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Bayesian Networks

Chapter 14 

Section 1, 2, 4

Bayesian networks

• A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

• Syntax:
a set of nodes one per variable– a set of nodes, one per variable

– a directed, acyclic graph (link ≈ "directly influences")
– if there is a link from x to y, x is said to be a parent of y
– a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

• In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values

Example

• Topology of network encodes conditional independence 
assertions:

• Weather is independent of the other variables
• Toothache and Catch are conditionally independent 

given Cavity

Example

• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor 
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a 
burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:• Network topology reflects "causal" knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call

Example contd. Compactness

• A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

• Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

If each variable has no more than k parents the complete network requires• If each variable has no more than k parents, the complete network requires 
O(n · 2k) numbers

• I.e., grows linearly with n, vs. O(2n) for the full joint distribution

• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)
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Semantics

The full joint distribution is defined as the product of the local 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

n

Thus each entry  in the joint distribution is represented by the product 
of the appropriate elements of the conditional probability tables in 
the Bayesian network.

e.g., P(j ^ m ^ a ^ ¬b ^ ¬ e)

= P (j | a) P (m | a) P (a | ¬ b, ¬ e) P (¬ b) P (¬ e)

= 0.90 * 0.70 * 0.001 * 0.999 * 0.998 = 0.00062

Back to the dentist example ...

 We now represent the world of the 
dentist D using three propositions –
Cavity, Toothache, and PCatch

 D’s belief state consists of 23 = 8 states 
each with some probability:

{cavity^toothache^pcatch,
¬cavity^toothache^pcatch,
cavity^ ¬toothache^pcatch,...}

The belief state is defined by the full 
joint probability of the propositions

pcatch ¬pcatch pcatch ¬ pcatch
toothache ¬ toothache

p p p p

cavity 0.108 0.012 0.072 0.008
¬ cavity 0.016 0.064 0.144 0.576

Probabilistic Inference

pcatch ¬ pcatch pcatch ¬ pcatch
toothache ¬ toothache

p p p p

cavity 0.108 0.012 0.072 0.008
¬ cavity 0.016 0.064 0.144 0.576

P(cavity toothache) = 0.108 + 0.012 + ...
= 0.28 

Probabilistic Inference

pcatch ¬ pcatch pcatch ¬ pcatch
toothache ¬ toothache

p p p p

cavity 0.108 0.012 0.072 0.008
¬ cavity 0.016 0.064 0.144 0.576

P(cavity) = 0.108 + 0.012 + 0.072 + 0.008
= 0.2 

Probabilistic Inference

pcatch ¬ pcatch pcatch ¬ pcatch
toothache ¬ toothache

p p p p

cavity 0.108 0.012 0.072 0.008
¬ cavity 0.016 0.064 0.144 0.576

Marginalization: P (c) = tpc P(c^t^pc) 
using the conventions that c = cavity or ¬ cavity and that 
t is the sum over t = {toothache, ¬ toothache}
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Conditional Probability

 P(A^B) = P(A|B) P(B)
= P(B|A) P(A)

P(A|B) is the posterior probability of A 
given Bgiven B

pcatch ¬ pcatch pcatch ¬ pcatch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

toothache ¬ toothache

P(cavity|toothache) = P(cavity^toothache)/P(toothache)
= (0.108+0.012)/(0.108+0.012+0.016+0.064) = 0.6

Interpretation: After observing Toothache, the patient is no 
longer an “average” one, and the prior probabilities of Cavity is 
no longer valid

P(cavity|toothache) is calculated by keeping the ratios of the 
probabilities of the 4 cases unchanged, and normalizing their 
sum to 1 

pcatch ¬ pcatch pcatch ¬ pcatch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

toothache ¬ toothache

P(cavity|toothache) = P(cavity^toothache)/P(toothache)
= (0.108+0.012)/(0.108+0.012+0.016+0.064) = 0.6

P(¬ cavity|toothache)=P(¬ cavity^toothache)/P(toothache)
= (0.016+0.064)/(0.108+0.012+0.016+0.064) = 0.4

P(C|toochache) =  P(C ^ toothache)
=  pc P(C ^ toothache ^ pc)
=  [(0.108, 0.016) + (0.012, 0.064)] 
=  (0.12, 0.08) = (0.6, 0.4)

normalization
constant

Conditional Probability
 P(A^B) = P(A|B) P(B)

= P(B|A) P(A)
 P(A^B^C) = P(A|B,C) P(B^C)

= P(A|B,C) P(B|C) P(C) P(A|B,C) P(B|C) P(C)

 P(Cavity) = tpc P(Cavity^t^pc)
= tpc P(Cavity|t,pc) P(t^pc)

 P(c) = tpc P(c^t^pc)
= tpc P(c|t,pc)P(t^pc)

Independence

 Two random variables A and B are 
independent if 

P(A^B) = P(A) P(B) 
hence if P(A|B) = P(A) hence if P(A|B) = P(A) 

 Two random variables A and B are 
independent given C, if 

P(A^B|C) = P(A|C) P(B|C)
hence if P(A|B,C) = P(A|C)

Issues

 If a state is described by n propositions, 
then a belief state contains 2n states 
(possibly, some have probability 0)
  Modeling difficulty: many numbers   Modeling difficulty: many numbers 

must be entered in the first place
  Computational issue: memory size and 

time
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pcatch ¬pcatch pcatch ¬ pcatch

cavity 0.108 0.012 0.072 0.008
¬ cavity 0.016 0.064 0.144 0.576

toothache ¬ toothache

 toothache and pcatch are independent given 
cavity (or ¬ cavity), but this relation is hidden 
in the numbers ! [Verify this]

 Bayesian networks explicitly represent 
independence among propositions to reduce 
the number of probabilities defining a belief 
state

Bayesian Network
 Notice that Cavity is the “cause” of both Toothache  

and PCatch, and represent the causality links explicitly
 Give the prior probability distribution of Cavity
 Give the conditional probability tables of Toothache 

and  PCatch

Cavity

Toothache

P(cavity)
0.2

P(toothache|c)

cavity
¬cavity

0.6
0.1

PCatch

P(pclass|c)

cavity
¬ cavity

0.9
0.02

5 probabilities, instead of 7

A More Complex BN

Burglary Earthquake
causes

Intuitive meaning of 

Alarm

MaryCallsJohnCalls

effects

Directed 
acyclic graph

arc from x to y: “x 
has direct influence 

on y”

B E P(A|…)

Burglary Earthquake
P(B)
0.001

P(E)
0.002

Size of the 

A More Complex BN

( | )
T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

Alarm

MaryCallsJohnCalls
A P(J|…)
T
F

0.90
0.05

A P(M|…)
T
F

0.70
0.01

Size of the 
CPT for a 
node with k 
parents: 2k

10 probabilities, instead of 31

What does the BN encode?
Burglary Earthquake

Alarm

Each of the beliefs 
JohnCalls and MaryCalls is 
independent of Burglary 
and Earthquake given 
Alarm or ¬Alarm

MaryCallsJohnCalls

For example, John does
not observe any burglaries
directly

Burglary Earthquake

Alarm

What does the BN encode?

A node is independent of A node is independent of 

The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm

For instance, the reasons why 
John and Mary may not call if 
there is an alarm are unrelated 

MaryCallsJohnCalls
A node is independent of 

its non-descendants 
given its parents
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Conditional Independence of 
non-descendents

A node X is conditionally independent of its non-descendents (e.g., the Zijs) 
given its parents (the Uis shown in the gray area).

Markov Blanket

A node X is conditionally independent of all other nodes in the network, given its 
parents, chlidren, and chlidren’s parents.

Locally Structured World
 A world is locally structured (or sparse) if each 

of its components interacts directly with 
relatively few other components

 In a sparse world, the CPTs are small and the 
BN t i s  f  b biliti s th  th  BN contains many fewer probabilities than the 
full joint distribution

 If the # of entries in each CPT is bounded, i.e., 
O(1), then the # of probabilities in a BN is 
linear in n – the # of propositions – instead of 
2n for the joint distribution

But does a BN represent a 
belief state?

In other words, can we compute 
the full joint distribution of the 

propositions from it?

Calculation of Joint Probability

B E P(A|…)

Burglary Earthquake
P(B)
0.001

P(E)
0.002

P(j^m^a^¬b¬^e) = ?? ( | )
T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

Alarm

MaryCallsJohnCalls
A P(J|…)
T
F

0.90
0.05

A P(M|…)
T
F

0.70
0.01

P(j m a b e)  ??

 P(J^M^A^¬B^¬E)
= P(J^M|A, ¬B, ¬E) * P(A^¬B^¬E)
= P(J|A, ¬B, ¬E) * P(M|A, ¬B, ¬E) * P(A^¬B^¬E)
(J and M are independent given A)

Burglary Earthquake

Alarm

MaryCallsJohnCalls

(J and M are independent given A)
 P(J|A, ¬B, ¬E) = P(J|A)

(J and ¬B^¬E are independent given A)
 P(M|A, ¬B, ¬E) = P(M|A)
 P(A^¬B^¬E) = P(A|¬B, ¬E) * P(¬B|¬E) * P(¬E)

= P(A|¬B, ¬E) * P(¬B) * P(¬E)
(¬B and ¬E are independent)
 P(J^M^A^¬B^¬E) = P(J|A)P(M|A)P(A|¬B, ¬E)P(¬B)P(¬E)
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Calculation of Joint Probability

B E P(A|…)

Burglary Earthquake
P(B)
0.001

P(E)
0.002

P(J^M^A^¬B^¬E) ( | )
T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

Alarm

MaryCallsJohnCalls
A P(J|…)
T
F

0.90
0.05

A P(M|…)
T
F

0.70
0.01

( )
= P(J|A)P(M|A)P(A|¬B, ¬E)P(¬B)P(¬E)
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998
= 0.00062

