Solving Problems by
Searching (Blindly)

R&N: Chap. 3

(many of these slides borrowed from
Stanford's AT Class)

Problem Solving Agents

» Decide what to do by finding a sequence
of actions that lead to desirable states.

Example: Romania
* On holiday in Romania; currently in Arad.
+ Flight leaves tomorrow from Bucharest

Problem Solving Agent

* Formulate goal:
— be in Bucharest (in time for flight the next day)

— Goal formulation is the decision of what you are
going to search for - helps us simplify our
methods for finding a solution

» Formulate problem: decide what actions,
states to consider given a goal

— states: map with agent in a particular city
(location)

— actions: drive between cities (if there is a road)
3

Finding a solution...

» Take a road from where | am and see if it
takes me to Bucharest...

» Three roads leave Arad, but none go to
Bucharest...

Example: Romania

Single-state problem formulation

A problem is defined by three (four) items:

1. initial state e.g., "at Arad"

2. actions or successor function S(x) = set of precondition-
action pairs where the action returns a state

— e.g., S(at Arad) = {<at Arad = (at Zerind>, ... }
3. goal test, can be
— explicit, e.g., x = "at Bucharest"
— implicit, e.g., Checkmate(x)
4. path cost (additive)
— e.g., sum of distances, number of actions executed, etc.
— c(x,a,y) is the step cost, assumed to be = 0

» A solution is a sequence of actions leading from the initial
state to a goal state .

State Space
* Each state is an abstract representation
of a collection of possible worlds sharing
some crucial properties and differing on
non-important details only

E.g.: In assembly planning, a state does not
define exactly the absolute position of each part

A A i

= The state space is discrete. It may be
finite, or infinite and is implicit in the
problem formulation. 7

Successor Function

= It implicitly represents all the actions
that are feasible in each state

T T

i
=

T T T

Ll 1Ly o

1=,
[y

Successor Function

= It implicitly represents all the actions
that are feasible in each state

= Only the results of the actions (the
successor states) and their costs are
returned by the function

= The successor function is a "black box":
its content is unknown
E.g., in assembly planning, the function does
not say if it only allows two sub-assemblies to
be merged or if it makes assumptions about

Path Cost

= An arc cost is a positive number
measuring the “cost” of performing the
action corresponding to the arc, e.g.:
* 1in the 8-puzzle example
- expected time to merge two sub-assemblies

= We will assume that for any given
problem the cost ¢ of an arc always

verifies: ¢ 2 ¢ > 0, where ¢ is a constant
[This condition guarantees that, if path becomes

arbitrarily long, its cost also becomes arbitrarily large]
10

subassembly stability o
Goal State
= It may be explicitly described: i E 2
7] 8
= or partially described: L °5 2
a| gla | o stands for“any)

= or defined by a condition,
e.g., the sum of every row, of every column,
and of every diagonals equals 30

15|1 2|12
4110197
8|6|5|11
3|13|14

Example: Romania

+ On holiday in Romania; currently in Arad.
+ Flight leaves tomorrow from Bucharest

» Formulate goal:

— be in Bucharest

Formulate problem:

— states: being in various cities

— initial state: being in Arad

— actions: drive between cities

Find solution:

— sequence of cities, e.g., Arad, Sibiu, Fagaras,
Bucharest

Example: Romania

Vacuum world state space graph
T (F 1

® i ¥

=

- states?

+ Initial state?

« actions?

e goal test?

+ path cost? 12

Vacuum world state space graph

ERRD FEED

W %

- " ~

= LT =D

A . _,
- -

states? integer dirt and robot location

Initial state? Dirt in both locations and the vacuum
cleaner in one of them

actions? Left, Right, Suck

goal test? no dirt at all locations

« path cost? 1 per action 15

.

.

Example: The 8-puzzle

HBan 2]
O omBaann
g e e

 states?

* Initial state?

* actions?

+ goal test?

