
1

Solving Problems by
Searching (Blindly)

R&N h

1

R&N: Chap. 3

(many of these slides borrowed from
Stanford’s AI Class)

Problem Solving Agents

• Decide what to do by finding a sequence
of actions that lead to desirable states.

Example: Romania
• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest

2

Problem Solving Agent
• Formulate goal:

– be in Bucharest (in time for flight the next day)
– Goal formulation is the decision of what you are

going to search for - helps us simplify our
methods for finding a solutionmethods for finding a solution

• Formulate problem: decide what actions,
states to consider given a goal
– states: map with agent in a particular city

(location)
– actions: drive between cities (if there is a road)

3

Finding a solution…

• Take a road from where I am and see if it
takes me to Bucharest…

• Three roads leave Arad, but none go to
BucharestBucharest…

4

Example: Romania

5

Single-state problem formulation
A problem is defined by three (four) items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of precondition-

action pairs where the action returns a state
– e.g., S(at Arad) = {<at Arad (at Zerind>, … }

3 goal test can be

6

3. goal test, can be
– explicit, e.g., x = "at Bucharest"
– implicit, e.g., Checkmate(x)

4. path cost (additive)
– e.g., sum of distances, number of actions executed, etc.
– c(x,a,y) is the step cost, assumed to be ≥ 0

• A solution is a sequence of actions leading from the initial
state to a goal state

2

State Space
 Each state is an abstract representation

of a collection of possible worlds sharing
some crucial properties and differing on
non-important details only
E.g.: In assembly planning, a state does not
define exactly the absolute position of each part

7

define exactly the absolute position of each part

 The state space is discrete. It may be
finite, or infinite and is implicit in the
problem formulation.

Successor Function
 It implicitly represents all the actions

that are feasible in each state

8

Successor Function
 It implicitly represents all the actions

that are feasible in each state
 Only the results of the actions (the

successor states) and their costs are

9

returned by the function
 The successor function is a “black box”:

its content is unknown
E.g., in assembly planning, the function does
not say if it only allows two sub-assemblies to
be merged or if it makes assumptions about
subassembly stability

Path Cost
 An arc cost is a positive number

measuring the “cost” of performing the
action corresponding to the arc, e.g.:
• 1 in the 8-puzzle example

10

• expected time to merge two sub-assemblies
 We will assume that for any given

problem the cost c of an arc always
verifies: c ≥ε 0, where ε is a constant
[This condition guarantees that, if path becomes
arbitrarily long, its cost also becomes arbitrarily large]

 It may be explicitly described:

 or partially described:

Goal State
1 2 3
4 5 6
7 8

1
5
8

a a
a a

aa (“a” stands for “any”)

11

 or defined by a condition,
e.g., the sum of every row, of every column,
and of every diagonals equals 30

11
14
5

13
6

3
8
4 10 9 7

122115

8 aa (y)

Example: Romania

• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest
• Formulate goal:

– be in Bucharest

12

• Formulate problem:
– states: being in various cities
– initial state: being in Arad
– actions: drive between cities

• Find solution:
– sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest

3

Example: Romania

13

Vacuum world state space graph

14

• states?
• Initial state?
• actions?
• goal test?
• path cost?

Vacuum world state space graph

15

• states? integer dirt and robot location
• Initial state? Dirt in both locations and the vacuum

cleaner in one of them

• actions? Left, Right, Suck
• goal test? no dirt at all locations
• path cost? 1 per action

Example: The 8-puzzle

16

• states?

• Initial state?

• actions?

• goal test?

• path cost?

Example: The 8-puzzle

17

• states? locations of tiles
• Initial state? puzzle in the configuration above
• actions? move blank left, right, up, down
• goal test? = goal state (given)
• path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

GO TO SLIDES

• DO WATERJUG PROBLEM

• Problem Formulation; Search algorithms

18

4

Assumptions in Basic Search

 The world is static
 The world is discretizable
 The world is observable

19

 The actions are deterministic

But many of these assumptions can be
removed, and search still remains an
important problem-solving tool

Searching the state

• So far we have talked about how a
problem can be looked at so as to form
search problems.

• How do we actually do the search?

20

• How do we actually do the search?

• (Do search-algorithm slides…)

Simple Problem-Solving-Agent
Agent Algorithm

1. s0 sense/read state
2 GOAL? select/read goal test

21

2. GOAL? select/read goal test
3. SUCCESSORS read successor function
4. solution search(s0, G, Succ)
5. perform(solution)

Searching the State Space

22

Search tree

Note that some states are
visited multiple times

Basic Search Concepts

 Search tree
 Search node
 Node expansion

23

 Fringe of search tree
 Search strategy: At each stage it

determines which node to expand

Search Nodes States

1

2
3 4
5 6

7
8

24

1

2
3 4
5 6

7
8

1

2
3 4
5 6

78

1
3
5 6

8

1
3

4

5 6
7

82
4 7

2

1

2
3 4
5 6

7
8

5

Search Nodes States

1

2
3 4
5 6

7
8

25

1

2
3 4
5 6

7
8

1

2
3 4
5 6

78

1
3
5 6

8

1
3

4

5 6
7

82
4 7

2

1

2
3 4
5 6

7
8

If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite

If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite

Data Structure of a Node

PARENT-NODE
(recall Ariadne thread)

1

2
3 4
5 6

7
8

STATE

BOOKKEEPING
CHILDREN

26

Depth of a node N = length of path from root to N
(Depth of the root = 0)

5Path-Cost
5Depth
RightAction

Expanded yes
...

CHILDREN

Node expansion

The expansion of a node N of the search
tree consists of:
1) Evaluating the successor function on

STATE(N)

27

STATE(N)
2) Generating a child of N for each

state returned by the function

Fringe and Search Strategy

 The fringe is the set of all search nodes
that haven’t been expanded yet

28
Is it identical
to the set of

28

1
3 4
5 6

7

1

2
3 4
5 6

7
8

1

2
3 4
5 6

78

1
3
5 6

8

1
3

4

5 6
7

82
4 7

2

1

2
3 4
5 6

7
8

to the set of
leaves?

Fringe and Search Strategy

 The fringe is the set of all search nodes
that haven’t been expanded yet
 It is implemented as a priority queue

FRINGE

29

FRINGE
• INSERT(node,FRINGE)
• REMOVE(FRINGE)

 The ordering of the nodes in FRINGE
defines the search strategy

Search Algorithm
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRINGE)
3. Repeat:

a. If empty(FRINGE) then return failure
b n REMOVE(FRINGE)

30

b. n REMOVE(FRINGE)
c. s STATE(n)
d. If GOAL?(s’) then return path or goal

state
e. For every state s’ in SUCCESSORS(s)

i. Create a new node n’ as a child of n
ii. INSERT(n’,FRINGE)

6

Performance Measures

 Completeness
A search algorithm is complete if it finds a
solution whenever one exists
[What about the case when no solution exists?]
 Optimality

31

 Optimality
A search algorithm is optimal if it returns a
minimum-cost path whenever a solution exists
[Other optimality measures are possible]
 Complexity

It measures the time and amount of memory
required by the algorithm

Important Parameters

1) Maximum number of successors of any state

 branching factor b of the search tree

32

2) Minimal length of a path between the initial
and a goal state

 depth d of the shallowest goal node in the
search tree

Important Remark

 Some search problems, such as the (n2-1)-
puzzle, are NP-hard
 One can’t expect to solve all instances of

such problems in less than exponential

33

such problems in less than exponential
time
 One may still strive to solve each instance

as efficiently as possible

Blind Strategies

 Breadth-first
• Bidirectional

 Depth-first Arc cost = 1

34

Depth first
• Depth-limited
• Iterative deepening

 Uniform-Cost
(variant of breadth-first)

Arc cost
= c(action) 0

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

1

35

2 3

4 5 6 7

FRINGE = (1)

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

1

36

FRINGE = (2, 3)2 3

4 5 6 7

7

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

1

37

FRINGE = (3, 4, 5)2 3

4 5 6 7

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

1

38

FRINGE = (4, 5, 6, 7)2 3

4 5 6 7

Evaluation

 b: branching factor
 d: depth of shallowest goal node
 Breadth-first search is:

Complete

39

• Complete
• Optimal if step cost is 1

 Number of nodes generated:
1 + b + b2 + … + bd = (bd+1-1)/(b-1) = O(bd)

 Time and space complexity is O(bd)

Big O Notation

g(n) = O(f(n)) if there exist two positive
constants a and N such that:

f ll N () f()

40

for all n > N: g(n) af(n)

Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 106 1 s 100 Mb

41

6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 106 1 s 100 Mb

42

6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

8

Remark
If a problem has no solution, breadth-first may
run for ever (if the state space is infinite or
states can be revisited arbitrary many times)

43214321

43

12

14

11

15

10

13

9

5 6 7 8

4321

12

15

11

14

10

13

9

5 6 7 8

4321

?

Bidirectional Strategy
2 fringe queues: FRINGE1 and FRINGE2

s

44

Time and space complexity is O(bd/2) O(bd)
if both trees have the same branching factor b

Question: What happens if the branching factor
is different in each direction?

Bidirectional Search

• Search forward from the start state and
backward from the goal state
simultaneously and stop when the two
searches meet in the middle

45

searches meet in the middle.

• If branching factor=b, and solution at depth
d, then O(2bd/2) steps.

• B=10, d=6 then BFS needs 1,111,111
nodes and bidirectional needs only 2,222.

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

46

2 3

4 5

FRINGE = (1)

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

47

2 3

4 5

FRINGE = (2, 3)

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

48

2 3

4 5

FRINGE = (4, 5, 3)

9

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

49

2 3

4 5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

50

2 3

4 5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

51

2 3

4 5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

52

2 3

4 5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

53

2 3

4 5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

54

2 3

4 5

10

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

55

2 3

4 5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1

2 3

56

2 3

4 5

Evaluation
 b: branching factor
 d: depth of shallowest goal node
 m: maximal depth of a leaf node
 Depth-first search is:
 Complete only for finite search tree

57

 Complete only for finite search tree
 Not optimal

 Number of nodes generated:
1 + b + b2 + … + bm = O(bm)

 Time complexity is O(bm)
 Space complexity is O(bm) [or O(m)]
[Reminder: Breadth-first requires O(bd) time and space]

Depth-Limited Search

 Depth-first with depth cutoff k (depth
below which nodes are not expanded)

Th bl

58

 Three possible outcomes:
• Solution
• Failure (no solution)
• Cutoff (no solution within cutoff)

Iterative Deepening Search

Provides the best of both breadth-first
and depth-first search

Main idea: Totally horrifying !

59

IDS
For k = 0, 1, 2, … do:

Perform depth-first search with
depth cutoff k

Iterative Deepening

60

11

Iterative Deepening

61

Iterative Deepening

62

Iterative deepening search

63

Iterative deepening search l =0

64

Iterative deepening search l =1

65

Iterative deepening search l =2

66

12

Iterative deepening search l =3

67

Iterative deepening search

• Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

68

search to depth d with branching factor b:
NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative
deepening search

Complete? Yes

Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd =
O(bd)

69

O(bd)

Space? O(bd)

Optimal? Yes, if step cost = 1

Performance

 Iterative deepening search is:
• Complete
• Optimal if step cost =1

70

 Time complexity is:
(d+1)(1) + db + (d-1)b2 + … + (1) bd = O(bd)

 Space complexity is: O(bd) or O(d)

Calculation

db + (d-1)b2 + … + (1) bd

= bd + 2bd-1 + 3bd-2 +… + db
= (1 + 2b-1 + 3b-2 + … + db-d)bd

()

71

 (i=1,…, ib(1-i))bd = bd (b/(b-1))2

d = 5 and b = 2
BF ID
1 1 x 6 = 6

Number of Generated Nodes
(Breadth-First & Iterative Deepening)

72

2 2 x 5 = 10
4 4 x 4 = 16
8 8 x 3 = 24
16 16 x 2 = 32
32 32 x 1 = 32
63 120 120/63 ~ 2

13

Number of Generated Nodes
(Breadth-First & Iterative Deepening)

d = 5 and b = 10
BF ID
1 6

73

10 50
100 400
1,000 3,000
10,000 20,000
100,000 100,000
111,111 123,456 123,456/111,111 ~ 1.111

Comparison of Strategies

 Breadth-first is complete and optimal,
but has high space complexity
 Depth-first is space efficient, but is

neither complete nor optimal

74

neither complete, nor optimal
 Iterative deepening is complete and

optimal, with the same space complexity
as depth-first and almost the same time
complexity as breadth-first

Summary of algorithms

75

Avoiding Revisited States

 Let’s not worry about it yet… but
generally we will have to be careful to
avoid states we have already seen…

76

Uniform-Cost Search
 Each arc has some cost c > 0
 The cost of the path to each fringe node N is

g(N) = costs of arcs
 The goal is to generate a solution path of minimal cost
 The queue FRINGE is sorted in increasing cost

77 Need to modify search algorithm

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

