Inductive Learning Decision Tree Method

(If it's not simple, it's not worth learning it)

R&N: Chap. 18, Sect. 18.1-3

Much of this taken from slides of: Jean-Claude Latombe, Stanford University: Stuart Russell, UC Berkley; Lise Getoor, University of Maryland.

Motivation

- An AI agent operating in a complex world requires an awful lot of knowledge: state representations, state axioms, constraints, action descriptions, heuristics, probabilities, ...
- More and more, AI agents are designed to acquire knowledge through learning

What is Learning?

Mostly generalization from experience:

"Our experience of the world is specific, yet we are able to formulate general theories that account for the past and predict the future" M.R. Genesereth and N.J. Nilsson, in *Logical Foundations of AI*, 1987

- → Concepts, heuristics, policies
- Supervised vs. un-supervised learning

Contents

- Introduction to inductive learning
- Logic-based inductive learning:
 - Decision-tree induction

Logic-Based Inductive Learning

- Background knowledge KB
- Training set D (observed knowledge) that is not logically implied by KB
- Inductive inference: Find h such that KB and h imply D

h = D is a trivial, but un-interesting solution (data caching)

- Set E of objects (e.g., cards)
- Goal predicate CONCEPT(x), where x is an object in E, that takes the value True or False (e.g., REWARD)

Learning a Predicate (Concept Classifier)

- Set E of objects (e.g., cards)
- Goal predicate CONCEPT(x), where x is an object in E, that takes the value True or False (e.g., REWARD)
- Observable predicates A(x), B(X), ... (e.g., NUM, RED)
- Training set: values of CONCEPT for some combinations of values of the observable predicates

Example of Training Set

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Qutlook	Temperature	Humidity	Wind	PlayTenni
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overe -		High	Weak	Yes
D4	Rai	nary attribut	es High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
Goa	l predico	ate is PLA	Y-TENN	VIS k	Yes No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
	~	3 6 1 1	NT	C	1/

Learning a Predicate (Concept Classifier)

- Set E of objects (e.g., cards)
- Goal predicate CONCEPT(x), where x is an object in E, that takes the value True or False (e.g., REWARD)
- Observable predicates A(x), B(X), ... (e.g., NUM, RED)
- Training set: values of CONCEPT for some combinations of values of the observable predicates

 Find a representation of CONCEPT in the form: CONCEPT(x) ⇔ S(A,B, ...) where S(A,B,...) is a sentence built with the observable predicates, e.g.: CONCEPT(x) ⇔ A(x) ∧ (¬B(x) v C(x))

Size of Hypothesis Space n observable predicates 2ⁿ entries in truth table defining CONCEPT and each entry can be filled with True or False To the observe of any partniction

- In the absence of any restriction (bias), there are 2^{2ⁿ} hypotheses to choose from
- n = 6 → 2×10¹⁹ hypotheses!

Notion of Capacity

- It refers to the ability of a machine to learn any training set without error
- A machine with too much capacity is like a botanist with photographic memory who, when presented with a new tree, concludes that it is not a tree because it has a different number of leaves from anything he has seen before
- A machine with too little capacity is like the botanist's lazy brother, who declares that if it's green, it's a tree
- Good generalization can only be achieved when the right balance is struck between the accuracy attained on the training set and the capacity of the machine

Examples

- Use many fewer observable predicates than the training set
- Constrain the learnt predicate, e.g., to use only "highlevel" observable predicates such as NUM, FACE, BLACK, and RED and/or to have simple syntax
- Einstein: "A theory must be as simple as possible, but not simpler than this"
 If a hypothesis is too complex it is not worth learning it (data caching does the job as well)
 - There are many fewer simple hypotheses than complex ones, hence the hypothesis space is smaller

		Training Set						
			•					
Ex. #	Α	В	С	D	E	CONCEPT		
1	False	False	True	False	True	False		
2	False	True	False	False	False	False		
3	False	True	True	True	True	False		
4	False	False	True	False	False	False		
5	False	False	False	True	True	Faise		
6	True	False	True	False	False	True		
7	True	False	False	True	False	True		
8	True	False	True	False	True	True		
9	True	True	True	False	True	True		
10	True	True	True	True	True	True		
11	True	True	False	False	False	False		
12	True	True	False	False	True	False		
13	True	False	True	True	True	True		

