Solving Problems by Searching (Blindly)

R\&N: Chap. 3
(many of these slides borrowed from Stanford's AI Class)

Problem Solving Agents

- Decide what to do by finding a sequence of actions that lead to desirable states.

Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest

Problem Solving Agent

- Formulate goal:
- be in Bucharest (in time for flight the next day)
- Goal formulation is the decision of what you are going to search for - helps us simplify our methods for finding a solution
- Formulate problem: decide what actions, states to consider given a goal
- states: map with agent in a particular city (location)
- actions: drive between cities (if there is a road)

Finding a solution...

- Take a road from where I am and see if it takes me to Bucharest...
- Three roads leave Arad, but none go to Bucharest...

Single-state problem formulation

A problem is defined by three (four) items:

1. initial state e.g., "at Arad"
2. actions or successor function $S(x)=$ set of preconditionaction pairs where the action returns a state

- e.g., $S($ at Arad $)=\{<a t$ Arad $\rightarrow($ at Zerind $>, \ldots\}$

3. goal test, can be

- explicit, e.g., $x=$ "at Bucharest"
- implicit, e.g., Checkmate(x)

4. path cost (additive)

- e.g., sum of distances, number of actions executed, etc.
$-c(x, a, y)$ is the step cost, assumed to be ≥ 0
- A solution is a sequence of actions leading from the initial state to a goal state

State Space

- Each state is an abstract representation of a collection of possible worlds sharing some crucial properties and differing on non-important details only
E.g.: In assembly planning, a state does not define exactly the absolute position of each part

- The state space is discrete. It may be finite, or infinite and is implicit in the problem formulation.

Successor Function

- It implicitly represents all the actions that are feasible in each state

Path Cost

- An arc cost is a positive number measuring the "cost" of performing the action corresponding to the arc, e.g.:
- 1 in the 8 -puzzle example
- expected time to merge two sub-assemblies
- We will assume that for any given problem the cost c of an arc always verifies: $c \geq \varepsilon>0$, where ε is a constant [This condition guarantees that, if path becomes arbitrarily long, its cost also becomes arbitrarily large]

Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
- be in Bucharest
- Formulate problem:
- states: being in various cities
- initial state: being in Arad
- actions: drive between cities
- Find solution:
- sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Vacuum world state space graph

- states? integer dirt and robot location
- Initial state? Dirt in both locations and the vacuum cleaner in one of them
- actions? Left, Right, Suck
- goal test? no dirt at all locations
- path cost? 1 per action

Example: The 8-puzzle

- states? locations of tiles
- Initial state? puzzle in the configuration above
- actions? move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard]

Vacuum world state space graph

- states?
- Initial state?
- actions?
- goal test?
- path cost?

Example: The 8-puzzle

- states?
- Initial state?
- actions?
- goal test?
- path cost?

GO TO SLIDES

- DO WATERJUG PROBLEM
- Problem Formulation; Search algorithms

Assumptions in Basic Search

- The world is static
- The world is discretizable
- The world is observable
- The actions are deterministic

But many of these assumptions can be removed, and search still remains an important problem-solving tool

Simple Problem-Solving-Agent Agent Algorithm

1. $s_{0} \leftarrow$ sense/read state
2. GOAL? \leftarrow select/read goal test
3. SUCCESSORS \leftarrow read successor function
4. solution $\leftarrow \operatorname{search}\left(s_{0}, G\right.$, Succ $)$
5. perform(solution)

Basic Search Concepts

- Search tree
- Search node
- Node expansion
- Fringe of search tree
- Search strategy: At each stage it determines which node to expand

Searching the state

- So far we have talked about how a problem can be looked at so as to form search problems.
- How do we actually do the search?
- (Do search-algorithm slides...)

Node expansion

The expansion of a node N of the search tree consists of:

1) Evaluating the successor function on State(N)
2) Generating a child of N for each state returned by the function

Fringe and Search Strategy

- The fringe is the set of all search nodes that haven't been expanded yet

Fringe and Search Strategy

- The fringe is the set of all search nodes that haven't been expanded yet
- It is implemented as a priority queue FRINGE
- INSERT(node,FRINGE)
- REMOVE(FRINGE)
- The ordering of the nodes in FRINGE defines the search strategy

Search Algorithm

1. If GOAL? (initial-state) then return initial-state
2. INSERT(initial-node,FRINGE)
3. Repeat:
a. If empty(FRINGE) then return failure
b. $n \leftarrow \operatorname{REMOVE}($ FRINGE)
c. $s \leftarrow S T A T E(n)$
d. If GOAL?(s') then return path or goal state
e. For every state s' in SUCCESSORS(s)
i. Create a new node n as a child of n
ii. INSERT(n^{\prime}, FRINGE)

Performance Measures

- Completeness

A search algorithm is complete if it finds a solution whenever one exists
[What about the case when no solution exists?]

- Optimality

A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists [Other optimality measures are possible]

- Complexity

It measures the time and amount of memory required by the algorithm

Important Remark

- Some search problems, such as the ($n^{2}-1$)puzzle, are NP-hard
- One can't expect to solve all instances of such problems in less than exponential time
- One may still strive to solve each instance as efficiently as possible

Important Parameters

1) Maximum number of successors of any state
\rightarrow branching factor b of the search tree
2) Minimal length of a path between the initial and a goal state
\rightarrow depth d of the shallowest goal node in the search tree

Blind Strategies

- Breadth-first
- Bidirectional
- Depth-first \quad Arc cost $=1$
- Depth-limited
- Iterative deepening
- Uniform-Cost Arc cost
(variant of breadth-first) $\}=c($ action $) \geq \varepsilon>0$

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE $=(2,3)$

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
- Complete
- Optimal if step cost is 1
- Number of nodes generated:
$1+b+b^{2}+\ldots+b^{d}=\left(b^{d+1}-1\right) /(b-1)=O\left(b^{d}\right)$
- \rightarrow Time and space complexity is $O\left(b^{d}\right)$

Time and Memory Requirements

d	\# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	$\sim 10^{6}$	1 sec	100 Mb
8	$\sim 10^{8}$	100 sec	10 Gbytes
10	$\sim 10^{10}$	2.8 hours	1 Tbyte
12	$\sim 10^{12}$	11.6 days	100 Tbytes
14	$\sim 10^{14}$	3.2 years	10,000 Tbytes

Assumptions: $b=10 ; 1,000,000$ nodes $/ \mathrm{sec} ; 100$ bytes $/$ node $_{41}$

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE $=(4,5,6,7)$

Big O Notation

$g(n)=O(f(n))$ if there exist two positive constants a and N such that:
for all $n>N: \quad g(n) \leq a \times f(n)$

Time and Memory Requirements

d	\# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	$\sim 10^{6}$	1 sec	100 Mb
8	$\sim 10^{8}$	100 sec	10 Gbytes
10	$\sim 10^{10}$	2.8 hours	1 Tbyte
12	$\sim 10^{12}$	11.6 days	100 Tbytes
14	$\sim 10^{14}$	3.2 years	10,000 Tbytes

Assumptions: $b=10 ; 1,000,000$ nodes $/ \mathrm{sec} ; 100$ bytes $/$ node $_{42}$

Remark

If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times)

1	2	3	4					
5	6	7	8					
9	10	11	12					
13	14	15		$\stackrel{?}{\mid}$	1	2	3	4
:---:	:---:	:---:	:---:					
5	6	7	8					
9	10	11	12					
13	15	14						

Bidirectional Search

- Search forward from the start state and backward from the goal state simultaneously and stop when the two searches meet in the middle.
- If branching factor=b, and solution at depth d, then $O\left(2 b^{d / 2}\right)$ steps.
- $B=10, d=6$ then BFS needs $1,111,111$ nodes and bidirectional needs only 2,222.

Depth-First Strategy

New nodes are inserted at the front of FRINGE

47

Depth-First Strategy

New nodes are inserted at the front of FRINGE

Depth-First Strategy

New nodes are inserted at the front of FRINGE

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
- Complete only for finite search tree
- Not optimal
- Number of nodes generated:
$1+b+b^{2}+\ldots+b^{m}=O\left(b^{m}\right)$
- Time complexity is $O\left(b^{m}\right)$
- Space complexity is $O(\mathrm{bm})$ [or $O(\mathrm{~m})$]
[Reminder: Breadth-first requires $O\left(b^{d}\right)$ time and space]

Iterative Deepening Search

Provides the best of both breadth-first and depth-first search

Main idea: Totally horrifying !
IDS
For $\mathrm{k}=0,1,2, \ldots$ do:
Perform depth-first search with depth cutoff k

Depth-Limited Search

- Depth-first with depth cutoff k (depth below which nodes are not expanded)
- Three possible outcomes:
- Solution
- Failure (no solution)
- Cutoff (no solution within cutoff)

Iterative deepening search $I=0$

Iterative deepening search $/=2$

Properties of iterative deepening search

Complete? Yes

Time? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=$ $O\left(b^{d}\right)$

Space? $O(b d)$
Optimal? Yes, if step cost $=1$

Calculation

$$
\begin{aligned}
d b & +(d-1) b^{2}+\ldots+(1) b^{d} \\
& =b^{d}+2 b^{d-1}+3 b^{d-2}+\ldots+d b \\
& =\left(1+2 b^{-1}+3 b^{-2}+\ldots+d b^{-d}\right) \times b^{d} \\
& \leq\left(\sum_{i=1, \ldots, \infty} i b^{(1-i)}\right) \times b^{d}=b^{d}(b /(b-1))^{2}
\end{aligned}
$$

Number of Generated Nodes
(Breadth-First \& Iterative Deepening)
$d=5$ and $b=10$

BF	ID
1	6
10	50
100	400
1,000	3,000
10,000	20,000
100,000	100,000
111,111	123,456

$123,456 / 111,111 \sim 1.111$

Comparison of Strategies

- Breadth-first is complete and optimal, but has high space complexity
- Depth-first is space efficient, but is neither complete, nor optimal
- Iterative deepening is complete and optimal, with the same space complexity as depth-first and almost the same time complexity as breadth-first

Summary of algorithms

Avoiding Revisited States

- Let's not worry about it yet... but generally we will have to be careful to avoid states we have already seen...

