

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls •
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 An earthquake can set the alarm off
 - The alarm can cause Mary to call
 The alarm can cause John to call

The belief state is defined by the full joint probability of the propositions

	toothache		- toothache	
	pcatch	¬pcatch	pcatch	¬ pcatch
cavity	0.108	0.012	0.072	0.008
¬ cavity	0.016	0.064	0.144	0.576

Probabilistic Inference

	toothache		- toothache	
	pcatch	¬ pcatch	pcatch	¬ pcatch
cavity	0.108	0.012	0.072	0.008
¬ cavity	0.016	0.064	0.144	0.576

 $P(\text{cavity } v \text{ toothache}) = 0.108 + 0.012 + \dots \\ = 0.28$

Trobabilistic Inference				
			+	*hh -
	toothache		- Toothache	
	pcatch	¬ pcatch	pcatch	¬ pcatch
cavity	0.108	0.012	0.072	0.008
¬ cavity	0.016	0.064	0.144	0.576

Probabilistic Inference					
	toothache		- toothache		
	pcatch	¬ pcatch	pcatch	¬ pcatch	
cavity	0.108	0.012	0.072	0.008	
¬ cavity	0.016	0.064	0.144	0.576	

 $\begin{array}{l} \mbox{Marginalization: } P(c) = \Sigma_t \Sigma_{pc} P(c^{+_pc}) \\ \mbox{using the conventions that } c = cavity or \neg cavity and that \\ \Sigma_t \mbox{ is the sum over } t = \{toothache, \neg toothache\} \end{array}$

Conditional Probability

 P(A^B) = P(A|B) P(B) = P(B|A) P(A)
 P(A|B) is the posterior probability of A given B

	toothache		- toothache	
	pcatch	- pcatch	pcatch	- pcatch
cavity	0.108	0.012	0.072	0.008
-cavity	0.016	0.064	0.144	0.576

P(cavity|toothache) = P(cavity^toothache)/P(toothache) = (0.108+0.012)/(0.108+0.012+0.016+0.064) = 0.6

Interpretation: After observing Toothache, the patient is no longer an "average" one, and the prior probabilities of Cavity is no longer valid

 $\mathsf{P}(\mathsf{cavity}|\mathsf{toothache})$ is calculated by keeping the ratios of the probabilities of the 4 cases unchanged, and normalizing their sum to 1

Independence Two random variables A and B are independent if P(A^B) = P(A) P(B) hence if P(A|B) = P(A) Two rendem variables A and B are

 Two random variables A and B are independent given C, if P(A^B|C) = P(A|C) P(B|C) hence if P(A|B,C) = P(A|C)

Issues

- If a state is described by n propositions, then a belief state contains 2ⁿ states (possibly, some have probability 0)
- → Modeling difficulty: many numbers must be entered in the first place
- ${\scriptstyle\bullet} \rightarrow {\it Computational}$ issue: memory size and time

_				
	toothache		- toothache	
	pcatch	¬pcatch	pcatch	¬ pcatch
cavity	0.108	0.012	0.072	0.008
¬ cavity	0.016	0.064	0.144	0.576

- toothache and pcatch are independent given cavity (or ¬ cavity), but this relation is hidden in the numbers ! [Verify this]
- Bayesian networks explicitly represent independence among propositions to reduce the number of probabilities defining a belief state

Locally Structured World

- A world is locally structured (or sparse) if each of its components interacts directly with relatively few other components
- In a sparse world, the CPTs are small and the BN contains many fewer probabilities than the full joint distribution
- If the # of entries in each CPT is bounded, i.e., O(1), then the # of probabilities in a BN is linear in n - the # of propositions - instead of 2ⁿ for the joint distribution

Exact Inference in Bayesian Networks

- Let's generalize that last example a little suppose we are given that JohnCalls and MaryCalls are both true, what is the probability distribution for Burglary?
- P(Burglary | JohnCalls = true, MaryCalls=true)
- Look back at using full joint distribution for this purpose – summing over hidden variables.

Inference by enumeration (example in the text book) – figure 14.8 $P(X | e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$ $P(B| j,m) = \alpha P(B,j,m) = \alpha \sum_{e} \sum_{a} P(B,e,a,j,m)$ $P(b| j,m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a|be)P(j|a)P(m|a)$ $P(b| j,m) = \alpha P(b)\sum_{e} P(e)\sum_{a} P(a|be)P(j|a)P(m|a)$ $P(B| j,m) = \alpha < 0.00059224, 0.0014919>$ $P(B| j,m) \approx < 0.284, 0.716>$

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct