Bayesian Networks

Chapter 14
Section 1, 2, 4

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- if there is a link from x to y, x is said to be a parent of y
- a conditional distribution for each node given its parents: P($\mathrm{X}_{\mathrm{i}} \mid$ Parents $\left.\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Compactness

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just 1-p)

- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
- I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution
- For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Semantics

The full joint distribution is defined as the product of the loca conditional distributions:

$\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
Thus each entry in the joint distribution is represented by the product of the appropriate elements of the conditional probability tables in the Bayesian network.

$$
\text { e.g., } \mathrm{P}\left(j^{\wedge} m^{\wedge} a^{\wedge} \neg b^{\wedge} \neg e\right)
$$

$$
=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)
$$

$$
=0.90 * 0.70 * 0.001 * 0.999 * 0.998=0.00062
$$

The belief state is defined by the full joint probability of the propositions

	toothache		ᄀtoothache	
	pcatch	\neg pcatch	pcatch	\neg pcatch
cavity	0.108	0.012	0.072	0.008
ᄀ cavity	0.016	0.064	0.144	0.576

Back to the dentist example ...

- We now represent the world of the dentist D using three propositions Cavity, Toothache, and PCatch
- D's belief state consists of $2^{3}=8$ states each with some probability:
\{cavity^toothache^pcatch, acavity^toothache^pcatch, cavity^ $\neg+o o t h a c h e^{\wedge}$ pcatch....\}
Probabilistic Inference

	toothache		ᄀ toothache	
	pcatch	\neg pcatch	pcatch	\neg pcatch
cavity	0.108	0.012	0.072	0.008
ᄀ cavity	0.016	0.064	0.144	0.576

$P($ cavity v toothache $)=0.108+0.012+\ldots$ $=0.28$

Probabilistic Inference

Probabilistic Inference				
	toothache		\rightarrow toothache	
	pcatch	\neg pcatch	pcatch	\neg pcatch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576

$$
\begin{aligned}
P(\text { cavity }) & =0.108+0.012+0.072+0.008 \\
& =0.2
\end{aligned}
$$

Probabilistic Inference				
	toothache		\rightarrow toothache	
	pcatch	\neg pcatch	pcatch	\neg pcatch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576
Marginalization: $\mathrm{P}(c)=\Sigma_{\dagger} \Sigma_{\mathrm{pc}} \mathrm{P}\left(\mathrm{c}^{\mathrm{\wedge} \dagger \wedge \mathrm{p} c)}\right.$) using the conventions that $c=$ cavity or \neg cavity and that Σ_{\dagger} is the sum over $t=\{$ toothache, \neg toothache $\}$				

Conditional Probability

－$P(A \wedge B)=P(A \mid B) P(B)$

$$
=P(B \mid A) P(A)
$$

$P(A \mid B)$ is the posterior probability of A given B

	toothache		っtoothache	
	pcatch	ᄀ pcatch	pcatch	－pcatch
cavity	0.108	0.012	0.072	0.008
－cavity	0.016	0.064	0.144	0.576

$P($ cavity \mid toothache $)=P($ cavity＾toothache $) / P($ toothache $)$ $=(0.108+0.012) /(0.108+0.012+0.016+0.064)=0.6$

Interpretation：After observing Toothache，the patient is no longer an＂average＂one，and the prior probabilities of Cavity is no longer valid
P （cavityltoothache）is calculated by keeping the ratios of the probabilities of the 4 cases unchanged，and normalizing their sum to 1

	toothache		っtoothache	
	pcatch	ᄀ pcatch	pcatch	っ pcatch
cavity	0.108	0.012	0.072	0.008
－cavity	0.016	0.064	0.144	0.576