+ path cost? 16

Example: The 8-puzzle

HBan BB
B OmER R
0B 020

« states? locations of tiles

« Initial state? puzzle in the configuration above
+ actions? move blank left, right, up, down

+ goal test? = goal state (given)

+ path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard] 17

GO TO SLIDES

+ DO WATERJUG PROBLEM

* Problem Formulation; Search algorithms

Assumptions in Basic Search

= The world is static

* The world is discretizable

* The world is observable

* The actions are deterministic

But many of these assumptions can be
removed, and search still remains an
important problem-solving tool

Searching the state

» So far we have talked about how a
problem can be looked at so as to form
search problems.

* How do we actually do the search?
* (Do search-algorithm slides...)

20

Simple Problem-Solving-Agent
Agent Algorithm

sg € sense/read state

GOAL? € select/read goal test
SUCCESSORS < read successor function
solution € search(s,, 6, Succ)
perform(solution)

oswn e

21

Searching the State Space

/\

Search tree

Note that some states are
visited multiple times

22

Basic Search Concepts

* Search tree

* Search node

= Node expansion

* Fringe of search tree

* Search strategy: At each stage it
determines which node to expand

23

Search Nodes # States

8l 2
3l 4/ 7 S

5010 6 s

3

51116

8l |2 8l 2 8|42
3l 4 3| 4| 7 7
51116 5106 lile

o1 W o
TSN

Search Nodes = States

8| 2
3 7
51l 6 ///
82 7/If states are allowed to be revisited, ,
: the search tree may be infinite even
216 when the state space is finite /
8| 2 8|42 2
3 4/ 7 3 4/ 7 3 7 3417
5l116 5116 Rl1l e 116

Data Structure of a Node

2
A STATE PARENT-NODE
(recall Ariadne thread)
Bl 1l 6
BOOKKEEPING
CHILDREN

Action Right
Depth 5

. Path-Cost | 5

Expanded | ves

Depth of anode N = length of path from root to N

(Depth of the root = 0) »

Node expansion

The expansion of a node N of the search
tree consists of:

1) Evaluating the successor function on
STATE(N)

2) Generating a child of N for each
state returned by the function

27

Fringe and Search Strategy

* The fringe is the set of all search nodes
that haven't been expanded yet

_— Is it identical

to the set of

leaves?

28

Fringe and Search Strategy

* The fringe is the set of all search nodes
that haven't been expanded yet

= It is implemented as a priority queue
FRINGE
+ INSERT(node, FRINGE)
+ REMOVE(FRINGE)

* The ordering of the nodes in FRINGE
defines the search strategy

29

Search Algorithm

1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRINGE)
3. Repeat:
a. If empty(FRINGE) then return failure
b. n ¢ REMOVE(FRINGE)
c. s € STATE(n)
d. If GOAL?(s") then return path or goal
State
e. For every state s' in SUCCESSORS(s)
i. Create anew node n' as a child of n
ii. INSERT(n',FRINGE)

30

Performance Measures

= Completeness
A search algorithm is complete if it finds a
solution whenever one exists
[What about the case when no solution exists?]

» Optimality
A search algorithm is optimal if it returns a
minimum-cost path whenever a solution exists
[Other optimality measures are possible]

= Complexity
It measures the time and amount of memory
required by the algorithm

31

Important Parameters
1) Maximum number of successors of any state
- branching factor b of the search tree

2) Minimal length of a path between the initial
and a goal state

- depth d of the shallowest goal node in the
search tree

32

Important Remark

* Some search problems, such as the (n2-1)-
puzzle, are NP-hard

= One can't expect to solve all instances of
such problems in less than exponential
time

= One may still strive to solve each instance
as efficiently as possible

33

Blind Strategies

= Breadth-first
+ Bidirectional

= Depth-first Arc cost = 1
+ Depth-limited
« Tterative deepening

= Uniform-Cost Arc cost
(variant of breadth-first) | = c(action) > & >0

34

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

»1
2 3 FRINGE = (1)
4./ 5 7

35

Breadth-First Strategy

New hodes are inserted at the end of FRINGE

1@
»2 3 FRINGE = (2, 3)
44 5 7

36

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (3, 4, 5)

