
The Admissibility of A�

Here I want to prove that, in fact, algorithm A� is admissible. That is, it will terminate in
�nding an optimal path to a goal node if a path from start to a goal exists. In particular:
Given: a graph search which does algorithm A search { if I can guarantee that the heuristic function
has the property h(n) � h0(n) for all nodes n (so that my heuristic function which estimates the
cost from a given node to a goal is actually a lower bound on the actual cost to the goal), then the
algorithm as given is guaranteed to �nd an optimal solution (if a path from start to a goal exists).

Remember in algorithm A search is distinguished by two things; the heuristic function it uses
and what the implementation of that heuristic requires of the search package itself:

1. The heuristic function that we use estimates: f 0(n) = the actual cost of an optimal path (a
minimal cost path to the \cheapest" goal) from start to a goal node constrained to go through
n. We saw that this function was composed of two parts: f 0(n) = g0(n) + h0(n) = the actual
cost of an optimal path from s to n + the actual cost of an optimal path from n to a goal
node.

We estimate f 0 with the function f :

f(n) = g(n) + h(n)

where:
g(n) is an estimate of g0(n) { here we will use the minimal cost path found so far. So it will
always be the case that g0(n) � g(n), and
h(n) is an estimate of h0(n) { here we will use a heuristic information from the problem
domain.

2. The algorithm itself:

� nodes taken o� open list according to the smallest value of f(n)

� when generating the successors of a node, check to see if any have been generated before
(and thus have a di�erent parent). Check to see of their g values would be better through
the new parent. If so, update the node and possibly all of that node's children as well.

Now, Algorithm A� is an algorithm A search, where constraints are put on the h function. In
particular, algorithm A� requires:

h(n) � h0(n)

Given an h function that satis�es these constraints, we must prove that Algorithm A will �nd a
cheapest path to a goal node (an optimal solution). So we want to prove that Algorithm A� is
admissible (if there is a path from start to a goal node, A� terminates by �nding an optimal path).
We start by taking two things for granted (both can themselves be proved, but given time.....)

1

Given: The graphsearch as described always terminates for �nite graphs (if no goal { we will at
least run out of things on open since there are only a �nite number of nodes in the graph
there are a �nite number of things to be put on the open list).

Given: Even if the graph is in�nite then the graph search will terminate if there is a path from
start to the goal node. (Here the basic reasoning is that some element of that path will always
be of the open list. This is because the start node (at the beginning of the path) starts o�
on open. The second node on the path is a child of start, and then each are children of the
previous. Notice that this path must be �nite. If the graph is in�nite, then at some point
the g portion of the f function for the nodes that are not on this path but are on open will
become quite large (because they are on an in�nite path). At that time, the g values of the
nodes to the goal will appear more reasonable to the algorithm, and will eventually be chosen
o� of the open for expansion.)

Prove Algorithm A� is admissible (if there is a path from S to a goal node, A� terminates by
�nding an optimal path).

First: A� can either terminate by �nding a goal or depleting OPEN. But OPEN can never become
empty before termination if there is a path from start to a goal node because one of the nodes
along the path will always be on open. [Note: suppose this is the optimal path to the goal
node nk, optimal-path=(Start = n0; n1; :::; nk = Goal). Notice that S starts out on open
and each step along the way one of the elements of the path will be on open { since they
are all children of the previous node by de�nition of path. The only way that no member of
this path could be on open is if nk were already on closed. But since nk is a goal node, the
algorithm would have terminated at that point!]

Therefore, the algorithm must terminate in �nding a goal node. I will go on to prove by
contradiction that the algorithm will terminate in �nding an optimal path to a goal.

Suppose that the algorithm does terminate at some goal node, t, without �nding an optimal path.
Then it must be the case that:

f(t) = g(t) > f 0(start)

Note that f(t) = g(t) by our assumption of h(t) � h0(t). Since t is a goal node, h(t) must be
0.

Note that f(t) > f 0(start) by the de�nition of optimal path. One thing that we should notice
is that the f 0 value is the same for each node along the optimal path. This makes sense if
we note that f 0 is capturing the cost of the entire path (both to a particular node and from
there to the goal node). Along the optimal path, every node would have the same value for
this function.

2

Now, by our assumption above (that we terminate at a goal node but that we have not found
an optimal path) and because we know that some member of the optimal path must always
be on open (from above), it must be the case that 9 a node � of the optimal path that is on
the open list at the time t is chosen. Let's call that node ni. Now, since ni was not chosen
from the open list when t was, we know that ni must have a greater f value. Thus it must
be the case that:

f(ni) � f(t) = g(t) > f 0(start)

It is this statement that I will �nd a contradiction with. I will show that this statement
cannot hold because there must 9 on open a node ni that is on an optimal path from start to
a goal with f(ni) � f 0(start). This will create a contradiction and my original premise must
be wrong.

Creating the Contradiction. Suppose that my optimal path is
optimal-path=(Start = n0; n1; :::; nk = Goal).
For any time before termination, let ni be the lowest element in this sequence on the open
list. Thus we know that:

f(ni) = g(ni) + h(ni)

But we know that the algorithm has already found an optimal path to ni since ni is on an
optimal path to a goal and all of its ancestors along this path are on the closed list since ni

is the lowest element of the path still on open.

[Note that if a node is on the optimal path from start to a goal, then that same path (prior
to the node) must be the optimal path from start to each node on the path { of course, if
there was a cheaper way to get to a node within that path, there would also be a cheaper way
to get to the goal. Now, if all nodes previous to ni have already been explored (made Expl)
that means that the optimal path to ni has already been found (in those previous nodes!).]

Therefore we know that:

g(ni) = g0(ni)
and thus

f(ni) = g0(ni) + h(ni)

But notice that since we know that h(ni) � h0(ni), we have:

f(ni) � g0(ni) + h0(ni) = f 0(ni)

3

But note that the f 0 value for any node along the optimal path is equal to f 0(start). This
means that:

f(ni) � f 0(start)

This contradicts our above statement. And thus, ni must have been chosen o� of the open
list before t!

4