$P($ cavityltoothache $)=P($ cavity＾toothache $) / P($ toothache $)$ $=(0.108+0.012) /(0.108+0.012+0.016+0.064)=0.6$
$P(\neg$ cavity \mid toothache $)=P(\neg$ cavity \wedge toothache $) / P($ toothache $)$
$=(0.016+0.064) /(0.108+0.012+0.016+0.064)=0.4$
$P(C \mid$ toochache $)=\alpha P(C \wedge$ toothache $)$
$\begin{aligned} \text { normalization }_{\text {constant }} & =\alpha \Sigma_{p c} P(C \wedge \text { toothache } \wedge p c) \\ & =\alpha[(0.108,0.016)+(0.012,0.064)] \\ & =\alpha(0.12,0.08)=(0.6,0.4)\end{aligned}$
constant $\quad=\alpha(0.12,0.08)=(0.6,0.4)$

$$
=\alpha(0.12,0.08)=(0.6,0.4)
$$

Conditional Probability

－$P(A \wedge B)=P(A \mid B) P(B)$

$$
=P(B \mid A) P(A)
$$

－$P(A \wedge B \wedge C)=P(A \mid B, C) P(B \wedge C)$
$=P(A \mid B, C) P(B \mid C) P(C)$
－$P($ Cavity $)=\Sigma_{t} \Sigma_{p c} P\left(\right.$ Cavity $\left.{ }^{\wedge} \dagger^{\wedge} \mathrm{pc}\right)$

$$
=\Sigma_{\dagger} \Sigma_{\mathrm{pc}} \mathrm{P}(\text { Cavity } \mid \dagger, p c) P(\dagger \wedge p c)
$$

－$P(c)=\Sigma_{t} \Sigma_{p c} P\left(c^{\wedge} \dagger^{\wedge} p c\right)$
$=\Sigma_{\dagger} \Sigma_{\mathrm{pc}} \mathrm{P}(c \mid \dagger, \mathrm{pc}) \mathrm{P}\left(\dagger^{\wedge} \mathrm{pc}\right)$

Independence

－Two random variables A and B are independent if

$$
P(A \wedge B)=P(A) P(B)
$$

hence if $P(A \mid B)=P(A)$
－Two random variables A and B are independent given C ，if
$P\left(A^{\wedge} B \mid C\right)=P(A \mid C) P(B \mid C)$
hence if $P(A \mid B, C)=P(A \mid C)$

Issues

－If a state is described by n propositions， then a belief state contains 2^{n} states （possibly，some have probability 0）
－\rightarrow Modeling difficulty：many numbers must be entered in the first place
－\rightarrow Computational issue：memory size and time

	toothache		ᄀtoothache	
	pcatch	\neg pcatch	pcatch	\neg pcatch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576

- toothache and pcatch are independent given cavity (or 7 cavity), but this relation is hidden in the numbers ! [Verify this]
- Bayesian networks explicitly represent independence among propositions to reduce the number of probabilities defining a belief state

Bayesian Network

- Notice that Cavity is the "cause" of both Toothache and PCatch, and represent the causality links explicitly
- Give the prior probability distribution of Cavity
- Give the conditional probability tables of Toothache and PCatch

Each of the beliefs JohnCalls and MaryCalls is independent of Burglary and Earthquake given Alarm or \neg Alarm

For example, John does not observe any burglaries directly

What does the BN encode?

What does the BN encode?

and MaryCalls are independent given Alarm or \neg Alarm

For instance, the reasons why
John and Mary may not call if there is an alarm are unrelated

Conditional Independence of non-descendents

A node X is conditionally independent of its non-descendents (e.g., the Zijs) given its parents (the Uis shown in the gray area).

Markov Blanket

A node X is conditionally independent of all other nodes in the network, given its parents, chlidren, and chlidren's parents.

Locally Structured World

- A world is locally structured (or sparse) if each of its components interacts directly with relatively few other components
- In a sparse world, the CPTs are small and the BN contains many fewer probabilities than the full joint distribution
- If the \# of entries in each CPT is bounded, i.e., $O(1)$, then the \# of probabilities in a BN is linear in n - the \# of propositions - instead of 2^{n} for the joint distribution

But does a BN represent a belief state?

