Heuristic (Informed) Search

(Where we try to be smarter in how we choose among alternatives)

R\&N III: Chapter 3.5 R\&N II: Chap. 4, Sect. 4.1-3

Search Algorithm

1. INSERT(initial-node,FRINGE)
2. Repeat:
a. If empty(FRINGE) then return failure
b. $n \leftarrow \operatorname{REMOVE}($ FRINGE)
c. $s \leftarrow S T A T E(n)$
d. If GOAL?(s) then return path or goal state
e. For every state s' in SUCCESSORS(s)
i. Create a node n ' as a successor of n
ii. INSERT(n ',FRINGE)

Best-First Search

- It exploits state description to estimate how promising each search node is
- An evaluation function f maps each search node N to positive real number $f(N)$
- Traditionally, the smaller $f(N)$, the more promising N
- Best-first search sorts the fringe in increasing f [random order is assumed among nodes with equal values of f]

Best-First Search

- It exploits state description to estimate how promising each search node is
- An evaluation function f maps every search node "Best". only refers to the value of f f $f(N)$ not to the quality of the actual path. Best-first search does not generate optimal paths in general - Usually, the pronising N
- Best first search sorts the fringe in increasing f [random order is assumed among nodes with equal values of f]

How to construct an evaluation function?

- There are no limitations on f. Any function of your choice is acceptable. But will it help the search algorithm?
- The classical approach is to construct $f(N)$ as an estimator of a solution path through N

Heuristic Function

- The heuristic function $h(N)$ estimates the distance of $\operatorname{STATE}(N)$ to a goal state
Its value is independent of the current search tree; it depends only on STATE(N) and the goal test
- Example:

5		8	1	2	3	
4	2	1	4	5	6	
7	3	6	7	8		

- $h_{1}(N)=$ number of misplaced tiles $=6$

Other Examples

5		8	1		2	3
4	2	1	4		5	6
7	3	6	7		8	
State(N)						

- $h_{1}(N)=$ number of misplaced tiles $=6$
- h2 (N) = sum of the (Manhattan) distances of every tile to its goal position
$=2+3+0+1+3+0+3+1=13$
- $\mathrm{h} 3(\mathrm{~N})=$ sum of permutation inversions $=4+0+3+1+0+1+0+0=9$

Can we Prove Anything?

- If the state space is finite and we discard nodes that revisit states, the search is complete, but in general is not optimal
- If the state space is finite and we do not discard nodes that revisit states, in general the search is not complete
- If the state space is infinite, in general the search is not complete

$f(N)=h(N)=$ straight distance to the goal

Classical Evaluation Functions

- $h(N)$: heuristic function
[Independent of search tree]
- $g(N)$: cost of the best path found so far between the initial node and N
[Dependent on search tree]
- $f(N)=h(N) \rightarrow$ greedy best-first search
- $f(N)=g(N)+h(N)$

Algorithm A Search

- Orders open list according to

$$
\mathrm{F}(\mathrm{n})=\mathrm{G}(\mathrm{n})+\mathrm{H}(\mathrm{n})
$$

- Must have search package keep a record of what the best path found so far is so that the $G(n)$ is as accurate as possible.
(go to handout on Algorithm A Search)

Admissible Heuristic

- Let $h *(N)$ be the cost of the optimal path from N to a goal node
- The heuristic function $h(N)$ is admissible if:

$$
0 \leq h(N) \leq h^{\star}(N)
$$

- An admissible heuristic function is always optimistic!

$$
G \text { is a goal node } \rightarrow h(G)=0
$$

Admissible Heuristic

- Let $h *(N)$ be the cost of the optimal path from N to a goal node
- The heuristic function $h(N)$ is admissible if:

$$
0 \leq h(N) \leq h *(N)
$$

- An admissible heuristic function is always optimistic!

Algorithm A*

- Algorithm A Search where we can prove that the heuristic function is admissible.
- This search is guaranteed to find an optimal solution if a solution exists!

8-Puzzle Heuristics

5		8				
4	2	1				
7	3	6				
STATE(N)			\quad	1	2	3
:---	:---	:---				
4	5	6				
7	8					
Goal state						

- $h_{1}(N)=$ number of misplaced tiles $=6$ is admissible
- h2 $(N)=$ sum of the (Manhattan) distances of every tile to its goal position
$=2+3+0+1+3+0+3+1=13$ is admissible
- $h 3(N)=$ sum of permutation inversions $=4+0+3+1+0+1+0+0=9$ is ??? [left as an exercise]

A* Search
 (most popular algorithm in AI)

- $f(N)=g(N)+h(N)$, where:
- $g(N)=$ cost of best path found so far to N
- $h(N)=$ admissible heuristic function
- for all arcs: $0<\varepsilon \leq c\left(N, N^{\prime}\right)$
- "modified" search algorithm is used
\rightarrow Best-first search is called A^{*} search

Proof (1/2)

1) If a solution exists, A^{*} terminates and returns a solution

For each node N on the fringe, $f(N) \geq d(N) \times \varepsilon$, where $d(N)$ is the depth of N in the tree

As long as A^{*} hasn't terminated, a node K on the fringe lies on a solution path

Since each node expansion increases the length of one path, K will eventually be selected for expansion

Robot Navigation Heuristics

Cost of one horizontal/vertical step $=1$ Cost of one diagonal step $=\sqrt{2}$
$\left.\begin{array}{l}h_{1}(N)=\sqrt{\left(x_{N}-x_{g}\right)^{2}+\left(y_{N}-y_{g}\right)^{2}} \\ h_{2}(N)=\left|x_{N}-x_{g}\right|+\left|y_{N}-y_{g}\right|\end{array}\right\}$ are both admissible

$$
h_{2}(N)=\left|x_{N}-x_{g}\right|+\left|y_{N}-y_{g}\right|
$$

Result \#1

A^{*} is complete and optimal
[This result holds if nodes revisiting states are not discarded]

Proof (2/2)

2) Whenever A^{*} chooses to expands a goal node, the path to this node is optimal
$C^{\star}=h^{\star}$ (initial-node)
G^{\prime} : non-optimal goal node in the fringe
$f\left(G^{\prime}\right)=g\left(G^{\prime}\right)+h\left(G^{\prime}\right)=g\left(G^{\prime}\right)>C^{\star}$
A node K in the fringe lies on an optimal path: $f(K)=g(K)+h(K)<C^{\star}$

So, G^{\prime} is not be selected for expansion

Time Limit Issue

- When a problem has no solution, A^{*} runs for ever if the state space is infinite or states can be revisited an arbitrary number of times (the search tree can grow arbitrarily large). In other case, it may take a huge amount of time to terminate
- So, in practice, A^{*} must be given a time limit. If it has not found a solution within this limit, it stops. Then there is no way to know if the problem has no solution or A^{*} needed more time to find it
- In the past, when AI systems were "small" and solving a single search problem at a time, this was not too much of a concern. As AI systems become larger, they have to solve a multitude of search problems concurrently. Then, a question arises: What should be the time limit for each of them? More on this in the lecture on Motion Planning ..

Robot Navigation

$f(N)=h(N)$, with $h(N)=$ Manhattan distance to the goal (not A*)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

Time Limit Issue

- When a problem has no solution, A^{*} runs for ever if the state space is infinite or states can be revisited an arbitranv number of times (the cearch tree can Hence, the usefulness of a simple test,
like in the ($2 n-1)$-puzzle, that determines if the goal is reachable
- Unfortunately, such a test rarely exists a single search problem at a time, this was not too much of a concern. As AI systems become larger they have to solve a multitude of search problems concurrently. Then, a question arises: What should be the time limit for each of them? More on this in future lectures..

Robot Navigation

Robot Navigation

$f(N)=h(N)$, with $h(N)=$ Manhattan distance to the goal (not A^{*})

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

Robot Navigation

$f(N)=g(N)+h(N)$, with $h(N)=$ Manhattan distance to goal (A^{*})

$8+3$	$7+4$	$6+3$	$5+6$	$4+7$	$3+8$	$2+9$	$3+10$	4	5	6
$7+2$		$5+6$	$4+7$	$3+8$						5
$6+1$			3	$2+9$	$1+10$	$0+11$	1	2		4
$7+0$	$6+1$									5
$8+1$	$7+2$	$6+3$	$5+4$	$4+5$	$3+6$	$2+7$	$3+8$	4	5	6

What to do with revisited states?