Using Information Theory

- Rather than minimizing the probability of error, many existing learning procedures minimize the expected number of questions needed to decide if an object x satisfies CONCEPT
- This minimization is based on a measure of the "quantity of information" contained in the truth value of an observable predicate
- See R&N p. 659-660

Learning decision trees Problem: decide whether to wait for a table at a restaurant, based on the following attributes: Alternate: is there an alternative restaurant nearby? Bar: is there a comfortable bar area to wait in? Fri/Sat: is today Friday or Saturday? Hungry: are we hungry? Patrons: number of people in the restaurant (None, Some, Full) Price: price range (\$, \$\$, \$\$\$) Raining: is it raining outside? Reservation: have we made a reservation? Type: kind of restaurant (French, Italian, Thai, Burger) WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

- Information Content (Entropy): $I(P(v_1), \dots, P(v_n)) = \sum_{i=1} -P(v_i) \log_2 P(v_i)$
- For a training set containing *p* positive examples and *n* negative examples:

 $I(\frac{p}{p+n},\frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$

Extensions of the decision tree learning algorithm

- · Using gain ratios (not covered in the text)
- · Real-valued data
- · Noisy data and overfitting
- · Generation of rules
- · Setting parameters
- Cross-validation for experimental validation of performance
- C4.5 is an extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, and so on

Noisy data and overfitting

- · Many kinds of "noise" can occur in the examples:
 - Two examples have same attribute/value pairs, but different classifications
 - Some values of attributes are incorrect because of errors in the data acquisition process or the preprocessing phase
 - The classification is wrong (e.g., + instead of -) because of some error
 - Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome

Noisy data and overfitting (cont)

- The last problem, irrelevant attributes, can result in overfitting the training example data.
 - If the hypothesis space has many dimensions because of a large number of attributes, we may find meaningless regularity in the data that is irrelevant to the true, important, distinguishing features
 - Fix by pruning lower nodes in the decision tree
 - For example, if Gain of the best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes

Pruning decision trees Pruning of the decision tree is done by replacing a whole

- subtree by a leaf node
 The replacement takes place if a decision rule establishes that the expected error rate in the subtree is greater than in the single leaf. E.g.,
 - Training: one training red success and two training blue failures
 - Test: three red failures and one blue success
 - Consider replacing this subtree by a single Failure node.
- After replacement we will have only two errors instead of

Cross-Validation to Reduce Overfitting

- Estimate how well each hypothesis will predict unseen data.
- Set aside some fraction of the known data, and use it to test the prediction performance of a hypothesis induced from the remaining data.
- K-fold cross-validation means that you run k experiments, each time setting aside a different 1/k of the data to test on, and average the results.
- · Use to decide if pruning method is appropriate.
- Need to test again on really unseen data.

Converting decision trees to rules

- It is easy to derive a rule set from a decision tree: write a rule for each path in the decision tree from the root to a leaf
- In that rule the left-hand side is easily built from the label of the nodes and the labels of the arcs
- The resulting rules set can be simplified:
- Let LHS be the left hand side of a rule
- Let LHS' be obtained from LHS by eliminating some conditions
- We can certainly replace LHS by LHS' in this rule if the subsets of the training set that satisfy respectively LHS and LHS' are equal
- A rule may be eliminated by using metaconditions such as "if no other rule applies"

Applications of Decision Tree

- Medical diagnostic / Drug design
- Evaluation of geological systems for assessing gas and oil basins
- Early detection of problems (e.g., jamming) during oil drilling operations
- Automatic generation of rules in expert systems

How well does it work?

- · Many case studies have shown that decision trees are at least as accurate as human experts.
 - A study for diagnosing breast cancer had humans correctly classifying the examples 65% of the time; the decision tree classified 72% correct
 - British Petroleum designed a decision tree for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system
 - Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example

Summary: Decision tree learning

- Inducing decision trees is one of the most widely used learning methods in practice Can out-perform human experts in many problems Strengths include •
- - Fast
 Simple to implement
 - Can convert result to a set of easily interpretable rules
 - Empirically valid in many commercial products
 Handles noisy data
- · Weaknesses include:
 - Univariate splits/partitioning using only one attribute at a time so limits types of possible trees
 - Large decision trees may be hard to understand

 - Requires fixed-length feature vectors
 Non-incremental (i.e., batch method)