
1

Beyond Classical Search
(Local Search)

1

R&N III: Chapter 4

Local Search

 Light-memory search method
 No search tree; only the current state

is represented!
O l li bl t bl h th

2

 Only applicable to problems where the
path is irrelevant (e.g., 8-queen), unless
the path is encoded in the state
 Many similarities with optimization

techniques

Hill-climbing search

• “is a loop that continuously moves in the
direction of increasing value”
– It terminates when a peak is reached.

• Hill climbing does not look ahead of the
immediate neighbors of the current state

28 september 2010 3 AI 1

immediate neighbors of the current state.

• Basic Hill-climbing – “Like climbing Everest in a
thick fog with amnesia”

(Steepest Ascent)
Hill-climbing search

• “is a loop that continuously moves in the
direction of increasing value”
– It terminates when a peak is reached.

• Hill climbing does not look ahead of the

28 september 2010 4 AI 1

• Hill climbing does not look ahead of the
immediate neighbors of the current state.

• Hill-climbing chooses randomly among the set of
best successors, if there is more than one.

• Hill-climbing a.k.a. greedy local search

Steepest Ascent
Hill-climbing search

function HILL-CLIMBING(problem) return a state that is a local maximum
input: problem, a problem
local variables: current, a node.

neighbor, a node.

28 september 2010 5 AI 1

current  MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor  a highest valued successor of current
if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]
current  neighbor

Hill-climbing example

• 8-queens problem (complete-state formulation).

• Successor function: move a single queen to
another square in the same column.

• Heuristic function h(n): the number of pairs of

28 september 2010 6 AI 1

Heuristic function h(n): the number of pairs of
queens that are attacking each other (directly or
indirectly).

2

Hill-climbing example

a) b)

28
t

7
AI 1

a) shows a state of h=17 and the h-value for each
possible successor.

b) A local minimum in the 8-queens state space
(h=1).

Drawbacks

28
t

8
AI 1

• Ridge = sequence of local maxima difficult for greedy
algorithms to navigate

• Plateaux = an area of the state space where the evaluation
function is flat.

• Gets stuck 86% of the time.

Hill-climbing variations

• Stochastic hill-climbing
– Random selection among the uphill moves.
– The selection probability can vary with the steepness

of the uphill move.

Fi t h i hill li bi

28 september 2010 9 AI 1

• First-choice hill-climbing
– cfr. stochastic hill climbing by generating successors

randomly until a better one is found.

• Random-restart hill-climbing
– Tries to avoid getting stuck in local maxima.

Steepest Descent
1) S  initial state
2) Repeat:

a) S’  arg minS’SUCCESSORS(S) {h(S’)}
b) if GOAL?(S’) return S’

10

c) if h(S’)  h(S) then S  S’ else return failure

Similar to:
- hill climbing with –h
- gradient descent over continuous space

Random Restart Application:
8-Queen

Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q it in its column to minimize the number of attacking

queens is minimum  new S [min-conflicts heuristic]q m m m [m f]
3) Return failure

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Application: 8-Queen
Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q it in its column to minimize the number of attacking

Why does it work ???
1) There are many goal states that are

well-distributed over the state space
2) If no solution has been found after a few

steps, it’s better to start it all over again.
B ildi h t ld b h l queens is minimum  new S

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Building a search tree would be much less
efficient because of the high branching
factor

3) Running time almost independent of the
number of queens

3

Steepest Descent
1) S  initial state
2) Repeat:

a) S’  arg minS’SUCCESSORS(S) {h(S’)}
b) if GOAL?(S’) return S’

13

c) if h(S’)  h(S) then S  S’ else return failure

may easily get stuck in local minima
 Random restart (as in n-queen example)
 Monte Carlo descent

Simulated annealing

• Escape local maxima by allowing “bad” moves.
– Idea: but gradually decrease their size and frequency.

• Origin; metallurgical annealing

• Bouncing ball analogy:
Shaking hard (= high temperature)

28 september 2010 14 AI 1

– Shaking hard (= high temperature).