Calculation of Joint Probability

B E P(A|…)

Burglary Earthquake
P(B)
0.001

P(E)
0.002

P(J^M^A^¬B^¬E) ( | )
T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

Alarm

MaryCallsJohnCalls
A P(J|…)
T
F

0.90
0.05

A P(M|…)
T
F

0.70
0.01

( )
= P(J|A)P(M|A)P(A|¬B, ¬E)P(¬B)P(¬E)
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998
= 0.00062

P(x1^x2^…^xn) = i=1,…,nP(xi|parents(Xi))
 full joint distribution table

Calculation of Joint Probability

B E P(A|…)

Burglary Earthquake
P(B)
0.001

P(E)
0.002

P(J^M^A^¬B^¬E)

Since a BN defines the 
full joint distribution of a 
set of propositions, it 
represents a belief state( | )

T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

Alarm

MaryCallsJohnCalls
A P(J|…)
T
F

0.90
0.05

A P(M|…)
T
F

0.70
0.01

( )
= P(J|A)P(M|A)P(A|¬B, ¬E)P(¬B)P(¬E)
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998
= 0.00062

represents a belief state

P(x1^x2^…^xn) = i=1,…,nP(xi|parents(Xi))
 full joint distribution table

 The BN gives P(t|c)
 What about P(c|t)?
 P(cavity|t) 

= P(cavity ^ t)/P(t)
= P(t|cavity) P(cavity) / P(t)

Querying the BN

Cavity
P(C)
0.1

y y
[Bayes’ rule]

 P(c|t) =  P(t|c) P(c)

 Querying a BN is just applying 
the trivial Bayes’ rule on a 
larger scale

Toothache
C P(T|c)
T
F

0.4
0.01111

Exact Inference in Bayesian 
Networks

• Let’s generalize that last example a little –
suppose we are given that JohnCalls and 
MaryCalls are both true, what is the 
probability distribution for Burglary?

• P(Burglary | JohnCalls = true, MaryCalls=true)

• Look back at using full joint distribution for 
this purpose – summing over hidden 
variables.

Inference by enumeration (example 
in the text book) – figure 14.8

P(X | e) = α P (X, e) = α ∑y P(X, e, y)  

P(B| j,m) = αP(B,j,m) = α ∑e ∑a P(B,e,a,j,m) 

P(b| j,m) = α ∑e ∑a P(b)P(e)P(a|be)P(j|a)P(m|a)

P(b| j,m) = α P(b)∑e P(e)∑a P(a|be)P(j|a)P(m|a)

P(B| j,m) = α <0.00059224, 0.0014919>

P(B| j,m) ≈ <0.284, 0.716>
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Enumeration-Tree Calculation
Inference by enumeration (another 
way of looking at it) – figure 14.8

P(X | e) = α P (X, e) = α ∑y P(X, e, y)  

P(B| j,m) = αP(B,j,m) = α ∑e ∑a P(B,e,a,j,m) 

P(b| j m) = P(B e a j m) +P(b| j,m) = P(B,e,a,j,m) + 

P(B,e,¬a,j,m) + 

P(B,¬e,a,j,m) + 

P(B,¬e,¬a,j,m)  

P(B| j,m) = α <0.00059224, 0.0014919>

P(B| j,m) ≈ <0.284, 0.716>

Constructing Bayesian networks

• 1. Choose an ordering of variables X1, … ,Xn such that root causes 
are first in the order, then the variables that they influence, and so 
forth.

• 2. For i = 1 to n
– add Xi to the network
– select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)
– Note:the parents of a node are all of the nodes that influence it. In this

way, each node is conditionally independent of its predecessors in the 
order, given its parents.

This choice of parents guarantees:
P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1)    (chain rule)

= πi =1P (Xi | Parents(Xi))     (by construction)

n

n

• Suppose we choose the ordering M, J, A, B, E

Example – How important is the 
ordering?

P(J | M) = P(J)?

• Suppose we choose the ordering M, J, A, B, E

Example

P(J | M) = P(J)? No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?

• Suppose we choose the ordering M, J, A, B, E

Example

P(J | M) = P(J)? No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? 

P(B | A, J, M) = P(B)?
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• Suppose we choose the ordering M, J, A, B, E

Example

P(J | M) = P(J)? No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?

• Suppose we choose the ordering M, J, A, B, E

Example

P(J | M) = P(J)? No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)? No

P(E | B, A, J, M) = P(E | A, B)? Yes

Example contd.

• Deciding conditional independence is hard in noncausal directions

• (Causal models and conditional independence seem hardwired for 
humans!)

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Summary

• Bayesian networks provide a natural 
representation for (causally induced) 
conditional independence

• Topology + CPTs = compact• Topology + CPTs = compact 
representation of joint distribution

• Generally easy for domain experts to 
construct