37

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

le

/

2 3
4A 7

FRINGE = (4,5, 6,7)

38

Evaluation

b: branching factor
d: depth of shallowest goal node
Breadth-first search is:
* Complete
+ Optimal if step cost is 1
* Number of nodes generated:
1+b+b2+ +bd = (b¥l-1)/(b-1) = O(bd)
* > Time and space complexity is O(bd)

39

Big O Notation
g(n) = O(f(n)) if there exist two positive
constants a and N such that:

foralln>N: g(n) < axf(n)

40

Time and Memory Requirements

Time and Memory Requirements

d |# Nodes |Time Memory

2 |1m .01 msec |11 Kbytes

4 11,111 1 msec 1 Mbyte

6 |~10¢ 1 sec 100 Mb

8 |~108 100 sec |10 Gbytes

10 |~10% 2.8 hours |1 Tbyte

12 |~1012 11.6 days |100 Tbytes

14 |~1014 3.2 years |10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100by’res/no4qe

d |# Nodes |Time Memory

2 |1m .01 msec |11 Kbytes

4 11,111 1 msec 1 Mbyte

6 |~106 1sec 100 Mb

8 |~108 100 sec |10 Gbytes

10 |~10%0 2.8 hours |1 Tbyte

12 |~1012 11.6 days |100 Tbytes

14 |~1014 3.2 years [10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100by‘res/n04czie

Remark

If a problem has no solution, breadth-first may
run for ever (if the state space is infinite or
states can be revisited arbitrary many times)

1,234 1123 4
5/6|7 8| 2 |5|6|7]|8
)

9 |10 11 |12 9 10|11)12

13 114 | 15 13 |15 | 14

43

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity is O(b%2) << O(bd)
if both trees have the same branching factor b

Question: What happens if the branching factor

is different in each direction?
44

Bidirectional Search

» Search forward from the start state and
backward from the goal state
simultaneously and stop when the two
searches meet in the middle.

+ If branching factor=b, and solution at depth
d, then O(2b¥2) steps.

» B=10, d=6 then BFS needs 1,111,111
nodes and bidirectional needs only 2,222.

45

Depth-First Strategy

New nodes are inserted at the front of FRINGE

»1

46

Depth-First Strategy

New nodes are inserted at the front of FRINGE
1

FRINGE = (2, 3)

W

47

Depth-First Strategy

New nodes are inserted at the front of FRINGE
1

FRINGE = (4,5, 3)
5

/\

48

Depth-First Strategy

New nodes are inserted at the front of FRINGE

49

Depth-First Strategy

New nodes are inserted at the front of FRINGE
1

X KN

Depth-First Strategy

New nodes are inserted at the front of FRINGE

51

Depth-First Strategy

New nodes are inserted at the front of FRINGE

52

Depth-First Strategy

New nodes are inserted at the front of FRINGE

Depth-First Strategy

New nodes are inserted at the front of FRINGE

54

Depth-First Strategy

New nodes are inserted at the front of FRINGE

55

Depth-First Strategy

New nodes are inserted at the front of FRINGE

56

Evaluation

b: branching factor

d: depth of shallowest goal node

m: maximal depth of a leaf node

Depth-first search is:

= Complete only for finite search tree

= Not optimal

= Number of nodes generated:
1+b+b%+ .. +bm=0(bm)

= Time complexity is O(b™)

= Space complexity is O(bm) [or O(m)]

[Reminder: Breadth-first requires O(b9) time and space]
57

Depth-Limited Search

» Depth-first with depth cutoff k (depth
below which nodes are not expanded)

* Three possible outcomes:
+ Solution
+ Failure (no solution)
« Cutoff (no solution within cutoff)

58

Iterative Deepening Search

Provides the best of both breadth-first
and depth-first search

Main idea: Totally horrifying !

IDS
Fork=0,1,2, ..do:

Perform depth-first search with
depth cutoff k

59

Iterative Deepening

e

60

10

Iterative Deepening

Iterative Deepening

dvdn dh 4y

@)
61
Iterative deepening search
funetion I'TERATIVE-DEEPENING-SEARCH(problem) returns a solution, e fail-
ure
inputs: problen, a problem
for depth+— 0 to s do
result v DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return resull
63
Iterative deepening search | =1
Um Lo B, 2 L]
o) © .) . L
65

Iterative deepening search | =0
Lime=0 @ []
Iterative deepening search | =2
Lim Lol B 3 &, 3
CJ Lo} o o] [} o]
g B o 0
&, D &, [Y
L] . -8 . ' L .
LN] * & 0 D & @ & 0 @ @8 ® @
66

11

Iterative deepening search | =3

Be) o] = o] 2| e]
g B g ®©
fclo)
8 e 8 I
o 1] = e = e} < | c]
% © [3] . ®m "
.0 . X Zelo] *8 8l
& a @, @,
L} Lol . ®, . ®| LS "
[B e »d D & @ F 0 @ ® g D
eeee eese LX XX lofe) LLL L L 52

67

Iterative deepening search

* Number of nodes generated in a depth-limited search to
depth d with branching factor b:

Npis = b0 + bl + b2 + ... + bd2 + pd1 4+ pd

« Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

Nips = (d+1)b0 + d bAT + (0-1)bA2 + .. + 3b%2 +2b1 + 1pd

e Forb=10,d=5,
— Nps=1+10+ 100 + 1,000 + 10,000 + 100,000 = 111,111
— Njps = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
* Overhead = (123,456 - 111,111)/111,111 = 11%

68

Properties of iterative
deepening search
Complete? Yes

Time? (d+1)b% + d bl + (d-1)b2 + ... + bd =
O(bY)

Space? O(bd)

Optimal? Yes, if step cost = 1

69

Performance

= Tterative deepening search is:

* Complete

* Optimal if step cost =1
= Time complexity is:

(d+1)(1) + db + (d-1)b2 + ... + (1) bd= O(b9)
= Space complexity is: O(bd) or O(d)

70

Calculation

db + (d-1)b2 + .. + (1) be
= bd+2bd14+3bd2+ . +db
= (1+2b1+3b2+ . +dbd)xbd

<(Ziz,. o0 DED)xbY = bd (b/(b-1))?

7

Number of Generated Nodes
(Breadth-First & Iterative Deepening)

d=5andb=2

BF ID

1 I1x6:=6

2 2x5=10

4 4x4=16

8 8x3=24

16 16 x2=32

32 32x1=32

63 120 120/63 ~ 2 Y

12

Number of Generated Nodes
(Breadth-First & Iterative Deepening)

d=5and b =10
BF ID

1 6

10 50
100 400
1,000 3,000

10,000 20,000
100,000 100,000
111,111 123,456 123,456/111,111 ~ 1.111

Comparison of Strategies

* Breadth-first is complete and optimal,
but has high space complexity

* Depth-first is space efficient, but is
neither complete, nor optimal

= Iterative deepening is complete and
optimal, with the same space complexity
as depth-first and almost the same time
complexity as breadth-first

74

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative

First Cost First Limited Deepening
Complete? Yes Yes Ne No Yes
Time Oy Omiey oy o) O[if)
Space oYy OBIcy Obm) OB O bt}
Optimal? Yes Yes No No Yes

75

Avoiding Revisited States

= Let's not worry about it yet... but
generally we will have to be careful to
avoid states we have already seen...

76

Uniform-Cost Search

= Each arc has some cost c2¢>0
= The cost of the path to each fringe node N is

g(N) = X costs of arcs
= The goal is to generate a solution path of minimal cost
= The queue FRINGE is sorted in increasing cost

A
1 h
B
156
11 10

= Need to modify search algorithm 4

13