The heuristic h is clearly admissible

What to do with revisited states?

Instead, if we do not discard nodes revisiting states, the search terminates with an optimal solution

How to create an admissible h?

- An admissible heuristic can usually be seen as the cost of an optimal solution to a relaxed problem (one obtained by removing constraints)
- In robot navigation:
- The Manhattan distance corresponds to removing the obstacles
- The Euclidean distance corresponds to removing both the obstacles and the constraint that the robot moves on a grid
- More on this topic later

What to do with revisited states?

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution 34

- It is not harmful to discard a node revisiting a state if the new path to this state has higher cost than the previous one
- A^{*} remains optimal, but the size of the search tree can still be exponential in the worst case
- Fortunately, for a large family of admissible heuristics - consistent heuristics - there is a much easier way of dealing with revisited states

Consistency Violation

If h tells that N is
100 units from the
goal, then moving
from N along an arc
costing 10 units
should not lead to a
node N that h
estimates to be 10
units away from the
goal
 estimates to be 10 goal

Admissibility and Consistency

- A consistent heuristic is also admissible
- An admissible heuristic may not be consistent, but many admissible heuristics are consistent

- $\mathrm{h} 1(\mathrm{~N})=$ number of misplaced tiles
- h2 $2(N)=$ sum of the (Manhattan) distances of every tile to its goal position are both consistent

Consistent Heuristic

A heuristic h is consistent if

1) for each node N and each child N^{\prime} of N :
$h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$

2) for each goal node G :
$h(G)=0$
(triangle inequality)

The heuristic is also said to be monotone ${ }_{38}$

Result \#2

If h is consistent, then whenever A^{*} expands a node, it has already found an optimal path to this node's state

Revisited States with Consistent Heuristic

- When a node is expanded, store its state into CLOSED
- When a new node N is generated:
- If $\operatorname{statE}(N)$ is in CLOSED, discard N
- If there exits a node N^{\prime} in the fringe such that $\operatorname{STATE}\left(\mathrm{N}^{\prime}\right)=\operatorname{STATE}(\mathrm{N})$, discard the node - N or N^{\prime} - with the largest f

Worst-Case Complexity of A^{*} when State Space is Finite (2/3)

- The fringe is implemented as a list \rightarrow linear scan to find best node
- Number of attempted add-to-fringe operations: $O(r)$
- Time to add a node to the fringe: $O(1)$
- Number of node expansions: $O(n)$
- Time to select a node from the fringe: $O(n)$
- Total time complexity:
$O\left(r+n^{2}\right)=O\left(n^{2}\right)$
- Space complexity:
[A node need not pointing to its children]

Proof

1) Consider a node N and its child N^{\prime} Since h is consistent: $h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$
$f(N)=g(N)+h(N) \leq g(N)+c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)=f\left(N^{\prime}\right)$
So, f is non-decreasing along any path
2) If K is selected for expansion, then any other node K^{\prime} in the fringe verifies $f\left(K^{\prime}\right) \geq f(K)$

So, if one node K^{\prime} lies on another path to the state of K, the cost of this other path is no smaller than the path to K

Worst-Case Complexity of A^{*} when State Space is Finite ($1 / 3$)

- Assume a state graph of n states and r arcs
- Two cases:
a) If the number of successors of any state is $O(n)$, then $r=O\left(n^{2}\right)$; the state graph is dense
b) If it is $O(1)$, then $r=O(n)$; the graph is sparse
[In most search problem, the graph is sparse]
- CLOSED is implemented as a hash-table with O(1) access time
- Heuristic h is consistent

Worst-Case Complexity of A^{*} when State Space is Finite (3/3)

- The fringe is implemented as a priority queue
- Number of attempted add-to-fringe operations: $O(r)$
- Time to add a node to the fringe $O(\log n)$
- Number of node expansions $O(n)$
- Time to select a node from the fringe $O(\log n)$
- Total time complexity: $O(r \log n+n \log n)$
- If dense state graph:
$O\left(n^{2} \log n\right)$
- If sparse state graph:
$O(n \log n)$
- Space complexity:

Worst-Case Complexity of A * when State Space is Finite (3/3)

- The fringe is implemented as a priority queue

So, for large state spaces with reasonable branching factors (\rightarrow sparse state graphs), it is preferable to implement the fringe as a priority queue

- If dense state graph:
$O\left(n^{2} \log n\right)$
- If sparse state graph:
$O(n \log n)$
- Space complexity:

$$
h \equiv 0
$$

- It is consistent (hence, admissible)!
- A^{*} with $h=0$ is uniform-cost search
- Breadth-first and uniform-cost are particular cases of A^{*}

Result \#3

- Let h_{2} be more informed than h_{1}
- Let $A_{1}{ }^{\star}$ be A^{\star} using h_{1} and $A_{2}{ }^{\star}$ be A^{\star} using h_{2}
- Whenever a solution exists, all the nodes expanded by $A_{2}{ }^{*}$, except possibly the goal node, are also expanded by $A_{1}{ }^{*}$

Effective Branching Factor

- It is used as a measure the effectiveness of a heuristic
- Let n be the total number of nodes generated by A^{*} for a particular problem and d the depth of the solution
- The effective branching factor b^{*} is defined by $n=1+b^{*}+\left(b^{\star}\right)^{2}+\ldots+\left(b^{\star}\right)^{d}$

How to create good heuristic?

- By solving relaxed problems at each node
- In the 8-puzzle, the sum of the distances of each tile to its goal position (h_{2}) corresponds to solving 8 simple problems:

- It ignores negative interactions among tiles

Experimental Results
 (see R\&N for details)

- 8-puzzle with:
- $h_{1}=$ number of misplaced tiles
- $h_{2}=$ sum of distances of tiles to their goal positions
- Random generation of many problem instances
- Average branching factors (number of expanded nodes):

d	IDS	$A_{1}{ }^{\star}$	$A_{2}{ }^{\star}$
2	2.45	1.79	1.79
6	2.73	1.34	1.30
12	$2.78(3,644,035)$	$1.42(227)$	$1.24(73)$
16	--	1.45	1.25
20	--	1.47	1.27
24	--	$1.48(39,135)$	$1.26(1,641)$

Can we do better?

- For example, we could consider two more complex relaxed problems:

- $\rightarrow h=d_{1234}+d_{5678}$ [disjoint pattern heuristic]
- These distances could have been precomputed in a database [left as an exercise]

On Completeness and Optimality

- A* with a consistent heuristic has nice properties: completeness, optimality, no need to revisit states
- Theoretical completeness does not mean "practical" completeness if you must wait too long to get a solution (remember the time limit issue)
- So, if one can't design an accurate consistent heuristic, it may be better to settle for a non-admissible heuristic that "works well in practice", even completeness and optimality are no longer guaranteed

Iterative Deepening A^{*} (IDA*)

- Idea: Reduce memory requirement of A^{*} by applying cutoff on values of f
- Consistent heuristic h
- Algorithm IDA*:

1. Initialize cutoff to f (initial-node)
2. Repeat:
a. Perform depth-first search by expanding all nodes N such that $f(N)$ c cutoff
b. Reset cutoff to smallest value f of nonexpanded (leaf) nodes

SMA* (Simplified Memory-bounded A^{*})

- Works like A^{*} until memory is full
- Then SMA* drops the node in the fringe with the largest f value and "backs up" this value to its parent
- When all children of a node N have been dropped, the smallest backed up value replaces $f(N)$
- In this way, SMA* the root of an erased subtree remembers the best path in that subtree
- SMA* will regenerate this subtree only if all other nodes in the fringe have greater f values
- SMA* generates the best solution path that fits in memory
- SMA* can't completely avoid revisiting states, but it can do a better job at this that IDA*

When to Use Search Techniques?

1) The search space is small, and

- No other technique is available, or
- Develop a more efficient technique is not worth the effort

2) The search space is large, and

- No other available technique is available, and
- There exist "good" heuristics

Advantages/Drawbacks of IDA*

- Advantages:
- Still complete and optimal
- Requires less memory than A^{*}
- Avoid the overhead to sort the fringe
- Drawbacks:
- Can't avoid revisiting states not on the current path
- Available memory is poorly used

