissible
heuristics – consistent heuristics – there is a
much easier way of dealing with revisited
states

Consistent Heuristic
A heuristic h is consistent if
1) for each node N and each child N’ of N:

h(N) c(N,N’) + h(N’)
[Intuition: h gets more and more

N
c(N,N’)

38

[g
precise as we get deeper in the
search tree]

2) for each goal node G:
h(G) = 0

The heuristic is also said to be monotone

N’ h(N)

h(N’)

(triangle inequality)

Consistency Violation

N
c(N,N’)

If h tells that N is
100 units from the
goal, then moving
from N along an arc

 10

39

N’ h(N)

h(N’)

(triangle inequality)

costing 10 units
should not lead to a
node N’ that h
estimates to be 10
units away from the
goal

 A consistent heuristic is also admissible

 An admissible heuristic may not be
nsist nt b t m n dmissibl h isti s

Admissibility and Consistency

40

consistent, but many admissible heuristics
are consistent

8-Puzzle

1 2 3

4 5 6

7 8

12

3

4

5

67

8

41

STATE(N) goal

 h1(N) = number of misplaced tiles
 h2(N) = sum of the (Manhattan) distances

of every tile to its goal position
are both consistent

Robot navigation

42

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y)

h2(N) = |xN-xg| + |yN-yg|
are both consistent

8

If h is consistent, then whenever A*
expands a node, it has already found
an optimal path to this node’s state

Result #2

43

N N1
S S1

The path to N
is the optimal
path to S

N2

N2 can be
discarded

Proof
1) Consider a node N and its child N’

Since h is consistent: h(N) c(N,N’)+h(N’)

f(N) = g(N)+h(N) g(N)+c(N,N’)+h(N’) = f(N’)
So, f is non-decreasing along any path

44

2) If K is selected for expansion, then any other
node K’ in the fringe verifies f(K’) f(K)

So, if one node K’ lies on another path to the
state of K, the cost of this other path is no
smaller than the path to K

Revisited States with
Consistent Heuristic

 When a node is expanded, store its state
into CLOSED
 When a new node N is generated:

45

• If STATE(N) is in CLOSED, discard N
• If there exits a node N’ in the fringe

such that STATE(N’) = STATE(N),
discard the node – N or N’ – with the
largest f

Worst-Case Complexity of A*
when State Space is Finite (1/3)
 Assume a state graph of n states and r arcs
 Two cases:

a) If the number of successors of any state is O(n),
then r = O(n2); the state graph is dense

46

b) If it is O(1), then r = O(n); the graph is sparse
[In most search problem, the graph is sparse]

 CLOSED is implemented as a hash-table with
O(1) access time

 Heuristic h is consistent

Worst-Case Complexity of A*
when State Space is Finite (2/3)
 The fringe is implemented as a list
 linear scan to find best node

 Number of attempted add-to-fringe operations: O(r)

47

 Time to add a node to the fringe: O(1)
 Number of node expansions: O(n)
 Time to select a node from the fringe: O(n)
 Total time complexity: O(r + n2) = O(n2)
 Space complexity: O(n)

[A node need not pointing to its children]

Worst-Case Complexity of A*
when State Space is Finite (3/3)

 The fringe is implemented as a priority queue

 Number of attempted add-to-fringe operations: O(r)
 Time to add a node to the fringe O(log n)

48

Time to add a node to the fringe O(log n)
 Number of node expansions O(n)
 Time to select a node from the fringe O(log n)
 Total time complexity: O(r log n + n log n)

• If dense state graph: O(n2 log n)
• If sparse state graph: O(n log n)

 Space complexity: O(n)

9

Worst-Case Complexity of A*
when State Space is Finite (3/3)

 The fringe is implemented as a priority queue

 Number of attempted add-to-fringe operations: O(r)
 Time to add a node to the fringe O(log n)
So, for large state spaces with reasonable
b hi f t (t t h)

49

Time to add a node to the fringe O(log n)
 Number of node expansions O(n)
 Time to select a node from the fringe O(log n)
 Total time complexity: O(r log n + n log n)

• If dense state graph: O(n2 log n)
• If sparse state graph: O(n log n)

 Space complexity: O(n)

branching factors (sparse state graphs),
it is preferable to implement the fringe as

a priority queue

Is A* with some consistent
heuristic all what we need?

No !
 The previous result only says that A*’s worst-

case time complexity is low-polynomial in the

50

case time complexity is low-polynomial in the
size of the state space, but this size may be
exponential in other parameters (e.g., path
lengths) depending on the input description

 The state space can even be infinite
 There are very dumb consistent heuristics

h 0

 It is consistent (hence, admissible) !
 A* with h0 is uniform-cost search

B dth fi t d if t

51

 Breadth-first and uniform-cost are
particular cases of A*

Heuristic Accuracy
Let h1 and h2 be two consistent heuristics such
that for all nodes N:

h1(N) h2(N)
h2 is said to be more accurate (or more informed)

52

2 (f)
than h1

 h1(N) = number of misplaced
tiles

 h2(N) = sum of distances of
every tile to its goal position

 h2 is more accurate than h1

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

Result #3

 Let h2 be more informed than h1

 Let A1* be A* using h1 and A2* be A*
using h2

Wh l ti i t ll th

53

 Whenever a solution exists, all the
nodes expanded by A2*, except possibly
the goal node, are also expanded by A1*

Proof
 C* = h*(initial-node)
 Every node N such that f(N) C* is

eventually expanded
 Every node N such that h(N) C*g(N)

i ll d d

54

is eventually expanded
 Since h1(N) h2(N), every non-goal node

expanded by A2* is also expanded by A1*
 If f(N) = C*, N is a goal node; only one

such node is expanded [it may not be the
same one for A1* and A2*]

10

Effective Branching Factor

 It is used as a measure the effectiveness
of a heuristic
 Let n be the total number of nodes

generated by A* for a particular problem

55

generated by A* for a particular problem
and d the depth of the solution
 The effective branching factor b* is

defined by n = 1 + b* + (b*)2 +...+ (b*)d

Experimental Results
(see R&N for details)

 8-puzzle with:
 h1 = number of misplaced tiles
 h2 = sum of distances of tiles to their goal positions

 Random generation of many problem instances
 Average branching factors (number of expanded nodes):

56

g g (p)

d IDS A1* A2*
2 2.45 1.79 1.79
6 2.73 1.34 1.30
12 2.78 (3,644,035) 1.42 (227) 1.24 (73)
16 -- 1.45 1.25
20 -- 1.47 1.27
24 -- 1.48 (39,135) 1.26 (1,641)

 By solving relaxed problems at each node
 In the 8-puzzle, the sum of the distances of

each tile to its goal position (h2) corresponds to
solving 8 simple problems:

How to create good heuristic?

5 8 1 2 3

57 It ignores negative interactions among tiles

14

7

5

2

63

8

64

7

1

5

2

8

3

5

5

 For example, we could consider two more complex
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3

58

 h = d1234 + d5678 [disjoint pattern heuristic]
 These distances could have been precomputed in a

database [left as an exercise]

3

2 14 4

1 2 3

6

7

5

87

5

6

8

 For example, we could consider two more complex
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3

Several order-of-magnitude speedups
have been obtained this way for the

59

 h = d1234 + d5678

 These distances could have been precomputed [left as
an exercise]

3

2 14 4

1 2 3

6

7

5

87

5

6

8

have been obtained this way for the
15- and 24-puzzle (see R&N)

On Completeness and Optimality
 A* with a consistent heuristic has nice

properties: completeness, optimality, no need
to revisit states

 Theoretical completeness does not mean
“practical” completeness if you must wait too

60

p p y
long to get a solution (remember the time
limit issue)

 So, if one can’t design an accurate consistent
heuristic, it may be better to settle for a
non-admissible heuristic that “works well in
practice”, even completeness and optimality
are no longer guaranteed

11

Iterative Deepening A* (IDA*)
 Idea: Reduce memory requirement of

A* by applying cutoff on values of f
 Consistent heuristic h
 Algorithm IDA*:

61

 Algorithm IDA :
1. Initialize cutoff to f(initial-node)
2. Repeat:

a. Perform depth-first search by expanding all
nodes N such that f(N) cutoff

b. Reset cutoff to smallest value f of non-
expanded (leaf) nodes

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

62

4

6

Cutoff=4

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

63

4

4

6

Cutoff=4

6

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

64

4

4

6

Cutoff=4

6

5

8-Puzzle

5

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

65

4

4

6

Cutoff=4

6

5

8-Puzzle

56

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

66

4

4

6

Cutoff=4

6

5

12

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

67

4

6

Cutoff=5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

68

4

4

6

Cutoff=5

6

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

69

4

4

6

Cutoff=5

6

5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

70

4

4

6

Cutoff=5

6

5

7

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

71

4

4

6

Cutoff=5

6

5

7

5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

72

4

4

6

Cutoff=5

6

5

7

5 5

13

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

73

4

4

6

Cutoff=5

6

5

7

5 5

5

Advantages/Drawbacks of IDA*

 Advantages:
• Still complete and optimal
• Requires less memory than A*
• Avoid the overhead to sort the fringe

74

• Avoid the overhead to sort the fringe
 Drawbacks:

• Can’t avoid revisiting states not on the
current path

• Available memory is poorly used

SMA*
(Simplified Memory-bounded A*)

 Works like A* until memory is full
 Then SMA* drops the node in the fringe with the

largest f value and “backs up” this value to its parent
 When all children of a node N have been dropped, the

smallest backed up value replaces f(N)

75

p p ()
 In this way, SMA* the root of an erased subtree

remembers the best path in that subtree
 SMA* will regenerate this subtree only if all other

nodes in the fringe have greater f values
 SMA* generates the best solution path that fits in

memory
 SMA* can’t completely avoid revisiting states, but it

can do a better job at this that IDA*

Search problems

Blind search

Heuristic search:

76

Heuristic search:
best-first and A*

Construction of heuristics Local searchVariants of A*

When to Use Search Techniques?

1) The search space is small, and
• No other technique is available, or
• Develop a more efficient technique is not

worth the effort

77

worth the effort

2) The search space is large, and
• No other available technique is available, and
• There exist “good” heuristics