– Shaking less (= lower the temperature).

• If T decreases slowly enough, best state is reached.

• Applied for VLSI layout, airline scheduling, etc.

Simulated annealing
function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem
schedule, a mapping from time to temperature

local variables: current, a node.
next, a node.
T, a “temperature” controlling the probability of downward steps

current  MAKE-NODE(INITIAL-STATE[problem])

28 september 2010 15 AI 1

current  MAKE NODE(INITIAL STATE[problem])
for t  1 to ∞ do

T  schedule[t]
if T = 0 then return current
next  a randomly selected successor of current
∆E  VALUE[next] - VALUE[current]
if ∆E > 0 then current  next
else current  next only with probability e∆E /T

Local beam search

• Keep track of k states instead of one
– Initially: k random states

– Next: determine all successors of k states

– If any of successors is goal  finished

– Else select k best from successors and repeat

28 september 2010 16 AI 1

Else select k best from successors and repeat.

• Major difference with random-restart search
– Information is shared among k search threads.

• Can suffer from lack of diversity.
– Stochastic variant: choose k successors at proportionally to state

success.

Genetic algorithms

• Variant of local beam search with sexual
recombination.

28
t

1
7

AI 1

Genetic algorithms

• Variant of local beam search with sexual recombination.

28
t

1
8

AI 1

4

Genetic algorithm
function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual

input: population, a set of individuals
FITNESS-FN, a function which determines the quality of the individual

repeat
new_population  empty set
loop for i from 1 to SIZE(population) do

x  RANDOM SELECTION(population, FITNESS FN)

28 september 2010 19 AI 1

x  RANDOM_SELECTION(population, FITNESS_FN)
y  RANDOM_SELECTION(population, FITNESS_FN)

child  REPRODUCE(x,y)
if (small random probability) then child  MUTATE(child)
add child to new_population

population  new_population
until some individual is fit enough or enough time has elapsed
return the best individual

Exploration problems

• Until now all algorithms were offline.
– Offline= solution is determined before executing it.
– Online = interleaving computation and action

• Online search is necessary for dynamic and
semi-dynamic environments

28 september 2010 20 AI 1

semi dynamic environments
– It is impossible to take into account all possible contingencies.

• Used for exploration problems:
– Unknown states and actions.
– e.g. any robot in a new environment, a newborn baby,…

Online search problems

• Agent knowledge:
– ACTION(s): list of allowed actions in state s

– C(s,a,s’): step-cost function (! After s’ is determined)

– GOAL-TEST(s)

• An agent can recognize previous states

28
t

2
1

AI 1

• An agent can recognize previous states.

• Actions are deterministic.

• Access to admissible heuristic h(s)

e.g. manhattan distance

Online search problems

• Objective: reach goal with minimal cost
– Cost = total cost of travelled path

– Competitive ratio=comparison of cost with cost of the solution path
if search space is known.

28
t

2
2

AI 1

if search space is known.

– Can be infinite in case of the agent

accidentally reaches dead ends

The adversary argument

28
t

2
3

AI 1

• Assume an adversary who can construct the state space
while the agent explores it
– Visited states S and A. What next?

• Fails in one of the state spaces

• No algorithm can avoid dead ends in all state spaces.

Online search agents

• The agent maintains a map of the
environment.
– Updated based on percept input.

– This map is used to decide next action.

28 september 2010 24 AI 1

This map is used to decide next action.

Note difference with e.g. A*

An online version can only expand the node it is
physically in (local order)

5

Online DF-search
function ONLINE_DFS-AGENT(s’) return an action

input: s’, a percept identifying current state
static: result, a table indexed by action and state, initially empty

unexplored, a table that lists for each visited state, the action not yet tried
unbacktracked, a table that lists for each visited state, the backtrack not yet tried
s,a, the previous state and action, initially null

if GOAL-TEST(s’) then return stop
if ’ i t t th l d[’] ACTIONS(’)

28 september 2010 25 AI 1

if s’ is a new state then unexplored[s’]  ACTIONS(s’)
if s is not null then do

result[a,s]  s’
add s to the front of unbackedtracked[s’]

if unexplored[s’] is empty then
if unbacktracked[s’] is empty then return stop
else a  an action b such that result[b, s’]=POP(unbacktracked[s’])

else a  POP(unexplored[s’])
s  s’
return a

Online DF-search, example

• Assume maze problem on
3x3 grid.

• s’ = (1,1) is initial state
• Result, unexplored (UX),

28
t

2
6

AI 1

Result, unexplored (UX),
unbacktracked (UB), …

are empty
• S,a are also empty

Online DF-search, example

• GOAL-TEST((,1,1))?
– S not = G thus false

• (1,1) a new state?
– True
– ACTION((1,1)) -> UX[(1,1)]

{RIGHT UP}

S’=(1,1)

28
t

2
7

AI 1

• {RIGHT,UP}

• s is null?
– True (initially)

• UX[(1,1)] empty?
– False

• POP(UX[(1,1)])->a
– A=UP

• s = (1,1)
• Return a

Online DF-search, example

• GOAL-TEST((2,1))?
– S not = G thus false

• (2,1) a new state?
– True

– ACTION((2,1)) -> UX[(2,1)]

S’=(2,1)

28
t

2
8

AI 1

ACTION((2,1)) UX[(2,1)]
• {DOWN}

• s is null?
– false (s=(1,1))

– result[UP,(1,1)] <- (2,1)

– UB[(2,1)]={(1,1)}

• UX[(2,1)] empty?
– False

• A=DOWN, s=(2,1) return A

S

Online DF-search, example

• GOAL-TEST((1,1))?
– S not = G thus false

• (1,1) a new state?
– false

• s is null?

S’=(1,1)

28
t

2
9

AI 1

– false (s=(2,1))
– result[DOWN,(2,1)] <- (1,1)
– UB[(1,1)]={(2,1)}

• UX[(1,1)] empty?
– False

• A=RIGHT, s=(1,1) return A
S

Online DF-search, example

• GOAL-TEST((1,2))?
– S not = G thus false

• (1,2) a new state?
– True, UX[(1,2)]={RIGHT,UP,LEFT}

• s is null?

S’=(1,2)

28
t

3
0

AI 1

• s is null?
– false (s=(1,1))
– result[RIGHT,(1,1)] <- (1,2)
– UB[(1,2)]={(1,1)}

• UX[(1,2)] empty?
– False

• A=LEFT, s=(1,2) return A

S

6

Online DF-search, example

• GOAL-TEST((1,1))?
– S not = G thus false

• (1,1) a new state?
– false

• s is null?
– false (s=(1 2))

S’=(1,1)

28
t

3
1

AI 1

– false (s=(1,2))
– result[LEFT,(1,2)] <- (1,1)
– UB[(1,1)]={(1,2),(2,1)}

• UX[(1,1)] empty?
– True
– UB[(1,1)] empty? False

• A= b for b in result[b,(1,1)]=(1,2)
– B=RIGHT

• A=RIGHT, s=(1,1) …

S

Online DF-search

• Worst case each node is visited
twice.

• An agent can go on a long walk
even when it is close to the
solution.

28
t

3
2

AI 1

• An online iterative deepening
approach solves this problem.

• Online DF-search works only
when actions are reversible.

Online local search

• Hill-climbing is already online
– One state is stored.

• Bad performance due to local maxima
– Random restarts impossible.

• Solution: Random walk introduces exploration (can produce

28
t

3
3

AI 1

Solution: Random walk introduces exploration (can produce
exponentially many steps)

Online local search

• Solution 2: Add memory to hill climber
– Store current best estimate H(s) of cost to reach goal
– H(s) is initially the heuristic estimate h(s)
– Afterward updated with experience (see below)

L i l ti A* (LRTA*)

28
t

3
4

AI 1

• Learning real-time A* (LRTA*)