In other words, can we compute the full joint distribution of the propositions from it?


```
    (J^M^A^ᄀB^ᄀE)
```



```
    \(=P(J \wedge M \mid A, \neg B, \neg E) * P\left(A^{\wedge} \neg B^{\wedge} \neg E\right)\)
    \(=P(J \mid A, \neg B, \neg E) * P(M \mid A, \neg B, \neg E) * P\left(A^{\wedge} \neg B^{\wedge} \neg E\right)\)
    ( \(J\) and \(M\) are independent given \(A\) )
- \(P(J \mid A, \neg B, \neg E)=P(J \mid A)\)
    ( \(J\) and \(\neg B^{\wedge} \neg E\) are independent given \(A\) )
- \(P(M \mid A, \neg B, \neg E)=P(M \mid A)\)
- \(P\left(A^{\wedge} \neg B^{\wedge} \neg E\right)=P(A \mid \neg B, \neg E) * P(\neg B \mid \neg E) * P(\neg E)\)
    \(=P(A \mid \neg B, \neg E) * P(\neg B) * P(\neg E)\)
    ( \(\neg B\) and \(\neg E\) are independent)
- \(P\left(J \wedge M^{\wedge} A^{\wedge} \neg B^{\wedge} \neg E\right)=P(J \mid A) P(M \mid A) P(A \mid \neg B, \neg E) P(\neg B) P(\neg E)\)
```


Exact Inference in Bayesian Networks

- Let's generalize that last example a little suppose we are given that JohnCalls and MaryCalls are both true, what is the probability distribution for Burglary?
- $P($ Burglary \mid JohnCalls = true, MaryCalls=true $)$
- Look back at using full joint distribution for this purpose - summing over hidden variables.

Calculation of Joint Probability

Inference by enumeration (example
in the text book) - figure 14.8
$\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{y} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
$\mathbf{P}(B \mid j, m)=\alpha P(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)$
$P(b \mid j, m)=a \sum_{e} \sum_{a} P(b) P(e) P(a \mid b e) P(j \mid a) P(m \mid a)$
$P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b e) P(j \mid a) P(m \mid a)$
$\mathbf{P}(\mathrm{B} \mid \mathrm{j}, \mathrm{m})=\alpha<0.00059224,0.0014919>$
$\mathbf{P}(\mathrm{B} \mid \mathrm{j}, \mathrm{m}) \approx<0.284,0.716>$

Constructing Bayesian networks

- 1. Choose an ordering of variables X_{1}, \ldots, X_{n} such that root causes are first in the order, then the variables that they influence, and so forth.
- 2. For $i=1$ to n
- add X_{i} to the network
- select parents from X_{1}, \ldots, X_{i-1} such that
$\boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots X_{i-1}\right)$
- Note:the parents of a node are all of the nodes that influence it. In this way, each node is conditionally independent of its predecessors in the order, given its parents.

This choice of parents guarantees:
$\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1} \boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad$ (chain rule) $=\pi_{i=1} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right) \quad\right.$ (by construction)

$$
\begin{aligned}
& \text { Inference by enumeration (another } \\
& \text { way of looking at it) - figure } 14.8 \\
& \mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{y} \mathbf{P}(X, e, y) \\
& \mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m) \\
& P(b \mid j, m)=\mathbf{P}(B, e, a, j, m)+ \\
& \mathbf{P}(B, e,\urcorner a, j, m)+ \\
& \mathbf{P}(B,\urcorner e, a, j, m)+ \\
& \mathbf{P}(B,\urcorner e,\urcorner a, j, m) \\
& \mathbf{P}(B \mid j, m)=\alpha<0.00059224,0.0014919> \\
& \mathbf{P}(B \mid j, m) \approx<0.284,0.716>
\end{aligned}
$$

Example - How important is the ordering?

- Suppose we choose the ordering M, J, A, B, E
$P(J \mid M)=P(J) ?$

Example

- Suppose we choose the ordering M, J, A, B, E

$P(J \mid M)=P(J)$? No
$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A) ?$
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B) ?$

Example

- Suppose we choose the ordering $\mathrm{M}, \mathrm{J}, \mathrm{A}, \mathrm{B}, \mathrm{E}$

$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A)$? No
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A) ?$
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B) ?$

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: $1+2+4+2+4=13$ numbers needed

Example

- Suppose we choose the ordering M, J, A, B, E

$\boldsymbol{P}(J \mid M)=P(J)$? No
$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A)$? No
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(B \mid A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B) ?$ Yes

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct

